
HAL Id: hal-01577239
https://hal.science/hal-01577239

Submitted on 25 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessment of Digital Image Correlation Measurement
Accuracy in the Ultimate Error Regime: Improved

Models of Systematic and Random Errors
Michel Bornert, Pascal Doumalin, Jean-Christophe Dupré, Christophe

Poilâne, Laurent Robert, Evelyne Toussaint, Bertrand Wattrisse

To cite this version:
Michel Bornert, Pascal Doumalin, Jean-Christophe Dupré, Christophe Poilâne, Laurent Robert, et
al.. Assessment of Digital Image Correlation Measurement Accuracy in the Ultimate Error Regime:
Improved Models of Systematic and Random Errors. Experimental Mechanics, 2018, 58 (1), p.33-48.
�10.1007/s11340-017-0328-5�. �hal-01577239�

https://hal.science/hal-01577239
https://hal.archives-ouvertes.fr


Assessment of Digital Image Correlation Measurement Accuracy 
in the Ultimate Error Regime: Improved Models of Systematic
and Random Errors

M. Bornert1 
& P. Doumalin2 

& J.-C. Dupré2 
& C. Poilâne3 

& L. Robert4 
& E. Toussaint5 

& B. Wattrisse6

Abstract The literature contains many studies on assessment
of DIC uncertainties, particularly in the ultimate error regime,
when the shape function used to describe the material trans-
formation perfectly matches the actual transformation. For
pure sub-pixel translations, bias and random errors obtained
for experimental or synthetic images show more complex
evolution versus the fractional part of displacement than those
predicted by the existing theoretical models. Indeed, small
deviations arise, mainly around integer values of imposed dis-
placements for noisy images, and they are interpreted as the
unrepresentativeness of the underlying hypotheses of the the-
oretical models. In a first step, differences between imposed

and measured displacements are analysed: random error is
independent of fractional displacement, and systematic error
does not decrease for values close to integer displacements
whatever the noise level. Therefore, new prediction models
are proposed based on the analysis of identified phenomena
from synthetic speckle-pattern 8-bit images. The statistical
approach used in this paper generalizes the methods proposed
in the literature and mimics the experimental methodology
usually used for displacement measurements performed in
different subsets in the same image. Two closed-form expres-
sions for the systematic and random errors and a linear inter-
polation scheme are developed. These models, depending on-
ly on image properties and the imposed displacement, are built
with a very limited number of parameters. It is then possible to
predict the evolution of bias and random errors from one to
four images.

Keywords Digital image correlation . Uncertainty
quantification . Predictionmodels . Error assessment .

Ultimate error regime

Introduction

Full-field kinematic measurements by digital image correla-
tion (DIC) have become an unavoidable technique in experi-
mental solid mechanics for characterizing the local strain
mechanisms in materials and structures. Initially developed
for planar surfaces [1–3], these methods have been extended
to tackle curved surfaces using stereovision algorithms [1, 4,
5]. More recently, kinematic volume measurements have be-
come available in academic and industrial research centres
due to the democratization of different tomographic devices
(optical and X-ray tomography [6–9], confocal microscopy
[10],magnetic resonance imaging [11],…).Otherdevelopments
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concern improving correlation algorithms by regularizing the
displacement fields using diverse strategies: global approaches
ensuring displacement continuity [12, 13] and integrated ap-
proaches additionally enforcing the local equilibrium associated
with a given behaviour law [14].

As usual in experimental physics, the measurement of one
datummust be related to its uncertainty. In the context of DIC,
the assessment of displacement measurement uncertainties is
delicate due to the complexity of the Bmeasurement^ chain,
which involves: (i) the imaging device and the image itself
and (ii) the models used in processing the entire image (cam-
era model, image similitude model, image transformation
model, image interpolation model, image noise model…).

The characterization of metrological performances of
DIC techniques has thus been widely studied from an
experimental and theoretical point of view. Due to the
complexity of the problem, these approaches generally
address a limited number of parameters of the overall
DIC problem. For instance, from an experimental point
of view, the camera and speckle images are fixed and
the study is limited to the effect of image interpolation
and image noise [15–18]. The first theoretical approaches
proposed a noise propagation analysis in the DIC proce-
dure [19]. They were later complemented by adding the
effect of image interpolation [20]. The collaborative work
performed by the BMetrology^ workgroup of the CNRS
research network 2519 aims at contributing to a system-
atic approach to this question by dissociating the steps of
the measurement chain. In [21], the effect of the image
transformation was investigated. Two error regimes can
be encountered: (i) the ultimate error regime, if the shape
function is rich enough to represent the actual displace-
ment field, and (ii) the shape function mismatch regime, if
the shape function is too poor to reproduce the real dis-
placement field on the chosen subset. A new study [22]
examined the influence of several options in the DIC pro-
cess (criterion, direct or inverse computation, optimization
algorithm) on metrological performance using an error
propagation strategy similar to the one proposed in [20].
In this approach, the shape of the correlation criterion is
not investigated and errors due to the possible presence of
local minima are not considered. The study in [23] com-
pletes the previous works by highlighting differences be-
tween spatial and temporal random errors and by intro-
ducing the convex character of their evolution versus the
fractional part of the imposed displacement. Nevertheless,
this approach cannot explain the values of random error
close to integer values of the imposed displacement as
shown in [21]. In this paper, we thoroughly investigate
the ultimate error regime and we develop simple models
that consider the possible non-convexity of correlation
criterion to describe the evolution of systematic and ran-
dom errors with respect to image gradient, image noise

and imposed displacement. Our approach generalizes the
methods proposed by Wang et al. in [20] to better repro-
duce the experimental methodology classically used to
obtain systematic and random errors.

