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Abstract: Inland waterway management should undergo heavy changes due to a commitment to
increase the waterway traffic in a context of climate change. These new constraints will impose an
adaptive and resilient management of the water resource. The aim is to plan optimally the water
resource distribution over the integrity of the inland waterway network, while taking into account
the uncertainties arising from their operation. Due to the large size of waterways, a centralized
modeling would not be able to represent an entire network. A distributed Markov Decision
Process modeling of inland waterways associated with a resolution algorithm is proposed to
allow full scalability, at the cost of optimality. The proposed approach is tested on a subnetwork
composed of 7 reaches.

Keywords: Markov decision processes, Multi-agents systems, Distributed artificial intelligence,
Large scale systems, Inland waterways, Natural resources management.

1. INTRODUCTION

As shown by the agreement of the COP21 signed in
Paris the 12th of December 2015, climate change is a
major preoccupation in modern society. In the domain
of transportation, the last IPCC Intergovernmental Panel
on Climate Change report advocates new adaptive mea-
sures, particularly by promoting alternative transporta-
tion modes (IPCC, 2014). Several studies were carried out
on the impact of climate change on inland waterway traffic.
The general agreement is that the intensity and the occur-
rence of flood and drought periods will increase (EnviCom,
2008; IWAC, 2009; Pachauri et al., 2014). In parallel, the
fluvial traffic is expected to grow by 35% by 2050 (Beuthe
et al., 2014).

The design of new inland waterway management strategies
taking into account those new constraints is a priority
for the inland waterway managers. Those strategies help
deciding when, where and how much water has to be
displaced in the network to improve its navigation con-
ditions. Inland waterway networks are large scale systems
built by humans to responds to their needs. Those have
strong interactions with their natural surroundings. Under
the hypothesis of a complete knowledge of these inter-
actions, approaches of adaptive management of inland
waterway network in a context of climate changes have
been proposed in Nouasse et al. (2015, 2016) using con-
straints satisfaction problems or quadratic optimization
techniques (Duviella et al., 2016). However most of those
interactions are only partially known. They are illegal
rejects, exchange with groundwater tables, influence of
local weather phenomena, . . . The management of such
networks is subject to numerous uncertainties. For these

reasons, an approach based on a stochastic modeling seems
more suitable.

A stochastic approach using Markov Decision Processes
to model the inland waterway network and optimize the
resource allocation of the whole network while taking into
account the numerous uncertainties has been proposed
in Desquesnes et al. (2016). However, such a centralized
modeling suffer from the lack of scalability of the MDP
framework and is unable to scale to real life application. To
bypass those limitations a multi-agent modeling based on
MDP and a distributed resolution algorithm are proposed.

In this paper, the problem of inland waterway network
management in a context of climate change is presented
in section 2. Markov decision processes are presented in
section 3. Network modeling and distributed resolution
algorithm is proposed in section 4. Finally, the proposed
algorithm is tested on a realistic scenarios and the results
are presented in section 5.

2. WATERWAY NETWORK MANAGEMENT

An inland waterway network (see Figure 1) is a large-
scale system, mostly used for navigation. It provides both
economic and environmental benefits (Mallidis et al., 2012;
Mihic et al., 2011) while providing quiet, efficient and safe
transports of goods (Brand et al., 2012).

It is mostly composed of canalized rivers and artificial
channels, and is divided by locks. Any part between
two locks is called a navigational reach. For the sake of
simplicity, a navigational reach will be called reach on the
rest of this paper.



Fig. 1. Part north of France inland waterway network
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Fig. 2. NNL and navigation rectangle

The main concern of the manager consists in maintaining
acceptable water levels in all the reaches of the inland
waterway network to allow navigation. This level must
respect the conditions defined by the navigation rectangle
(see Figure 2) and be as close as possible from the
Normal Navigation Level (NNL). The lower and upper
boundaries of the rectangle are respectively the Lower and
Higher Navigation Level (LNL & HNL) combined with the
maximum submerged and emerged boat size.

