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Abstract This report presents the EvoMove musical companion that
generates music according to performer moves. It uses wireless sensors
(accelerometers, gyroscopes and magnetometers) to acquire a continuous
stream of information about the motions of the performer. This stream
is analyzed on-the-fly to exhibit categories of similar moves and to iden-
tify the category of new incoming moves. The main feature is that these
categories are not predefined but are determined in a dynamic way by a
new subspace clustering algorithm. This algorithm, called SubCMedians,
stems from our previous work on the Chameleoclust+ algorithm (Deliver-
able 5.1) and is targeted towards more efficient processing. SubCMedians
is a median-based subspace clustering algorithm using a weight-based hill
climbing strategy and a stochastic local exploration step. It is shown to
exhibit satisfactory quality clusters when compared to well-established
clustering paradigms, while allowing for fast on-the-fly handling of the
sensor data. The music generation itself relies on a tiling over time of
audio samples, where each sample is triggered according to the moves
detected in the data stream coming from the sensors.

1 Introduction

This report describes a prototype system built to explore potential real-world
applications of EvoEvo inspired technologies. As described in section 6.3.1 of the
mid-term dissemination report (Deliverable 6.5), we aimed at building a personal
companion that is a musical system able to produce music on-the-fly from the
moves/dance of a performer. This system is named EvoMove, and its hardware
is composed of several parts: (1) wearable motion sensors, (2) an acquisition
gateway, (3) a move recognition unit and (4) a sound generator.

The first aim of this work is to assess the efficiency of the technology inspired
by EvoEvo : Can it handle real noisy data ? Can it process them on-the-fly ? Is
it able to keep on evolving over this motion stream ? Is its adaptation able to
handle such an open-ended context ? In addition, these experiments provide also
a first insight into the interaction between human users and this self-adapting
technology.

The EvoMove system uses a subspace clustering algorithm (e.g., [7], [9], [10])
as a move categorization/recognition subsystem. This algorithm, named SubC-
Medians, comes from the expertise acquired during the development and use of
the evolutionary algorithm Chameleoclust+ (Deliverable 5.1). SubCMedians is a
complete redesign, incorporating important changes in the evolution model itself,
so as to be adapted to on-the fly processing of the data. In particular, it relies
on more abstract mutational operations and avoids the explicit representation
of the full genome structure.

The performer moves are captured via a set of wireless sensors that combine
accelerometers, gyroscopes and magnetometers1, built by the HIKOB company
(www.hikob.com). The sensors are worn by the performer and the data are col-
lected by a gateway component that must be located within a distance of a few
1 The magnetic field gives a hint about absolute orientation.

www.hikob.com


3

tens of meters from the performer. The communication architecture to query
this gateway relies on a client-server model, allowing thus to deploy a variable
number of sensors, and even to set them on several performers at the same time.
The architecture of the system is described in figure 1: (A) Data produced by
the performer(s) are captured by multiple sensors, producing a high dimension
temporal signal (B). The signal is then processed by the SubCMedians algo-
rithm (C) that performs subspace clustering on the input data to exhibit groups
of similar moves, and that updates on-the-fly the corresponding cluster model.
The current move is then associated to one of the clusters, and depending on this
cluster an audio sample is played (D), providing a feed-back to the performer(s).

 

 

  

 
(A)

(C)

(D)

(B)

Figure 1: The EvoMove system. Wireless sensors wear by performer(s) (A). High
dimension signal (B). Subspace clustering to identify groups of similar moves
(C). Audio feedback according to the moves (D).

The rest of the report is organized as follows. The next section introduces the
key hints of the new algorithm SubCMedians. Related approaches are recalled
in Section 3, then preliminary notions and the clustering model are defined in
Section 4. Section 5 introduces the main principles of the proposed algorithm,
and Section 6 details its search strategy. Guidelines for default parameter setting
are given in Section 7. The evaluation method is described in Section 8 and
Section 9 reports the experimental results. Section 10 describes the other parts
of the EvoMove system and reports its use. Finally, we conclude in Section 11.
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2 Algorithm SubCMedians