Existing Models for DIC Ultimate Error

Error Analysis Based on Continuous Image Models

Many experimental characterizations of the ultimate error re-
gime can be found in the literature for pure rigid body trans-
lations [16–18, 24–38]. Conversely, very few theoretical ap-
proaches have been proposed. A first analysis was proposed
by Roux and Hild [19]. It consists of a statistical description of
the sensitivity of displacement measurements with respect to
superimposed image noise. This approach required two major
hypotheses: a perfect reconstruction of the grey level images,
and a statistical model of the image noise (a zero-mean with a
σn standard deviation for uniform white noise). The perfect
reconstruction of the initial image I and the transformed one T
corresponds to the ideal situation in which both I(X) and T(X)
are knownwhatever the positionX. Moreover, the optical flow
is perfectly conserved, i.e., I(X) = T(X + u(X)), where u(X)
represents the actual transformation of the subset near X.
The authors suggested an image noise propagation in an ana-
lytical description of the correlation criterion (namely, the
usual Bsum of squared difference^ SSD criterion). They found

that the average of the displacement error (Δu
c
) was equal to

zero and that the standard deviation of the displacement error
(σc

u ) was proportional to the standard deviation of the image
noise (σn) and inversely proportional to the average of the

squared grey level gradients (∇I2 ) and to the subset size d
(see equation (1)):

Δu
c
¼ 0

σc
u∝

σn

d

ffiffiffiffiffiffiffi
∇I2

q
8><
>: ð1Þ

Note that the c exponent stands for Bcontinuous image
model^.

Error Analysis for Images with Finite-Sized Pixels

More recently, Wang et al. [20] have extended this ap-
proach to more realistic situations by introducing grey
level interpolation, required in most DIC software, in the
analytical expression of the displacement error. They con-
sidered a uniform white noise (zero-mean, σn standard
deviation), and two types of classical grey level interpo-
lations, namely, linear and cubic polynomial interpolation.
Higher order interpolations have not been considered



because they lead to overly complex analytical expres-
sions. For each interpolation, they propagated the image
noise in the correlation formulation (also based on the
SSD criterion), to obtain the closed form of the displace-
ment error for a given subset (i.e., with a fixed spatial
d is t r ibu t ion of grey leve ls uncor rupted by the
superimposed random noise). They defined the systematic
error as the expectation of the displacement error over all
noise realizations, and the random error as the variance of
the displacement error. By considering a perfect recon-
struction of the grey level images, the authors obtained
the same expressions for the systematic and random errors
as in [19]. If an imperfect reconstruction based on inter-
polation of grey levels was considered, the expression of
random errors was also the same, and in that case the
systematic error was not null:

σd
u∝

σn

d

ffiffiffiffiffiffiffi
∇I2

q
Δu

d
¼ −

h τð Þ∇I
∇I

2 þ f i τð Þ σn
2

∇I
2

8>>>><
>>>>:

ð2Þ

Here, the d exponent stands for Bdiscontinuous
(interpolated) image model^.

For this model, the random error σdu is also indepen-
dent of the actual displacement. The first part of the

expression for the systematic error Δu
d

is noise-
independent and shows a dependence on the fractional
part τ of the imposed displacement through the local
grey level residual h(τ) at the correlation optimum.
The second part shows a quadratic dependence on
noise. The function fi depends on the chosen grey level
interpolation: it is linear for a linear interpolation and

quintic for a cubic one. Note that in this expression A
stands for the average of A for a set of drawings over
the given subset. Of note is that this way of defining
the systematic error differs from the classical experi-
mental or numerical approaches in which the systematic
error is averaged over all the subset realizations, with
various grey level and random noise distributions.

Enriched Modelling of Random Error Analysis

Characterization of Random Error

To be consistent with the theoretical analyses discussed in the
previous section, a basic subset-based DIC code has been
implemented. It involves an SSD criterion along with a bi-
linear image interpolation (bi-cubic interpolations have also
been implemented and will be used in section 3.3). As this
paper focuses only on the ultimate error regime, only pure

sub-pixel translations of images were investigated with con-
stant shape functions. A first-order gradient-based algorithm
was used to minimize the criterion for each subset.

Regarding statistical analysis, the methodology is iden-
tical to the one proposed in [21]: the same synthetic
speckle-pattern 8-bit images were used. Speckle patterns
of three mean radii r were generated (r = r0/2, r = r0 and
r = 2r0 with r0 ≈ 2.2 px) and the size of the images with
respect to the speckle size was kept constant (e.g.,
512 × 512 px definition for the r0/2 speckle size and so
on, as in [21, 36, 39]). A uniform Gaussian white noise
with five intensity levels (standard deviation σn = 0, 2, 4,
8, 16 GL) has been added to the pixel grey levels. The
statistical analysis was based on the computed standard

deviation σu (random error) and the arithmetic mean Δu
(systematic error, or bias) of the displacement error at the
centre of a correlation window of coordinates (i,j) defined
by:

Δuij ¼ umeasuredi; j −uimposedi; j ð3Þ

where umeasuredi; j is the evaluation of the displacement field

provided at this position by the DIC package. The corre-
lation is performed on non-overlapping subsets to ensure
the statistical independence of measurements. The stan-
dard deviation σu is calculated by:

σu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n∑
i; j
Δu2ij− ∑

i; j
Δuij

" #2
n n−1ð Þ

vuuuut ð4Þ

where n is the number of positions (i,j) for which the
displacement is evaluated, whereas the arithmetic mean
is obtained as:

Δu ¼
∑
i; j
Δuij

n
ð5Þ

Figure 1 presents the evolution of the random error
function of the prescribed displacement τ for various
image noises, obtained for the standard speckle size
(r = r0) and for the reference subset size d = 16 px.

Three main observations can be highlighted:

(i) as previously reported ([39] and references within),
the amplitude of the random error increases system-
atically with the amplitude of the image noise;

(ii) the amplitude of the random error depends on the pre-
scribed sub-pixel displacement τ;

(iii) the shape of the random error curve evolves with
the noise level: for noiseless images or small



image noise, a typical bell-shape (concave) curve
is observed with almost zero error for integer dis-
placement (0 or 1 px) and a maximum error for a
displacement of 0.5 px. For noisy or very noisy
images a U-shape (convex) curve is observed with
maximum errors for integer displacement values.
For each level of noise, the two shapes show a
relatively constant plateau centred on τ = 0.5 px.
The size of this plateau can be expressed using the
p a r ame t e r δmX ( s u p e r s c r i p t m s t a nd s f o r
Bmeasured^) such that σu remains approximately
constant in the interval [δmX ; 1-δmX ]. In Fig. 1, δmX
is approximately equal to 0.2 px for σn = 16 GL.