In normal situations, having a boat crossing a lock is
the main disturbance of the water level, since using a
lock drains water from the upstream reach towards the
downstream reach. Furthermore, the water level is affected
by ground exchanges, natural rivers, weather and other
unknown factors, like illegal discharges. Locks are not
dedicated to control the water level. Structures, such as
gates or dams, are used to send water downstream and
when available pumps can be used to send water upstream.
Those are the main structures used for the distribution of
water resources between the reaches of the network.

Navigation is only allowed during the daytime, with few
exceptions, notably on Sunday. Reaches management is
based on human expertise gathered over time. However,
new constraints due to climate change, mostly stronger
and more frequent drought and flood periods, and to a
commitment to increase the fluvial traffic should impact
current management strategies. The main objective is to
anticipate the impact of those new constraints by design-
ing adaptive management approaches to ensure in each
point of the network and at each instant the navigation
requirements. This involves determining a global planning
for the water distribution on the whole network by taking
into account the uncertainties of climate events and the
navigation demand. Planning the distribution of water
resources over several time steps allows better anticipation
of possible events. The information on the current state of
the waterway network is collected in real time through a
network of level sensors equipping the reaches.

3. MARKOV DECISION PROCESS

Markov Decision Process (MDP) is a generic framework
modeling control possibility of stochastic dynamic system
as probabilistic automaton. The framework is well adapted
to the waterway network supervision since the state of the
network is fully observable (in terms of water volumes) and
the control is uncertain due to uncontrolled water transit.

A MDP is defined as a tuple 〈S,A, T,R〉 with S and A
respectively, the state and the action sets that define the
system and its control possibilities. T is the transition
function defined as T : S×A×S → [0, 1]. T (s, a, s′) is the
probability to reach the state s′ from s by doing action
a ∈ A. The reward function R is defined as R : S × A ×
S → R, R(s, a, s′) gives the reward obtained by attaining
s′ after executing a from s.

A policy function π : S → A assigns an action to each sys-
tem state. Optimally solving a MDP consists in searching
an optimal policy π∗ that maximizes the expected reward.
π∗ maximizes the recursive value function of Bellman
equation (Bellman, 1957) defined on each state:

Vit(s) = max
a∈A

( ∑
s′∈S

T (s, a, s′)× ( R(s, a, s′) + Vit−1(s′) )

)
(1)

Based on the algorithm Value Iteration (Puterman, 1994),
the last Vit obtained is then used to generate the optimal
policy with equation 2 (V0 is initialized at 0).

π∗(s) = arg max
a∈A

( ∑
s′∈S

T (s, a, s′)× ( R(s, a, s′) + Vit(s
′) )

)
(2)

4. DISTRIBUTED APPROACH

The objective is to plan the best course of actions for the
entire network over τ time steps, knowing that the condi-
tions of navigation may evolve over time. For example, the
weather might become rainy, increasing the water volume
of affected reaches; an unexpected increase of the fluvial
traffic on some reaches would imply a greater usage of locks
and an increase in water transfers.

A time step will represent a period of 12 hours. Using large
time steps allows to consider the water level to be uniform
on a reach and to smooth the uncertainties on the traffic
and on all the temporal variations.

4.1 Network modeling

The distributed approach use the fact that the transfer
points (gates, locks, pump, . . . ) are naturally distributed
over the whole network, to divide the management of the
water resource between multiple agent. An agent α, that
is modeled by a local MDP (MDPα) will control a subset
of the transfer points, denoted TPα, and observe only
the reaches, denoted Reα, in the subnetwork affected by
those transfer points. All transfer points are controlled
by exactly one agent, while reaches can be observed by
multiple agents. Two agents able to see a same reach
are neighbors. Nα represents the set of agents that are
neighbors with agent α and TPNα all the transfer points
of the neighbors connected to Reα.