In Deliverable 5.1 we presented Chameleoclust+, an evolutionary algorithm to
tackle the subspace clustering problem. In Chameleoclust+, a population of indi-
viduals, encoding each a candidate solution to the subspace clustering problem,
was evolved. Each individual was characterized by its genome, which was defined
as a list of tuples (the "genes"), each tuple containing numbers. Each genome
was mapped at the phenotype level to denote core point locations in different
dimensions, which are then used to collectively build the subspace clusters, by
grouping the data around the core points. The biological analogy here would
be that each gene codes for a molecular product and that the combination of
molecular products associated together codes for a function, i.e., a cluster. To
allow for evolution of evolution, Chameleoclust+ genome contained a variable
proportion of functional elements and is subject to local mutations and to large
random rearrangements. Local mutations and rearrangements may thus modify
the genome elements but also the genome structure. Therefore Chameleoclust+
could take advantage of such an evolvable structure to detect various numbers
of clusters in subspaces of various dimensions and to self-tune the main evolu-
tionary parameters (e.g., levels of variability).

In order to tackle the subspace clustering model on a dynamic dataset on-
the-fly, we have designed SubCMedians, a more conceptual algorithm, inspired
on Chameleoclust+. As for this previous algorithm, each individual encodes a
candidate subspace clustering model and selected individuals are copied and
mutated to produce the next generation. However in SubCMedians, the phe-
notypic description (core-points locations) is explicitly encoded, and thus the
algorithm requires less operations, since it does not require to map genomes to
produce the phenotypic description. Moreover, in order to achieve a more effi-
cient exploration of the space of possible models, SubCMedians uses data objects
themselves to build and adjust each core-point coordinates so that they approx-
imate the locations of the median of their corresponding cluster. The explicit
representation of the phenotype and the use of a medians based approach lead
important reduction of the runtimes (results presented in Section 9.1) and per-
mits to tackle the subspace clustering of data streams on-the-fly. In addition to
the explicit representation at phenotypic level, the design of SubCMedians also
incorporates an evolvable representation at the genotype level in order to allow
for evolution-of-evolution. The genotypic description simply stores the number
of genes that are involved in the construction of each core-point location along
each dimension. In this representation, the number of genes used to encode each
coordinate can vary without a direct impact on the subspace clustering model
and the number of core-points encoded in the genome and their subspaces is not
constrained by the representation. Moreover notice that individuals could share
the same phenotypic description but have different genome structures (different
number of genes associated to each core-point location). Therefore SubCMedians
benefits from both an explicit representation of the phenotype and a flexible and
evolvable genome structure, to detect various numbers of clusters in subspaces
of various dimensions on-the-fly.
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Since each individual encodes a subspace clustering model, reproduction can
be seen as an exploration of the neighborhood of the parental model in the space
of models. From now on individuals will be called models, and the reproduction
of an individual will be perceived as the exploration of the neighborhood of
the parental model. In addition, since a median is consider to be a kind of
central location, then, to fit more naturally with this view, the core-points will
be termed candidate centers and core-points forming non-empty clusters will be
termed centers.

3 Related clustering approaches

3.1 Median-based clustering

The K-medians problem (e.g., [4]) is a well defined and NP-hard problem that
has been a research topic of interest for both the computational geometry and
the clustering communities. This problem has been studied in the computational
geometry domain with the aim to find optimal locations for centers and facili-
ties in order to minimize costs. We refer the reader to [6] for examples of real
world applications of K-medians. On the other hand the clustering community
studied the K-medians problem in order to develop techniques to find clusters
that are robust to noise and outliers. The K-medians clustering and facility
location tasks have been investigated from the perspective of combinatorial op-
timization, approximation algorithms, worst-case and probabilistic analysis [5,3].
However, locating centers having optimal locations or partitioning the objects of
the dataset to form center-based clusters are two different ways to see the same
problem.

3.2 Subspace clustering

The purpose of subspace clustering is not only to partition a dataset into groups
of similar objects, this technique also aims the detect the subspaces where simi-
larities occur. Therefore each cluster is associated to a particular subspace. Many
approaches have been investigated for subspace clustering in the literature us-
ing various clustering paradigms. The reader is referred for instance to [7], [9],
and [10] for detailed reviews and comparisons of the methods, including the main
categories:

– The cell-based approaches that define clusters as hyper-rectangles laying in
specific subspaces and containing more than a given number of objects. Clus-
ters are usually constructed by discretizing the data space into axis-parallel
cells and then aggregating promising cells. These selected cells are commonly
those containing more objects than a threshold given as parameter. Other
typical parameters are the number or the size of the cells.