Importantly, in contrast to items (ii) and (iii), item (i) is
consistent with the random error predictions of equations (1)
and (2). Here we will demonstrate the consistency of the re-
sults in the plateau with the predictions given by equations (1)
and (2). We will then focus on the behaviour of the DIC
algorithm near integer displacement values. Finally, the third
sub-section will be devoted to the proposition of a phenome-
nological model to describe all the dependencies (noise and
imposed displacement) of the random error.

Comparison to Existing Models Close to τ = 0.5 px

According to the theoretical predictions associated with equa-
tions (1) and (2), the random error is only a function of the

average of the squared grey level gradients ∇I2, the noise level
σn and the correlation subset size d. By calculating ∇I2 on
noiseless images for the three investigated speckle sizes (r0/

2, r0 and 2r0), we obtain the numerical values given in Table 1.

Results presented in this table show that the term d
ffiffiffiffiffiffiffi
∇I2

p
is

quasi-constant, whatever the speckle size.
A consequence of this observation is that the measured

random error σu should vary linearly with respect to the image
noise σn, according to equations (1) and (2). The slope should
be constant whatever the speckle size. This analysis is con-
firmed by the results presented in Fig. 2, which presents the
evolution of the random error σ0:5

u computed for the imposed
displacement τ = 0.5 px with respect to the actual image noise
equal to 1

6 þ σ2
n (see reference [38]). This definition considers

the noise induced by the quantification of the image. The
slopes of the straight lines (α in Fig. 2) are also given in
Table 1.

Results presented in Table 1 and Fig. 2 highlight the
consistency of the theoretical model proposed in equa-
tions (1) and (2) with regard to the numerical estimation
of the random error σu estimated for ml ≤ τ ≤ 1 − ml
δmX ≤τ ≤1−δ

m
X px. However, this consistency fails for the

smallest speckle size (r = r0/2) due to the sub-sampling
of the texture signal that induces a corrupted estimation
of the image gradients. Indeed, the Y-intercept of the
curve corresponding to r = r0/2 is significantly higher
than that of classical speckle sizes (e.g., for r = r0 or
r = 2r0). The theoretical model predicts a null random
error for noiseless images whatever the speckle size.

Similarly, the difference between the model and nu-
merical results slightly increases for high noise levels,
probably because the noise is then no longer averaged
on the chosen subsets. Consequently, the expectancy of
the random variable σu computed from a limited set of
draws in the image (approximately 4000) is not correct-
ly estimated for high noise level, contrary to the case
for low noise level.

In conclusion, equations (1) and (2) are valid only when the
imposed displacement τ is sufficiently different from integer pix-
el values (roughly τ comprised between δmX and 1-δmX ).
Subsequent sub-sections present an extension of the theoretical
model relative to the random error for imposed displacements
close to 0 and 1 px (namely, 0≤τ ≤δmX and 1−δmX ≤τ ≤1 ).

Fig. 1 Evolution of the random error function of the prescribed
displacement τ for the five image noises σn = 0, 2, 4, 8, 16 GL,
obtained for the standard speckle size (r = r0) and for the reference
subset size of d = 16 pix

Table 1 Statistical description of the speckle images and slope of the
lines α in Fig. 2

d (px) r
∇I2 GL=pxð Þ 2

d

ffiffiffiffiffiffiffi
∇I2

q� �
GL−1� �−1 Slopes of

lines in
Fig. 2
[px/GL]

8 r0/2 3000 2.3E-3 2.55E-3

16 r0 90 2.1E-3 2.29E-3

32 2r0 250 2.0E-3 1.69E-3



Analytical Modelling of Observed Behaviour for SSD
Criterion at τ = 0 pix

To explain higher values of σu for imposed integer dis-
placements, the situation τ = 0 px is studied. In this
case, the conservat ion of optical f low induces
T(Xi) = I(Xi). In the following, the analysis is restricted
to a linear interpolation scheme, so that T(Xi + δX) =
T(Xi) + δX[T(Xi + 1) − T(Xi)] = T(Xi) + δX∇T(Xi). In the pres-
ence of image noises ε1(Xi) and ε2(Xi) on the initial and

final images, respectively, the intensities become ~I X ið Þ
¼ I X ið Þ þ ε1 X ið Þ and ~T X ið Þ ¼ T X ið Þ þε2 X ið Þ. It is then
possible to determine the analytical expression of the
SSD correlation coefficient with δX and then to mini-
mize this expression. The SSD criterion writes as:

SSD δXð Þ ¼ ∑
i

I X ið Þ−T X i þ δXð Þð Þ2 ð6Þ

For the noiseless case, the criterion becomes:

SSD δXð Þ ¼ N∇T2δ2X ð7Þ
where N is the number of pixels in the correlation subset d and

∇T 2 is the average of the square value of the grey level gra-
dients in d in the final image. The latter is supposed to be
constant over the entire image. The criterion is a (convex)
parabola that is minimal for δX = 0. With a superimposed im-
age noise, the criterion becomes:

SSD δXð Þ ¼ ∑
i

I X ið Þ þ ε1 X ið Þ− T X ið Þ þ ε2 X ið Þ þ δX ∇T X ið Þ þ ∇ε2 X ið Þ½ �ð Þf g2

ð8Þ

Provided that (i) image noises ε1(Xi) and ε2(Xi), and image
grey levels I(Xi) and T(Xi) are independent random variables,
(ii) the image noise is zero-mean and (iii) the correlation

subset is large enough to get a good estimate of the expectancy
of the random variables, equation (8) is written as:

SSD δXð Þ ¼ 2Nσ2
n−2Nσ2

nδX þ N 2σ2
n þ ∇T2

� �
δ2X ð9Þ

Figure 3 presents the evolution of the correlation criterion,
directly evaluated from our DIC software, with the transfor-
mation parameter δX for the noiseless case (Fig. 3(a)) and for a
noisy one (Fig. 3(b), σn = 16 GL), as computed in equation (6)
for bi-linear and bi-cubic polynomial interpolations. In this
figure, the evolution of the correlation criterion is also plotted
for bi-cubic polynomial interpolation to demonstrate that non-
convexity is always observed for high-order interpolation
schemes.