Fig. 3. Discretization of a reach water volume in intervals

A state of MDPα (agent α) is defined as an assignation
of volume for all reaches visible by α, at a given time
step. Since the MDP formalism requires a finite number
of states, the possible volumes for a reach i are divided in
intervals of volumes (see Figure 3). All volumes inferior to
the LNL are represented as interval 0 and volumes higher
than the HNL correspond to interval riout. The set of
states of agent α can be defined as:

Sα = {0, . . . , τ} ×
|Reα|∏
i=1

[0, . . . , riout] (3)

The time step τ represents the end of the planning and ev-
ery state of this last time step is absorbing: ∀a, T (s, a, s) =
1, with a null reward: ∀a,R(s, a, s) = 0. As time is included
into the states, the horizon of resolution can be set to the
number of time steps: τ .

Similarly to a state, an action of MDPα is defined as an
assignation of volume transferred by all transfer points
affecting Reα with a part controlled by αand a part
controlled by its neighbors Nα. The set of actions of agent
α can be defined as:

A+
α = Aα×ANα =

∏
tpi,j∈TPα

(tpi,j)×
∏

tpi,j∈TPNα

(tpi,j) (4)

where tpi,j represent the set of intervals of the transfer
point moving water from reach i to j. Reach 0 represents
the unmodelised parts of the network, corresponding to
sources supplying the network and destination supplied
by the network.

An action a+α ∈ A+
α is composed by the action aα on all

controlled transfer points to choose in the combination of
possibilities and by aNα the action given by the neigh-
borhood (a+α = (aα, aNα)). Only a part of the action is
controllable by the agent α that induces a coordination
problem.

4.2 System dynamic

The aims of an agent is to maintain observed reach within
their navigation rectangle while minimizing their distance
to their NNL. This is reflected by the local reward function
defined on two sub-functions:

Rα(sα, a
+
α , sα) = R(a+α )−

∑
ri∈Reα

R(ris′α)

R(ris′α) =

 const if ris′α ∈ {ri1, riout−1}
const × 2 if ris′α ∈ {ri0, riout}
NNLα − ris′α else

(5)

where ris′α is the volume of reach i during state s′α.
The cost (NNLα − ris′α) is replaced by a constant while
the interval of volume is partially outside and twice this
constant while the interval of volume is outside of the nav-
igation rectangle. It represents the huge penalty of halting
the navigation traffic. The function R : A → R models
the cost of transferring water from transfer points. This
cost function will be specific for each transfer points and
each network. They are used to specify some management
policies (energy intensive pumping, disturbance of natural
water system . . .).

Three types of water displacements are specified in the
network. Controlled displacements where the volume of
displaced water is chosen by the manager at the desired
time. Imposed displacements represent the water displace-
ment resulting of the navigation. When a boat want to
cross a reach a lock has to be used. Lastly, the uncon-
trolled displacements correspond to displacements whose
quantities are not known by the manager, such as the effect
of the weather or illegal discharges.

The uncertainties on the network, imposed and uncon-
trolled displacements, may vary at each time steps and are
therefore represented by temporal variations. A temporal
variation vt is a probability distribution of volumes, dis-
placed by either uncontrolled or imposed displacements,
for the whole subnetwork at a time step t. Vt is defined
as the list of all possible temporal variations on a time
step t and vt(i) as the probability distribution of volumes
affecting reach i for this variation.

The local transition function represents the water dis-
placements and the uncertainties coming from both the
discretization of states and actions in intervals and from
the temporal variation. Thus it is defined as:

LTα(sα, a
+
α , s
′
α) =

∑
vt∈Vt

P (vt)×
|Reα|∏
i=1

P (ris′α |risα , ai, vt(i))

(6)
with

P (ri′s|ri′s, ai, vt(i)) =


p+ if ris + ai + vt(i) ∈ ri′s − 1
p= if ris + ai + vt(i) ∈ ri′s
p− if ris + ai + vt(i) ∈ ri′s + 1
0 else

(7)
where ai is the resulting of all the actions included in a+α
and affecting the reach i.