– The density based approaches define clusters as dense groups of objects in
space. A cluster can have an arbitrary shape, but must be separated from the
other clusters by low density regions. Dense regions are defined as regions
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containing more objects than a given threshold, within a given radius. The
clusters are then built by joining together the objects from adjacent dense
regions.

– The clustering-oriented approaches based on parameters specifying proper-
ties of the targeted clustering such as the expected number of clusters or the
cluster average dimensionality. According to these constraints, the objects
are grouped together mainly using distance-based similarities. Most of these
methods tend to build center-based hyper-spherical shaped clusters.

– The pattern-based clustering or biclustering approaches, as reported for in-
stance in [12], that consider the objects and the dimensions more inter-
changeably. A cluster can for instance correspond to a bi-set of dimensions
and objects forming a particular pattern in a Boolean matrix.

4 Subspace clustering targeted task

This section recalls some preliminary definitions and specifies the subspace clus-
tering task that is considered.

4.1 Dataset and preprocessing

Let a set of objects S = {s1, s2 . . . } denote a dataset. Each object in S has a
unique identifier and is described in RD by D features (the coordinates of the
object). Let D denote the number of dimensions (i.e., the dimensionality) of
S. Each dimension is represented by a number from 1 to D and the set of all
dimensions of the dataset is denoted D = {1, . . . , D}.

To avoid being impacted by the original offsets and scales of the features, we
suppose that the data have been standardized, as in many clustering frameworks.
We rely here on the usual z-score standardization, leading to a mean of zero and
a standard deviation equal to one for each feature.

4.2 K-medians problem

Given a dataset S in a space D, let H = {m1, . . . ,mk} be a non empty set
of centers where each center m ∈ H is an element in RD. The Manhattan
(L1) distance between two objects u and v in space D is defined as ||u, v||1 =∑
d∈D |ud − vd|. The Manhattan distance between an object s and its closest

center defines the so-called Absolute Error associated to s for H: AE(s,H) =
minm∈H(||s,m||1). The K-medians problem can be formulated as the optimiza-
tion problem that aims to find a set H of K centers that minimizes the Sum of
Absolute Errors of the objects in S defined as SAE(S,H) =

∑
s∈S AE(s,H).

Such a set H defines a partition of S into K clusters C = {C1, . . . , CK}, where a
cluster Ci contains the objects of S for which mi ∈ H is the closest center (using
the Manhattan distance).
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4.3 Subspace clustering based on medians

A subspace clusteringM, called hereafter a model , is a set of centers such that
each center mi ∈M is associated to a subspace Di of D. From the point of view
of center-based subspace clustering, a cluster center described in a given subspace
can be perceived informally as a summary of the cluster objects. Indeed this set
of objects can be represented in a more abstract way simply by the location
of the center along the dimensions considered in the cluster subspace. For a
dimension d that is not in Di, the intended meaning is that, along d, the objects
of the cluster follow the same distribution as the other objects of the dataset. For
an object s, the Absolute Error is then AE(s,M) = minm∈M dist(s,m), where
dist(s,mi) =

∑
d∈Di |sd−mi,d|+

∑
d∈D\Di |sd−µd|, with mi,d the coordinate of

mi in dimension d, and with µd the mean of the location of all objects in S along
d. Notice that, since the dataset is supposed to be normalized using a z-score,
then in this case µd = 0 for all d.

The SAE is still defined as SAE(S,M) =
∑
s∈S AE(s,M). Each object is

associated to the cluster Ci such that dist(s,mi) is minimized. If several clusters
minimize this expression then the object is non-deterministically associated to
one of them. Finally, the size of a model M, noted Size(M), is defined as the
sum of the dimensionalities of each subspace associated to the centers inM, and
is interpreted as the level of detail captured by the clustering. To perform such a
median-based subspace clustering, the core task considered in this report is then
to find a set of centers M that minimizes the SAE and such that Size(M) ≤
SDmax, where SDmax is a parameter denoting the maximum Sum of Dimensions
used inM to define all the subspaces.