The case presented in Fig. 3 corresponds to images
for which r = r0. Initial and final image grey levels are

statistically equivalent so that ∇T2≈∇I2 ¼ 900 GL=pxð Þ
2. The evolution of the correlation criterion SSD(δX) is
computed for the subset located in the centre of the
image and a subset size d = 256 px (Fig. 3(a, b)).
Thus, the influence of noise on the minimum of the
correlation coefficient is investigated for a fixed image
pattern. For such a subset size, the assumption that the
image noise is averaged on the subset is valid and equa-
tion (9) holds true. Figure 3(a, b) clearly demonstrate
the parity of the correlation coefficient in both cases,
and the apparition of two local minima for the noisy
case. The presence of image noise modifies the shape
of the criterion that is no longer convex. It also con-
firms that the correlation coefficient is quadratic on 1-
pixel wide segments for bilinear interpolation. Equation
(9) is only valid for δX ∈ [0, 1], and the theoretical po-
sition of the minimum given by the analytical minimi-

zation of equation (9), δthX , is written as:

δthX ¼ σ2
n= 2σ2

n þ ∇T2
� �

ð10Þ

In the present case, δthX≈0:181 px. This value is consistent
with the value δmX of the minimum of SSD criterion, at δmX≈0:
180 in Fig. 3(b). Using smaller subsets, a deviation with re-
spect to equation (10) appears because of the particular reali-
zation of the noise on the subset and because the correlation
subset is not large enough to ensure a good estimate of the
noise expectation. This effect is observed in Fig. 3(c), which
represents the correlation coefficient normalized by the subset
area for two subset sizes (d = 16 and 256 px) and for the two
polynomial interpolations. This normalization allows compar-
ing SSD criteria whatever the subset size. The deviation with
respect to theoretical results can be clearly observed from the
loss of symmetry of the correlation criteria. For d = 16 px and
using the bilinear interpolation, we obtained δmX≈0:193 px for
the positive minimum and δmX≈−0:167 px for the negative one.

Fig. 2 Experimental random error σ0:5
u = σu (τ = 0.5 px) versus noise

level σn for various speckle sizes and associated subset sizes



For sufficiently large subsets, the correlation coefficient is
even and the values δmX≈0:181 px and δ

m
X≈−0:181 px are equi-

probable. In this case, the standard deviation of the measured
displacement is equal to 0.181 px. To conclude, for noisy
images and for a null displacement, the random error
results from two contributions: the first one, governed
by equation (1), is related to the propagation of the

image noise and the second one stemmed from the loss
of convexity of the criterion.

Of note is that the present approach can be applied to
other correlation coefficients such as NSSD, CC, NCC
(see reference [4]). For a null displacement and for a
bilinear interpolation scheme, calculations become more
complex, but they still lead to closed-form expressions

of δthX with respect to the different image characteristics

(∇T2, σn …). Using these expressions for the same im-

ages and σn = 16 GL, we obtain δthX ≈0:177 px for NSSD,

δthX ¼ 0 px for CC and δthX ≈0:185 px for NCC. Except
for the CC criterion, each criterion gives a similar re-
sult. The CC criterion is piecewise linear, consequently
the systematic errors for integer displacement are null,
and the random error is null whatever the imposed dis-
placement. As shown in Fig. 3(c), a high-order interpo-
lation scheme leads to a smoother criterion shape but
does not prevent its non-convexity.

Phenomenological Extension of the Model for Arbitrary τ

In a situation with a high noise level (16 GL), Fig. 4
presents histograms of 3844 DIC-calculated results (sub-
set size d = 16 px) for four imposed displacements in

the interval 0 < τ < δthX . For an imposed displacement τ
very close to 0, the histograms show a bimodal popu-
lation associated with the two separate solutions previ-
ously discussed (non-convex correlation criterion). The
peak that is the furthest from the solution regularly di-
minishes when increasing the imposed displacement and
becomes negligible for a value greater than approxi-
mately 0.2 px in the illustrated example. Let us note
that for a null imposed displacement, the two peaks
are not symmetric due to the problem of statistic repre-
sentativeness for small subsets with a high noise level
as previously mentioned.

To quantify the evolution of these two populations, we
focus on averages ml and mr, and standard deviations σl and
σr of the Bleft^ and Bright^ populations, respectively. Figure 5
shows the evolution of these quantities (σl and σr) according
to applied displacement τ and compares them to the standard
deviation σu of displacement measurement on the entire pop-
ulation. As already observed in Fig. 1, σu obtained by the DIC
process diminishes with τ for τ smaller than 0.2 px, whereas σl
and σr remain constant. One can notice that these latter quan-
tities are equal to the value of σu associated with the displace-
ment τ = 0.5 px (see Figs. 1 and 5). The evolution of σu is then
the result of the progressive prevalence of the right population
compared to the left one.

The following phenomenological model is restricted to an

imposed displacement range: 0 < τ < δthX . Let us consider

Fig. 3 Evolution of the SSD correlation coefficient with δX for τ = 0 and
for bi-linear and bi-cubic polynomial interpolations for one subset: (a)
d = 256 px without noise; (b) d = 256 px with noise σn = 16 GL; (c)
evolution with δX of the SSD correlation coefficient normalized by d2 for
two subset sizes (d = 16 px and d = 256 px) with noise, σn = 16 GL



the subsequent assumptions: as shown in Fig. 4, in this inter-
val, DIC measured values follow a bi-modal Gaussian distri-
bution combining two density probability functions for the
measured displacement u, denoted pl(u) and pr(u), associated
with the prescribed displacement τ. Let their expectations
(E[.]) and variances (V[.]) be: ml(τ) = E[pl], mr(τ) = E[pr] and
σ2
l = V[pl] = σ2

r = V[pr]. From Figs. 4 and 5, we suppose that

σl and σr do not depend on τ and are equal to σd
u . Figure 6

describes the evolution of the averages ml(τ) and mr(τ): ml(τ)
stays constant for τ < δthX . The fact that ml(τ) becomes null

beyond δthX is easily explained by the fact that the Bleft^ pop-
ulation becomes very small (see Fig. 4(d)) and the fitting pa-
rameters of the Gaussian are set to zero in the absence of
convergence. The evolution of mr(τ) is quasi-linear. These
evolutions can be modelled by equation (11):

ml τð Þ ¼ −δthX
mr τð Þ ¼ δthX þ τ

	
ð11Þ

We observed that the function mr(τ) evolved quasi-linearly
whatever the noise level. The slope of this evolution depends

slightly on σn: it evolves between 0.5 and 1 in the example
tested here. In equation (11), the slope is set to 1.