For a given action ai on a reach i under specific condition
(ris, vt(i)), the expected interval is defined as the interval
obtained by adding the average values of the tree intervals
ris, ai and vt(i). Due to discretization, reaching the ex-
pected interval is not guaranty. p=, p+ and p− correspond
respectively to the probability of going to the expected
interval, the interval directly superior to the expected and
the interval directly inferior to the expected interval, with
respect to p− + p= + p+ = 1.

Finally the transition function depend on the policies
applied by all neighbor agents:

Tα(sα, aα, s
′
α) =

∑
aNα∈ANα

P (aNα |sα)× LTα(sα, a
+
α , s
′
α)

(8)



However, the agent α has only a partial view of each
neighbor agent β according to the shared observed reaches
(Reα ∩Reβ). That for the neighborhood action aNα is ap-
proximated as a probability distribution of actions know-
ing only the local perception of the agent (P (aNα |sα)).

4.3 Distributed algorithm

The proposed algorithm (see Algorithm 1) is inspired by
LID-JESP (Nair et al., 2005). It uses agents with local
vision whose transitions may depends from the action of
other agents. It aims to find iteratively a local joint optimal
policy in a distributed way. At each iteration, at most one
agent per neighborhood will be able to update its policy.
The algorithm will terminate only when all agents are
either unable to improve their policies or are in a cycle.
To ensure this counters are used. An agent α possess a
counterα initialized to d > 0. At the end of an iteration,
if an improved policy was available or if the agent is in a
cycle the counter will be decreased by one. Else the counter
is reset to d (line 14). After that, each agent will share
its counter with its neighbors and keep the highest one
(line 16). An agent will terminate when its counter reach
0 (line 18).

Algorithm 1 Distributed resolution algorithm

1: Create an initial policy π0
2: it← 0
3: repeat
4: Exchange πit with the neighbors
5: if Altruistic agents then
6: Exchange Rit with the neighbors
7: Build Rit+1 with the received rewards function

8: end if
9: Build Tit+1 from the policies received

10: Find π′ optimal policy of M ′ : 〈S,A, Tit+1, Rit+1〉
11: git ← gain(π′, πit) in M ′

12: Git ← neighbors gains
13: πit+1 ← π′ if git = max(Git) else πit
14: counter ← d if git > 0 else counter − 1
15: Cit ← neighbors counters
16: counter ← max(Cit)
17: it← it+ 1
18: until counter = 0

Proposition . The distributed algorithm will terminate
within d = max

α,β∈Ag2
dist(α, β) iterations iff all agents are

in a local optimum or in a cycle. dist is defined as:

dist(α, β) =

{
1 if β ∈ N(α)
1 + min

γ∈N(α)
dist(γ, β) else

Proof. Assuming that agent α is not starting iteration
c because it finished its resolution at iteration c − 1
(counterα(c − 1) = 0), but other agents are not in a
local optimum. This implies that iteration c − d, there
must be at least one agent β who can still improve its
policy and thus reset its counter (counterβ(c − d) = d).
Since the counters are decreased by at most 1 at each
iteration and are propagated through the neighborhood,
at iteration c−d+dist(α, β) a lower bound for the counter
of agent α can be defined as c− d+ dist(α, β). Therefore

counterα(c−1) ≥ d−dist(α, β)+1−d+dist(α, β) = 1. So,
agent α would need to start iteration c. By contradiction, if
the algorithm terminates all agents are in a local optimum
or in a cycle.

In the reverse direction, if agents reach a local optimum
or a cycle, they would not be able to improve anymore.
So the counter is never reset and decrease by 1 at each
iteration. After d iterations, all counters are equal to 0
and the agents terminate.

2

At each iteration, every agent will exchange its policy and
update its transitions according to the probable neighbor-
hood actions. This new transition function (line 9) will be
used to produce a locally optimal policy on the new MDP
model. The improvement of this new policy compared to
the current policy, in the current model, is evaluated by a
heuristic (line 11). In a neighborhood, only the agent with
the highest improvement of its policy will be able to keep
its new policy (line 13).