5 Algorithm

This section introduces the SubCMedians algorithm to handle the medians-based
subspace clustering task.

5.1 General hill climbing procedure

Let S be a dataset and M a model (a set of centers each being defined in its
own subspace). The algorithm presented in this report is a hill climbing oriented
technique that aims to minimize the objective function SAE(M,S). It updates
iteratively a model using a stochastic optimization approach, while keeping the
maximum model size constraint satisfied.

The hill climbing process can be perceived as a local search process on a graph
of models. Each vertexM in the graph is a model such that Size(M) ≤ SDmax

and there is an edge from M to a vertex M′ if M′ ∈ N eighbors(M), where
N eighbors(M) is a function that defines the set of neighbors ofM.

The algorithm takes as initial vertex the empty model (a model containing no
center), denotedM∅, and for which the definition of AE is extended as follows:
AE(s,M∅) =

∑
d∈D |sd − µd|, all µd being still equal to 0 due to the dataset

standardization.
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At each iteration it evaluates the SAE for a random neighbor of the current
vertex, whenever the SAE associated to the new node is smaller or equal to
the current SAE, the algorithm moves towards the neighbor. The algorithm
uses the data objects themselves to generate the neighborhood of a model M.
Indeed, a neighbor of a model M is a model that can be obtained from M by
inserting/removing a dimension in a subspace and setting a center coordinate
to a value equal to one of the object coordinates. The generation of a neighbor
is fully described in Section 6.3. The same strategy can be applied in order to
explore several neighbors at each step, instead of exploring only one of them. In
this case the algorithm moves towards the best neighboring model. In the rare
cases where different models reach all the same highest quality value, then one
of them is chosen randomly. Such a generation of multiple neighboring models
is used in Section 10.

5.2 Sampling the dataset

Let X be a continuous random variable with a density function f(x) and a
median θ. The median of a sample of n independent realizations of X is an
estimator (noted θ̂) of the median of X and is normally distributed around θ
with a standard deviation σθ̂ =

1
2f(θ)

√
n
[8,11]. This approximation derives from

the central limit theorem and holds for large enough samples. Let us suppose
that X follows a Gaussian distribution X ∼ N (µ, σ), where µ and σ denote
respectively the mean and standard deviation of X. The density function of the
distribution is f(x) = 1

σ
√
2π

e−
1
2 (

x−µ
σ )

2

. Since the mean and the median of a
Gaussian distribution are equal, f(θ) simplifies to f(θ) = 1

σ
√
2π

, and we have

σθ̂ = σ
√

π
2n . So θ̂ ∼ N (µ, σ

√
π
2n ), and thus a subspace clustering algorithm

based on medians does not require to use the entire dataset. Indeed, a dataset
sample S̃ ⊆ S, should allow the algorithm to build a model without important
degradation of the clustering quality, while reducing the amount of data to han-
dle. This choice is retained in SubCMedians, but to limit the negative effects of
a possible bad sample choice, the algorithm will modify dynamically the sample
along the iterations.

5.3 Lazy hill climbing procedure

The algorithm is given in Figure 2. It takes as input a dataset S described in a
space D and three parameters: the maximum model size SDmax, the effective
sample size N and the number of iterations NbIter. The setting of these param-
eters is discussed in Section 7. The first step of the algorithm is to initialize the
model M, the sample S̃ (N objects randomly chosen in S in the case of static
datasets or the first N objects received for data streams) and to compute the
error err corresponding toM.

At each iteration, the sample is dynamically changed by picking at random
a data object in S̃ and replacing it by an object uniformly drawn from S (in
the case of static datasets) or by the last object received (in the case of data
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streams). If SubCMedians is used to analyze a data stream, the last data stream
object received is used instead. Then (lines 10 and 11) the SAE err∗ on the
new sample is computed incrementally by subtracting the AE associated to the
object that has been removed and adding the AE for the new object.

Next the algorithm performs a lazy hill climbing step. Indeed, if the SAE
on the new sample is better (i.e., lesser) than the SAE on the previous sample
the algorithm does not try to improve the model itself during this iteration.
Otherwise a new model M′ is computed using the function One-Neighbor()
(detailed in the next section) andM′ is retained if it improves the SAE.