BothdistributionsinFig.4aresuchthatthetotalpopulation
N0 is kept constant (i.e., constant number of correlated points
whatever the imposed displacement). In this example, N0 is
equal to 3844.WedenoteNl andNr the number of elements in
the Bleft^ and Bright^populations, respectively:

Nl;r ¼ N0 ∫
þ∞

−∞
pl;r tð Þdt ð12Þ

As the total population is kept constant, the evolution of
each population with respect to the imposed displacement
variation can be written as:

Nl τð Þ ¼ N0=2−δN τð Þ
Nr τð Þ ¼ N0=2þ δN τð Þ

	
ð13Þ

In equation (13), the quantity δN stands for the var-
iation in the number of points of populations Nl and Nr.
The numerical evolution of δN as a function of τ is plotted
with circles in Fig. 7(b).

Fig. 4 Histograms of the
calculated displacements for 16
GL image noise for: (a) τ = 0 px;
(b) τ = 0.06 px; (c) τ = 0.12 px;
and (d) τ = 0.18 px



As expected, δN increases with τ from zero for a null τ and

saturates for τ close to δthX . To be as generic as possible and to
minimize the number of parameters introduced in the statisti-
cal description, we propose to parameterize the evolution of
δN using data coming only from the initial image and the noise
level. The simplest model consists of assuming a linear evo-

lution between points (τ = 0; δN = 0) and (τ ¼ δthX ; δN = N0/2).

Naturally, δthX is given by equation (10), so one can write:

δN τð Þ ¼ N 0= 2δthX

 �

⋅τ ð14Þ

This basic (linear) model does not fit the numerical results
shown in Fig. 7(b) (black solid line). For this set of images, an
exponential model is more relevant. We propose:

δN τð Þ ¼ a 1−e−bτ

 � ð15Þ

The fitted numerical values give a = 1978 and
b = 21.19 px−1 (see solid line in Fig. 7(b)). To avoid
the introduction of the set of new parameters (a, b), one
can also directly express the exponential function based

only on the variables N0 and δthX that are already intro-

duced in the model, such as a = N0/2 = 1922 and b ¼ 4

=δthX ¼ 22:1 px−1 (see dashed line in Fig. 7(b)).
In the following, we define up as the random variable

representing the measured displacement. Consequently, the
random error on the displacement corresponds to the stan-

dard deviation of up: σ2
up ¼ V up

� � ¼ E up2
� �

−E up
� �2

. Using

the density probability function p(up) = pl(up) + pr(up), we
get:

σup τð Þ ¼ 1

N0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2

l τð Þσ2
l þ N 2

r τð Þσ2
r þ Nl τð ÞNr τð Þ ml τð Þ−mr τð Þð Þ2 þ σ2

l þ σ2
r

h in or
ð16Þ

Results of the random error of the displacement giv-
en by the proposed statistical models (linear or expo-
nential case) of equations (11) to (16) superimposed
with the measured values from the DIC computations
are plotted in Fig. 8 as a function of the imposed dis-
placement τ for σn = 16 GL.

Figure 8 shows that the linear model is clearly un-
satisfactory. Conversely, the exponential models are
very consistent with the DIC data from simulated im-
ages. The exponential model is very satisfactory because
it requires statistical information from only a single (e.g.,

reference) speckle image to compute the mean grey level

gradients necessary to determine δthX (see equation (10))

and σd
u (see equation (2)). This model allows an expla-

nation of the causes of the significant discrepancies
observed between the classical model predictions [19,
20] near integer displacement values. It also allows ex-
tending these latter models to get a unified model giv-
ing a consistent expression for the random errors what-
ever the imposed displacement. In summary, the model
of previous works [19] can be completed with the ex-
pression presented in this section. The random error can

Fig. 5 Standard deviation of the Bleft^ and Bright^ peaks and of the
displacement measurement on the entire population versus imposed
displacement τ for σn = 16 GL, which corresponds to σd

u = 0.033 px

Fig. 6 Evolution of averages of both populations versus imposed
displacement τ



be expressed as the maximum of the expression of σd
u

and σup τð Þ given by equation (16):

σu τð Þ ¼ max σd
u ;σup τð Þ
 � ð17Þ

For a known image noise σn, the model proposed in
equation (17) can be identified from at least two im-
ages. The initial image (τ = 0) gives grey level gradi-

ents ∇T2, and all parameters in equation (16), except
δN(τ). When a fitted exponential model is used, at
least two images are necessary to identify the two pa-
rameters (a and b) of the model. In this case, images

with τ ¼ δthX =2 and τ ¼ δthX can be chosen. It is also
possible to define the exponential model parameters a
and b without any supplementary image with a known
imposed displacement, using the expressions a = N0/2

and b ¼ 4=δthX . The linear model can also be identified
using a single image. The representativeness of this
model can be improved by enriching the model expres-
sion and by increasing the number of images. In the
latter case, the main difficulty is to impose a perfectly
known displacement.

Enriched Modelling of Systematic Error Analysis

Reminder of Observed Behaviour: Consistency
and Discrepancy with Existing Models

Figure 9 presents the evolution of the systematic error
as a function of the prescribed displacement τ for vari-
ous image noises, obtained for the standard speckle size
(r = r0) and for the reference subset size d = 16 px.