For the inland waterway case study, the improvement
heuristic gainα is defined as the difference in the prob-
ability to reaches the highest rewarded state at each time
step using the new and current policies.

gainα(π′, π) =
1

τ + 1
×

τ∑
t=0

P (NNL|π′, t)− P (NNL|π, t)

(9)

The algorithm requires an initial policy for each agent, this
case study used a greedy initial policy that chooses the
best action for a given state while assuming the absence
of neighbors.

This algorithm is defined for egocentric agents, who only
aims to optimize the network they manage. Altruistic
agents are also defined with an increased perception dis-
tance. An altruistic agent α will try to find a policy
maximizing both its rewards and its neighbors reward by
including in its observed reaches (Reα) all the reaches
impacted by neighbor actions. The reward function of an
altruistic agent will be the sum of its local reward function
and of approximated reward functions from its neighbors
received at the start of each iteration (line 6, 7).

5. RESULTS

A network of 7 reaches and 14 transfer points has been
created (see Figure 4). Reaches are represented by squares
with their navigation rectangle specified inside. Arcs repre-
sent the transfer points and are labeled with their transfer
capacity. Every reach is divided in 8 intervals, 6 of size
20 and 2 of infinite size, as specified in section 4.1, while
the transfer points are divided in intervals of size 5. The
algorithm will plan over 8 time steps. Thus for a single
agent approach: |S| = 87 × (8 + 1) and |A| = 36 × 42 ×
66. Therefore a transition function represented by sparse
matrix would need to store |S|×|A|×|S|× 1

τ+1 = 1.81×1022

values. 1
τ+1 is present, due to the fact that time is linear.

A state at time t can only reach a state at time t + 1.
However, it is not possible to test a non-trivial scenario
with a single agent to compare the distributed results to
the optimal ones, due to the memory limitations.



Fig. 4. Seven reaches scenario

decomposition size time (s) out (%) avg (%)

6 agents 5.799 936× 106 591 0.000 17.13

7 agents 2.850 816× 106 167 0.001 15.38

8 agents 4.751 36× 105 68 0.000 16.45

9 agents 4.345 60× 105 35 0.000 17.27

10 agents 3.530 24× 105 32 0.021 17.16

11 agents 2.919 68× 105 30 0.023 17.83

12 agents 2.309 12× 105 31 0.016 17.27

13 agents 1.698 56× 105 30 0.009 16.64

14 agents 1.088 00× 105 26 0.007 15.57

Table 1. Seven reaches with egocentric agents

decomposition size time (s) out (%) avg (%)

6 agents 5.799 936× 106 605 0.000 17.39

7 agents 2.850 816× 106 446 0.000 18.98

8 agents 4.751 36× 105 84 0.000 17.86

9 agents 4.345 60× 105 50 0.000 17.73

10 agents 3.530 24× 105 33 0.011 18.30

11 agents 2.919 68× 105 38 0.043 18.91

12 agents 2.309 12× 105 38 0.021 17.10

13 agents 1.698 56× 105 35 0.006 17.28

14 agents 1.088 00× 105 23 0.001 16.28

Table 2. Seven reaches with altruistic agents

The introduced algorithm has been tested with egocentric
agents then altruistic agents. For that, multiple decom-
position of the network in agents has been proposed by
a heuristic algorithm that aims is to minimize the size
of the transition function of each agent. To compare the
different local joint optimal policies, multiple criteria have
been observed. Firstly, the time to obtain the policies
and the size of the transition function (sum of all local
transition functions). Secondly, two points for the quality
of the policy: the percentage of time a reach is outside of
its navigation rectangle, i.e. out, the average percentage
of distance of the water level to the NNL, denoted avg,
relatively to the LNL and HLN, at every time step. Finally,
the last two criteria are average value of 50000 simulations
of the joint policy. This is due to the fact that policies give
interval of volume to be displaced by each transfer point.
Therefore, in a simulation the value to be transferred by
a transfer point is chosen randomly in the interval.

The generation of the policies was made on a cluster using
JADE (Bellifemine et al., 1999) framework to develop
agents and their protocol.