Finally, using function BuildSubspaceClusters(), the algorithm outputs a
subspace clustering in the form of a set of disjoint clusters and their correspond-
ing subspaces. This function is very simple and not detailed further, it simply
associates each data object to its closest center (the one minimizing AE). If sev-
eral centers give the same minimal AE, then one is chosen in a nondeterministic
way. At the end, if a center has no associated object then it does not lead to a
cluster and BuildSubspaceClusters() discards it.

1: function SubCMedians(S,SDmax,N ,NbIter)
2: S̃ ← {s1, . . . , sN} uniformly drawn from S (static dataset) or first N objects

received (data stream)
3: M←M∅ the empty model
4: err ← SAE(M, S̃)
5: repeat
6: Draw s ∈ S̃ uniformly
7: S̃ ← S̃\{s}
8: Draw s∗ ∈ S uniformly (static dataset) or take the last object received (data

streams)
9: S̃ ← S̃ ∪ {s∗}
10: err∗ ← err −AE(s,M)
11: err∗ ← err∗ +AE(s∗,M)
12: if err∗ ≥ err then
13: M′ ← One-Neighbor(M,S̃,SDmax)
14: err

′
← SAE(S̃,M′)

15: if err∗ ≥ err
′
then

16: M ←M′
17: err∗ ← err

′
;

18: end if
19: end if
20: err ← err∗;
21: until NbIter iterations achieved
22: return BuildSubspaceClusters(S,M)
23: end function

Figure 2: SubCMedians algorithm.
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6 Neighborhood exploration heuristic

6.1 Expected gain in SAE

In order to guide the local exploration, let us study the expected gain in SAE
associated to the optimization of the location of a given center.

Consider a cluster C and a dimension d. Let us suppose that the coordinates
Xd of the objects in C along d follow a Gaussian distribution N (µd, σd). Let us
consider that a badly placed center m is simply an object in C taken randomly.
Along dimension d, the difference between the location of an object X chosen
randomly in C and the location of m, is (Xd −md) and follows the distribution
N (µ′d, σ

′
d) with µ

′
d = 0 and σ′d = σd

√
2 since Xd and md follows N (µd, σd).

Let us consider that a well placed center m∗ is the median of the n objects
of C contained in the current sample S̃. Using the distribution followed by such
a median estimator and obtained in Section 5.2 we have m∗ ∼ N (µd, σd

√
π
2n ).

Thus the difference between the locations of objectX andm∗ along d, (Xd−m∗d),
follows the distribution N (µ∗d, σ

∗
d) with µ

∗
d = 0 and σ∗d = σd

√
π
2n + 1.

For m the contribution of X to the AE value (and thus to SAE) is |Xd −
md|. As (Xd − md) ∼ N (µ′d, σ

′
d), then |Xd − md| follows the corresponding

folded normal distribution and the expected value of |Xd − md| is given by
σ′d

√
2/π exp(−µ′2d /2σ′2d ) + µ′ [1− 2Φ(−µ′d/σ′d)], where Φ denotes the normal cu-

mulative distribution. Since µ′d = 0 and σ′d = σd
√
2, we have E(|Xd −md|) =

2σd/
√
π. In a similar way we can derive the expected value of the contribution

of X to AE for the optimized center m∗, E(|Xd −m∗d|) = σd

√
1
n + 2

π .
If we consider γ = E(|Xd−m∗d|)−E(|Xd−md|) as reflecting the gain due in

the optimized case, then γ = σd(2/
√
π−

√
1
n + 2

π ). This means that larger gains
are likely to be obtained for cluster having a high σd and having many of their
elements belonging to the sample S̃.

6.2 Weighted candidate model

Since the clusters and their standard deviations are not known beforehand, Sub-
CMedians uses two heuristics to favor some of the centers that could be most
promising. The first one is to guide the local exploration by modifying the current
model with a coordinate of a uniformly chosen object in the sample. Therefore
coordinates drawn from clusters with more objects in the sample are more likely
to be used for exploration.