From this figure, three main observations can be
highlighted:

(i) as previously reported ([38] and references within), the
amplitude of the systematic error increases systematically
with the amplitude of the image noise;

(ii) the amplitude of the systematic error depends on the
prescribed sub-pixel displacement τ and classical S-
curve shapes are observed, with a null error for τ = 0,
0.5 and 1 px whatever the image noise;

(iii) the shape of the systematic error curve evolves with the
noise level: for noiseless images or a small image noise,
a typical S-curve similar to a sine curve is observed,
with maxima and minima close to τ = 0.2 and 0.8 px.
For noisy images, this sine-like shape evolves into an
almost triangular-shaped curve as can be seen for image
noise σn = 4, 8 and 16GL. Themost noticeable cases are
provided for σn = 4 and 8 GL with extrema sharply
below 0.1 or above 0.9 px.

Importantly, in contrast to items (ii) and (iii), only item (i) is
consistent with the systematic error predictions of equation
(2). Indeed, equation (2) predicts a non-zero systematic error

Fig. 7 (a) Evolution of the numbers of points of populations Nl and Nr

versus imposed displacement τ; and (b) modelling of the variation in the
number of points of populations Nl andNr versus imposed displacement τ

Fig. 8 Standard deviation of the displacement given by the proposed
statistical models (linear or exponential) superimposed with the
measured values from the DIC computations as a function of the
imposed displacement τ for σn = 16 GL



for integer values of the imposed displacement τ in contrast to
what is observed in Fig. 9.

In the following, we proposed to modify the analyt-
ical model of equation (2) given in [33] to make it
more consistent with the observations from simulated
images.

A Modified Statistical Model for Systematic Error

The same framework as the one introduced in [28] is used
here, and we introduce: I(Xi), the grey level value in the initial
image taken at integer pixel values Xi, and T(βi), the grey level
value in the final transformed image taken at integer pixel
values βi. DIC algorithms require non-integer pixel values to
optimize the chosen correlation criterion. Various interpola-
tion strategies are proposed in the literature: in the real space
(linear or cubic polynomial interpolation; cubic, quintic or
higher order splines, …) or in the frequency space (using the

translation properties of the Fourier transform, for example)
[10–22, 24–26]. Under the abovementioned hypotheses, the
interpolation error at pixel Xi, denoted ei(τ), introduced by this
operation is defined by:

ei τð Þ ¼ I X ið Þ−T βi þ τð Þ ð18Þ

In the Bultimate error^ regime, the errors are 1-pixel
periodic so that the analysis can be restricted to a one-
pixel amplitude displacement interval. In the following,
and as in subsection 3.3, we restrict the analysis to
imposed displacements comprised of between 0 and 1
pixel so that one has βi = Xi. Note that the interpolation
error depends, a priori, on the applied displacement τ.

The image grey levels are considered random variables
characterized by their first and second statistical moments. It
is supposed that the imposed displacement does not impact the
image histograms, so that:

E I X ið Þ½ � ¼ E T X ið Þ½ � ¼ E T X iþ1ð Þ½ � ¼ mGL

V I X ið Þ½ � ¼ V T X ið Þ½ � ¼ V T X iþ1ð Þ½ � ¼ σ2
GL

	
ð19Þ

These values depend only on the image characteristics. The
additive intensity noise superimposed on the initial and final
images, ε1(Xi) and ε2(βi), is supposed to be uncorrelated white
noise. The associated random variables (moments and covari-
ance) verify:

E ε1 X ið Þ½ � ¼ E ε2 X ið Þ½ � ¼ 0
V ε1 X ið Þ½ � ¼ V ε2 X ið Þ½ � ¼ σ2

n
cov ε1 X ið Þ; ε2 X ið Þð Þ ¼ 0
cov ε2 X ið Þ; ε2 X iþ1ð Þð Þ ¼ 0

8>><
>>: ð20Þ

Furthermore, the image grey levels and their gradients are
also supposed to be uncorrelated to the image noise.

Following the analysis developed in [33], the displacement
error in DIC measurement Δu = u − τ can be written for a
linear interpolation scheme as:

Δu τð Þ ¼ −
∑N

i h X ið Þ∇T xið Þ þ h X ið Þ ε2 X iþ1ð Þ−ε2 X ið Þ½ � þ ∇T xið Þε2 X ið Þ þ ε2 X ið Þε2 X iþ1ð Þf g
∑N

i ∇T 2 xið Þ
−
∑N

i ∇T X ið Þ ε2 X iþ1ð Þ−ε2 X ið Þ½ �τ−2ε2 X iþ1ð Þε2 X ið Þτ−∇T xið Þε1 X ið Þ−ε1 X ið Þ ε2 X iþ1ð Þ−ε2 X ið Þ½ �f g
∑N

i ∇T 2 xið Þ
−
∑N

i −ε22 X ið Þ þ ε22 X ið Þτ þ ε22 X iþ1ð Þτ� 

∑N

i ∇T2 xið Þ

ð21Þ

where:

& τ stands for the real imposed displacement between the
initial and final images;

& u is the measured displacement between the initial and
final images;

& N is the number of pixels in the subset;
& xi = Xi + τ

Fig. 9 Evolution of the systematic error versus the prescribed
displacement τ for the five image noises σn = 0, 2, 4, 8, 16 GL,
obtained for the standard speckle size (r = r0) and for the reference
subset size of d = 16 pix



& ∇T(xi) = T(Xi + 1) − T(Xi)
& h(Xi) = [T(Xi) + ∇T(xi)τ] − I(Xi)

The statistical analysis of equation (21) is the key to
determining the systematic error associated with DIC:
the systematic error is associated with the expectation
of Δu. Wang et al. [20] considered a situation in which
the statistical analysis was performed on several realiza-
tions of the image noise for a given grey level distribu-
tion (i.e., several image noise distributions for a fixed
correlation subset). A more classical way of determining
the systematic errors consists of considering the dual
situation in which several realizations of the grey level
distributions are considered for a given image noise dis-
tribution (i.e., several correlation subsets on two noisy –
initial and final – images). In this latter situation, the
expectation should be calculated on all the realizations
of the correlation subsets. We suppose that the correla-
tion subset size is large enough to ensure that the quan-

tity ∑N
i ∇T2 xið Þ is constant whatever the subset position

in the image, so that the denominator in equation (21)
becomes:

∑
N

i
∇T 2 xið Þ ¼ N∇T2 ð22Þ

where ∇T 2 represents the mean norm of the grey level
gradient in the final image.