Results, in Table 1 and 2, show an expected diminution
of time and space used to find the local optimal policy
when the number of agents increases. In all decomposition,
agents reaches almost never get out of their navigation
rectangle, while using random volume from the interval of
the policy. This leads to the possibility of aberrant values
being chosen, putting a reach outside of its navigation
rectangle when most values in the interval could have
avoided it. Furthermore, the water level of each reach
stays relatively close to its NNL, with a percentage of
average distance to the NNL strictly inferior to 20%. 20%
of distance is close to the size of an action interval and
33% of distance is similar to the size of a state interval.

Figure 5 shows the evolution of the volumes of the reaches
in the test network, using the policy generated by the
7 egocentric agents decomposition. The simulation trans-
ferred the average value of each interval in each chosen
action by the policy. As in Table 1, the average relative
distance to the NNL is pretty low (10%). However, it
is important to note that it is possible to maintain the
NNL at each time step by choosing the correct amount to
transfer.

Contrary to what could be expected, increasing the num-
ber of agents might not reduce the quality of the local joint
optimal policies. When the number of agents increases,
agents vision decreases and so from a global point of view,
the quality of policies should decrease. However, increasing
the number of agents will reduce the uncertainties on the
network controlled by each neighbor and the policies they
send. This might increase the quality of the policy. Finally,
there is no guarantee that for k agents there exists a
coherent decomposition of the network.

Egocentric agents (see Table 1) seems to produce better
results than altruistic agents (see Table 2) especially on
the relative distance to the NNL. A possible explanation
would be that egocentric agents try to maximize a smaller
network and so handle less uncertainties than altruistic
agents. An egocentric agent will try to maximize only
the reaches it affects using approximation on neighbors
policies, while an altruistic agent have to maximize the
reaches it affects and some reaches visible only to its neigh-
bors using both estimated neighbors policies and estimated
states of the unknown reaches. Producing a policy fitting
the expected states of every neighbors reaches doesn’t
seem to be efficient either in computation time or in results
quality. However, in all cases the quality of the policies
produced is better than the best greedy policy from the
initial policies used for those resolutions, with an average
relative distance of 37.34% and reaches are outside of their
navigation rectangle 6.48% of the time.

In conclusion, results obtained on these scenarios are
promising. Reaches stay relatively close to their NNL and
shall not go outside of their navigation rectangle when
used by a rational user. An egocentric approach seems to
yield better results than a more altruistic version, most
likely due to the lower number of uncertainties. Alas, no
comparison between those results and an optimal result
obtained by using one agent was made due to an inability
to represent a network of that size.



Fig. 5. Evolution of the relative distance to the NNL over
the time using the 7 egocentric agents policy

6. CONCLUSION

In this paper, a distributed Markov decision process based
approach is presented to optimize the water resource
planning and management of inland waterway networks on
a given horizon. This approach aims to reduce the impact
of drought and flood that may be increased by climate
change in the next years.

An agents oriented modeling of the network is introduced
to take advantage of the distributed aspect of the inland
waterway network. An agent will represent a subset of
transfer points and use a MDP to model the dynamic
and the uncertainties of the subnetwork affected by those
transfer points. There is no guarantee of optimality for
the local joint policy obtained by this approach. However,
results are encouraging. Increasing the number of agents
to model the network, will only guarantee a decrease of
computation time and resource usage, up to a certain
number of agents where the improvements will stagnate.
It is important to note that the quality of the final policy
will not necessarily be better for lower number of agents,
except for a single agent which gives an optimal policy.

Future works will explore different methods for partition-
ing the network in agents, with various heuristics to find a
good compromise between memory usage, calculation time
and deviation from the optimal joint policy. The impact
of the initial policy on the final results has to be studied.
Furthermore, to reduce the size of the actions intervals,
chaining resolution might be considered. By using the joint
policy from a first resolution as the new action domain
of a new distributed MDP, a smaller discretization of
actions could be achieved with similar memory usage.
Finally, using this approach on a real network would allow
comparison with expert in the management of the inland
waterway network.
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