The second heuristic to favor promising centers consists in counting for each
dimension of each center the number of adjustments that have led to a reduc-
tion of the SAE. The algorithm keeps track of weights reflecting these counts.
The weight of a center (sum of the weights of its dimensions) is then used as
an evidence to encourage further the improvement of its location. In the opti-
mization process the weights should not only increase, since when a promising
center has already been optimized sufficiently it is then likely to lead to minor
gains, and then should receive less attention. The weights of the dimensions in
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the clusters are thus decreased during the exploration, using a random selection
with a probability proportional to the weights. A weight of zero for a dimension
in a cluster is an evidence that it is not important to keep or adjust it, and thus
that it should not be retained to form the subspace associated to this cluster.
A non-zero weight is then interpreted as denoting a dimension being potentially
meaningful for that cluster. To permit to encode a model of size SDmax, but no
more, the maximum sum of all weights is set to SDmax.

The SubCMedians algorithm uses a pair of matricesM = 〈L,W〉 to describe
a weighted model. L and W are associated respectively to the locations and
weights of the centers along each dimension, both matrices having SDmax rows
and D columns. An element Li,d represents the coordinate of a center mi along
dimension d, and an element Wi,d denotes the weight of dimension d for mi.
The subspace associated to a center mi is Di = {d ∈ {1, . . . , D}|Wi,d > 0}.
Valid centers are those for which at least one dimension is defined, and their set
of indices is simply Γ = {c ∈ {1, . . . , SDmax}|

∑
dWc,d > 0}. The total model

weight, noted W , is
∑
i,jWi,j and the model size is simply

∑
c∈Γ |Dc|.

Example Let us consider two matrices L and W defined for SDmax = 6 and
D = 2:

L =

1 2


0.5 0 1

0 −0.8 2

0 0 3

0 0 4

−0.3 0.2 5

0 0 6

W =

1 2


2 0 1

0 1 2

0 0 3

0 0 4

2 1 5

0 0 6

Rows 3, 4 and 6 describe no valid center (all weights equal to zero in W), while
rows 1, 2 and 5 represent the centers m1, m2 and m5 and their subspaces: D1 =
{1}, D2 = {2} and D5 = {1, 2}. The respective coordinates in their associated
subspaces are given by L: m1 = (0.5), m2 = (−0.8) and m5 = (−0.3, 0.2).

In the algorithm given in Figure 2, the model M = 〈L,W〉 is initialized
line 3 by filling all rows of the two matrices with zeros, to represent an initial
empty model. The heuristic based neighborhood exploration is performed by the
successive calls to function One-Neighbor() detailed in the next section.

6.3 One neighbor computation function

The function One-Neighbor() is given in Figure 3. First, it computes W the
total current model weight. Then operations carried out from lines 4 to 10 de-
crease the model weight when the total weight reaches the maximum model size
(i.e., SDmax). This is performed by picking at random a pair of indices 〈i, j〉
with a probability proportional to Wi,j (line 5). Then the corresponding weight
Wi,j is decreased (line 6). For the sake of clarity the associated coordinate Li,j
is set to zero if Wi,j = 0 (line 8), even though this is not useful for the rest
of the process. Next, the algorithm draws uniformly an object s in the sample
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and a dimension d in the space D (lines 11 and 12). Line 13 computes the set Γ
of the indices of the valid centers. Then the algorithm chooses a random center
index c that corresponds either to an unused center with probability 1

W (lines
15 and 16), or one of the current valid centers (line 18). In the latter case, the
valid center is picked with a probability proportional to its total weight. Finally
the weight Wc,d is increased and the location encoded in Lc,d is replaced by the
coordinate of s along dimension d.

1: function One-Neighbor(〈L,W〉, S̃, SDmax)
2: 〈L′,W ′〉 ← 〈L,W〉
3: W ←

∑SDmax
i=1

∑D
j=1W

′
i,j

4: if W = SDmax then
5: Draw 〈i, j〉 ∈ {1, . . . , SDmax} × {1, . . . , D} with probability of each 〈i, j〉

equals to
W′i,j
W

6: W ′i,j ←W ′i,j − 1
7: if W ′i,j = 0 then
8: L′i,j ← 0
9: end if
10: end if
11: Draw s ∈ S̃ uniformly
12: Draw d ∈ {1, . . . , D} uniformly
13: Γ = {i ∈ {1, . . . , SDmax}|

∑D
j=1W

′
i,j > 0}

14: Draw p uniformly in [0, 1]
15: if p ≤ 1

W
then

16: Draw c ∈ {1, . . . , SDmax}\Γ uniformly
17: else
18: Draw c ∈ Γ with probability

∑D
j=1W

′
c,j

W

19: end if
20: W ′c,d ←W ′c,d + 1
21: L′c,d ← Coordinate of s along dimension d
22: return 〈W ′,L′〉;
23: end function

Figure 3: Generation of one neighbor.