Recalling that the image grey levels I and T and their
gradients are uncorrelated to the image noise 휀1 and
휀2 and that image noise between two images and be-
tween two adjacent pixels are also uncorrelated, the ex-
pectation of Δu can be simplified from equation (21) as
follows:

E Δu τð Þ½ � ¼ −
E ∑N

i h X ið Þ∇T xið Þ� �
−Nσ2

n 1−2τð Þ
N∇T2

ð23Þ

Consequently, as h(Xi) = − [I(Xi) − T(Xi + τ)] = − ei(τ) for a
linear interpolation and using the aforementioned assumptions
on the statistical variables and variance properties, equation
(23) becomes:

E Δu τð Þ½ � ¼ −
1

∇T2
cov ei τð Þ;T X ið Þð Þ−cov ei τð Þ;T X iþ1ð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Einterp

− σ2n 1−2τð Þ|fflfflfflfflffl{zfflfflfflfflffl}
Enoise

2
64

3
75

ð24Þ

This equation clearly illustrates two contributions to the
systematic error. The first one is associated with the interpo-
lation bias (denoted Einterp). This expression only depends on
the noiseless image characteristics and it is expressed by the
two covariance terms. The second one (denoted Enoise) is re-
lated to the image characteristics and the image noise and

varies linearly with τ. In the following, the term Einterp will
be referred to as the Binterpolation bias error^ and the term
Enoise as the Bnoise bias error .̂

Equation (24) is different from the one proposed by
Wang et al. in [20]. It is consistent with the classical
procedure used to compute the S-shape systematic er-
ror curves (average error from a displacement field
using a given subset size). Equation (24) includes
displacement-independent parameters (initial image gra-
dient, noise level) but also displacement-dependent
quantities (the covariance terms). The estimation of
these latter terms requires getting Bprecisely shifted^
images.

Comparison of the Proposed Model with DIC Data

Figure 10 shows the evolution of the covariance terms in
Einterp with the imposed displacement τ. This result is directly
provided by the calculus of each covariance term of equation
(24) from the synthetic images used in this work with r = r0. It
clearly demonstrates that these covariances are not equal and
that their difference evolves with τ. Both covariances have the
same values for τ = 0, 0.5 and 1 px, leading to no interpolation
bias at these points, while their maximum differences are near
0.2 and 0.8 px. To minimize the number of images required to
build the covariance terms, we introduced a quartic model to
represent the evolution of the term cov(ei(τ), T(βi)). The other
term cov(ei(τ), T(βi + 1)) is determined using the symmetry
property with respect τ = 0.5 px. The fourth-order polynomial
is fitted using three images corresponding to τ = 0.24, 0.5 and
0.76 px, respectively, and imposing a null covariance for τ = 0
and 1 px. The predictions of this model are also plotted in Fig.
10, and the points used for the model fitting are represented

Fig. 10 Evolution of the covariance terms in equation (24). B•^ denotes
the data chosen to identify the polynomial model



with filled circles. This simplistic (three-parameters) model is
in very good agreement with the observation from simulated
images.

Figure 11 presents the evolution of the expectation
E[Δu] with the imposed displacement in the case of
noiseless images (σn = 0 GL in equation (24) so that
Enoise = 0). By substituting the expression of the covari-
ance terms associated with the quartic model in equa-
tion (24), the systematic error evolution E[Δu] can be
computed for any imposed displacement using a set of
only three images. The systematic error obtained in this
way is very close to the numerical results.

Due to the covariance evolution presented in Fig. 10
and because σn = 0, a quasi-sinusoidal S-shaped curve
is obtained, corresponding solely to the interpolation
bias error Einterp. This curve presents a maximum am-
plitude for τ near 0.2 and 0.8 px and a value equal to
zero for τ equal to 0, 0.5 and 1 px. It stands to reason
that the S-shape obtained from equation (24) depends
on the image characteristics and on the assumptions
made for the correlation criteria (here SSD) and for
the image interpolation (here bi-linear). This result is
then compared to the systematic error computed direct-
ly by DIC (see Fig. 11). One can clearly observe that
both these quantities are very similar. This result
shows that the proposed model described in equation
(24) is consistent with the numerical results. In this
case, the classical systematic error evolution can be
directly predicted from sub-pixel shifted images with-
out any DIC computation. It is also possible to pro-
pose and identify a simple (e.g., polynomial) model to
estimate the dependence of the terms cov(ei(τ), T(Xi))

and cov(ei(τ), T(Xi + 1)) with respect to τ to predict the
shape of the systematic error using a reduced number
of shifted images, without any DIC computation. The
simplest approach consists of modelling the covariance
terms illustrated in Fig. 10 by quartic polynomials. As
the covariances are symmetric with respect to the axis
τ = 0.5 and are null for τ = 0 px and τ = 1 px, only
three images for three imposed displacements (e.g.,
τ = 0.24, 0.5 and 0.76 px) are necessary to identify
this model.

The case of noisy images is presented in Fig. 12 for
several values of σn (2, 4, 8 and 16 grey levels).
Expectations E[Δu] are obtained from equation (24).
They are compared to the result of systematic errors
directly computed by DIC from the speckle images.
The results for noiseless images are also superimposed
in dashed lines: they represent the interpolation bias
error Einterp. In the same manner, the dotted-dashed line
represents the Enoise contribution.

The proposed model can predict the dependence of
the systematic error on image noise except near the
integer values of imposed displacement (i.e., where δmx
≤τ ≤1−δmx ) and for high noise levels. As discussed in
section 3, when τ ≤δmx , DIC results for noisy images
are corrupted by the non-convexity of the SSD criteri-
on. This situation is described in detail in the next
section.