6.4 Complexity

Consider one iteration of SubCMedians using sample S̃ in a D dimensional
space. Let NbCenters denote the number of centers currently used (the valid
centers). Operations in non-constant time are the calls to AE, SAE and One-
Neighbor(). AE computes the distance of one object to each center and is
in O(NbCenters × D). SAE does the same for each object in the sample and
then has a complexity O(|S̃|×NbCenters×D). The computation cost of One-
Neighbor() lies in part in the computation of weights: the total weight of the
model W (line 3) and the weights in the probabilities used line 18. These values
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can be maintained incrementally whenW is modified resulting in a constant cost
forW and in a cost proportional to NbCenters for the probabilities line 18. The
remaining cost is due to the non-uniform random selections (lines 5 and 18),
having a cost proportional to the number of possible outcomes. Line 5 there are
at most NbCenters × D possible outcomes with a non-zero probability (other
pairs 〈i, j〉 having a weight of zero). And for line 18 there are NbCenters possible
outcomes. The cost of one call to One-Neighbor() is thus inO(NbCenters×D).
The complexity of an iteration in SubCMedians is then O(|S̃|×NbCenters×D).

The memory requirement corresponds to the storage of the dataset S, the
sample S̃ and the two matrices L and W of size SDmax ×D and thus is simply
in O(|S|+ SDmax ×D).

7 Parameter setting

The SubCMedians algorithm has three parameters: SDmax, NbIter, and N . The
most important is SDmax, the maximum model size, constraining the level of
detail of the subspace clustering performed. The number of iterations NbIter
is also important but its setting can be avoided since the user can monitor the
value of the SAE during the clustering and stop the process when this value
does no longer improve. The third one, the sample size N is a way to reduce the
computing resources needed, and of course if possible it makes sense to use the
full dataset instead of a sample.

It this section, we propose guidelines for easy default parameter setting. In
this case the only value that must be provided by the user is the expected
number of clusters NbExpClust. Notice that this is not a crisp constraint, but
only a suggested number of clusters that the algorithm should adjust to build
a structure. Notice also that a hard part of the subspace clustering task is to
determine the subspaces and that this aspect is not directly constrained by
NbExpClust.

7.1 Maximum model size SDmax

The intuition to set SDmax is very simple, the value of SDmax should allow to
build a model containing NbExpClust even if all dimensions are useful, leading
to a default SDmax value equal to NbExpClust × D. Of course, as for any
subspace clustering algorithm, obtaining very satisfactory results are likely to
require from the user finer parameter tuning.

FromNbExpClust and SDmax we now derive minimum recommended values
for the number of iterations and for the sample size. These settings are the
ones used in the experiments reported Section 9, but of course the statistical
thresholds used in the setting method could be enforced in order to have more
conservative recommended parameter values.
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7.2 Number of iterations NbIter

Let C be any expected cluster and d be any of its dimensions. Let k be the number
of attempts to set the coordinate of the center of C along d to a reasonable
approximation of the median value, during NbIter iterations in SubCMedians.
The default value proposed for NbIter is the minimum number of iterations such
that the expected value of k is at least 1.

Let us suppose that all clusters have the same size and that the number
of clusters is equal to NbExpClust. Consider an iteration of SubCMedians. In
One-Neighbor() (Figure 3) the probability to pick an object s belonging to C
(line 11) is 1/NbExpClust and the probability to choose dimension d (line 12)
is 1/D. Let x be the coordinate of s along dimension d, and let us accept as a
reasonable approximation a value x at a distance of less than 1/8 of the standard
deviation away from the median. Then supposing a Gaussian distribution, this
implies that the median is equal to the mean, and that the probability of x
as being a reasonable approximation is about 0.1 (according to the standard
normal cumulative distribution). At line 15, the probability to jump to line 18
to modify an existing cluster is 1− 1/W . If we suppose that the current model
contains already NbExpClust clusters, including C (possibly with the presence
of a single dimension of C), and that all clusters have similar weights in matrix
W, then the probability of C to be chosen in line 18 is about 1/NbExpClust.
So the probability p of the center corresponding to C in the current model, to
have its coordinate along dimension d to be set to a reasonable approximation x
in line 21, is p = 1