Following equation (24), the systematic error is the
difference between the interpolation bias contribution
Einterp (which is constant whatever the noise level)
and the noise bias contribution Enoise (which is affined
with τ and depends linearly on the noise variance σ2

n ).
For relatively small noise levels (e.g., σn ≤ 2 GL) and
δmx ≤τ ≤1−δ

m
x , the amplitude of Enoise is similar to that

of Einterp. Consequently, the amplitude of the curve of
E[Δu] presented in Fig. 12(a) is smaller than the one
for the noiseless images. In this case, counterintuitive-
ly, adding image noise diminishes the bias amplitude.
When the noise increases, the noise bias contribution
becomes preponderant (see Fig. 12(c, d)). In each case,

the slope of Enoise is equal to −2σ2
n=∇T

2. For very high
noise levels (σn = 16 GL), a significant discrepancy is
observed between both the simulated and the modelled
systematic errors. This discrepancy is interpreted as a
lack of statistic representativeness for small subsets
with a high noise level.

Phenomenological Extension of the Model

Using the same framework as the one detailed in sec-
tion 3.4 (a bimodal population associated with two
separated solutions close to integer values, i.e., τ ≤δmx

Fig. 11 Evolution of the systematic error with τ without image noise
(σn = 0GL and d = 16 px) computedwith DIC and given by equation (24)



), the systematic error is given by the expectancy of
the error in displacement given by equation (25):

Δup τð Þ ¼ E up τð Þ� �
−τ

¼ 1

N0
ml τð ÞNl τð Þ þ mr τð ÞNr τð Þ½ �−τ ð25Þ

From different formulae (10, 11, 13) and using the
chosen model for δN(τ), the expectation can be calcu-
lated for the linear model (equation (26)) and for the
exponential model (equation (27)):

Δup τð Þ ¼ τ
2
þ 1

2δthX
τ2 ð26Þ

Δup τð Þ ¼ −
τ
2
þ a

N 0
1−e−bτ

 �

τ þ 2δthX

 � ð27Þ

Both expressions are consistent with curves from simulated
images (see Fig. 13): they increase and are null for τ = 0 px.
The discrepancy between the model and numerical re-
sults increases with τ. For small values of τ, the model
is correct because the loss of convexity of correlation

criterion is well considered. For higher values of τ
(δmx ≤τ ≤1−δ

m
x ), the previous model (equation (24)) cor-

rectly predicts the systematic error. For intermediate
values of τ, these two effects contribute to the error
with a relative weight depending on τ.

In conclusion, the two effects presented in this sec-
tion and the previous section can be gathered to propose
a predictive model for the systematic error expressed as
the minimum of equations (24) and (25) for an imposed
displacement lying between 0 and 0.5 px (the central
symmetry with respect to τ = 0.5 px gives the expres-
sion for 0.5 < τ < 1):

Δu τð Þ ¼ min E Δu τð Þ½ �;Δup τð Þ
� �

ð28Þ

It is then possible to identify the model with a lim-
ited number of images: the initial image (τ = 0) to get
grey level gradients, and three images (for three im-
posed displacements) to determine the variation of
Einterp with respect to τ.

Note that for high-noise levels, a simpler model can
be proposed because the interpolation error term Einterp

becomes negligible:

Fig. 12 Evolution of the
systematic error with τ for various
image noise levels computed with
DIC and given by equation (24)



Δu τð Þ ¼ min
σ2
n 1−2τð Þ
∇T 2

;
τ
2
þ 2σ2

n þ ∇T2

2σ2
n

τ2 or −
τ
2
þ a

N0
1−e−bτ

 �

τ þ 2σ2
n

2σ2
n þ ∇T2

!!
ð29Þ

In that case, for a known noise level, a single image can be
necessary to identify the model parameters.

Conclusions

In this paper, new prediction models of DIC errors are pro-
posed for the ultimate error regime, when the shape function is
rich enough to represent the actual displacement field. The
usual case of pure sub-pixel translations is studied using the
same methodology as the one proposed in [21] from synthetic
speckle-pattern 8-bit images. The statistical analysis of differ-
ences between imposed andmeasured displacements gives the
evolutions of systematic and random errors, which are com-
pared to existing models from the literature. Two models have
been proposed in the literature: the first one predicts the ran-
dom error according to image noise, the subset size and the

grey level gradients; the second one adds an expression of
systematic error mainly depending on fractional displacement
and noise level, as observed for simulated data. Nevertheless,
we note differences between the predictions of these models
and numerical results obtained from synthetic images: random
error is independent of fractional displacement and systematic
error does not decrease for values close to integer displace-
ments whatever the noise level.

These trends are not considered by classical models.
They are linked to loss of the convexity of correlation
criterion for noisy images: two pseudo-Gaussian distri-
butions of measured displacements appear with similar
standard deviations, different means and distribution fre-
quencies that change according to imposed fractional
displacement. The evolutions of the latter parameters
give directly the evolutions of both systematic and ran-
dom errors. We proposed a statistical description of
these two evolutions that complements both models
(systematic and random errors) and wrote two closed
form expressions for the systematic and random errors
for a linear interpolation scheme depending only on im-
age properties and imposed displacement. A consistent
description of errors was then obtained whatever the
imposed displacement and noise level. The two models
developed here are built with a very limited number of
parameters that can be identified from a very small
number of images (one to four images to accurately
predict the evolutions of systematic and random errors).

Furthermore, it is important to emphasize that the
proposed models are built with an approach similar to
the one usually used to determine systematic and ran-
dom errors from experimental data: subpixel translation
displacements are imposed to a given image, the subset
size is small and the statistic variability of situations
arises from an analysis of the displacement of several
subsets in an image.

To conclude, this study allows obtaining an enrichedmodel
for the both types of DIC errors. The random error well
models the DIC errors obtained from simulated images even
for a high level of noise. The model of bias error allows us to
well describe the behaviour of DIC close to integer values of
imposed displacement. Nevertheless, this model is less realis-
tic for high values of noise, but such levels are unusual in
practice. Finally, this work provides a response to the assess-
ment of errors for the ultimate error regime and for a Bperfect^
measurement chain, its sole imperfection being related to im-
age noise and interpolation bias. Naturally, deviations from

Fig. 13 Evolution of the systematic error and models with τ for two
image noise levels



this ideal situation may generate other contributions that could
be significantly higher than the ones presented here.
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