NbExpClust ×
1
D × 0.1× (1− 1

W )× 1
NbExpClust . As W increases

at each iteration (up to SDmax) we quickly have (1− 1
W ) ' 1, and since we set

SDmax = NbExpClust×D, we have p ' 0.1× 1
SDmax×NbExpClust .

The expected value of k is E(k) = NbIter × p, thus to have E(k) ≥ 1, the
default minimum NbIter value is set to 10× SDmax ×NbExpClust.

7.3 Dataset sample size N

Consider a cluster C and a dimension d, supposing that the coordinates in C
along d follow N (µd, σd). As stated in Section 5.2, θ̂d the median estimator of
these coordinates, using a sample of size n, follows N (µd, σd

√
π
2n ). If we accept

a standard error of 1/4 of the original σd then the minimum sample size satisfies
σθ̂d = σd

4 = σd
√

π
2n and we have n = 8π ' 25. Such sample allows to estimate the

median location of a cluster in the D dimensions, but if there are NbExpClust
clusters, more objects are needed. Let us suppose that all clusters have the same
size, and thus are likely to be represented by similar numbers of objects in the
sample, then the recommended minimum value for N is 25×NbExpClust.

8 Experimental setup

8.1 Experimental protocol

The SubCMedians algorithm extends the subspace clustering tool family towards
medians based clustering. Even if cluster center locations based on medians can
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be interesting on their own (depending on the targeted task), an open question
is to what extent the quality of the clusters obtained competes with those given
by other paradigms? In order to evaluate and compare SubCMedians with the
state-of-the-art approaches we used the evaluation framework of reference de-
signed for subspace clustering described in [9]. This evaluation framework relies
on a systematic approach to compare the results of representative algorithms
that address the major subspace clustering paradigms. The comparison detailed
in [9] was made using different evaluation measures on both real and synthetic
datasets, using the following method. Given that each algorithm requires several
parameters (from 2 to 9), for each dataset, the algorithms were executed with
100 different parameter settings to explore the parameter space. Then, using an
external labeling of the objects, only the outputs that were among the best with
respect to the external labeling (taken as a ground truth) were retained. So, the
results reported in [9] are in some sense the best possible subspace clusterings
that could be achieved if we were able to find the most appropriate parameter
values. More precisely, for each real world dataset only two outputs were retained:
1) the one computed for the parameter setting that maximizes the F1 measure,
and 2) the one obtained when maximizing the accuracy. These two outputs led
to two values for each measure, the smallest of the two being called bestMin and
the other bestMax. For each synthetic dataset, all the settings maximizing at
least one quality measures among F1, accuracy, CE, RNIA and entropy were
retained.

Since generally no external labeling is available when we search for clusters,
parameter tuning is most of the time a difficult task and these high quality
subspace clustering models are likely to be hard to obtain. Here, for SubCMedi-
ans, the parameters were not optimized using any external criteria. Instead the
parameters were set using the default values suggested in Section 7. Thus, we
compare clusterings effectively found by SubCMedians to the best clusterings
that could potentially be found by the other algorithms. Since SubCMedians
is nondeterministic (as many subspace clustering approaches), it can achieve
different results on different runs. Consequently the algorithm was executed 10
times independently using the same parameter setting. The results obtained af-
ter each run were assessed with the same criteria as in [9]: the coverage, the
number of clusters found, different quality measures (F1, accuracy, CE, RNIA
and entropy) and the runtime. For each real world dataset, the highest and
lowest values of each evaluation measure (over the 10 runs) were computed, so
as to compare with the bestMin and bestMax values retained by the evaluation
method of [9]. For each synthetic dataset, we simply took the clustering having
the lowest SAE measure (internal criterion of quality).

In addition, to assess the impact of the weighted neighborhood exploration
of the model space used by SubCMedians, the algorithm was compared to an
unweighted version, in which the candidate center undergoing the modification is
uniformly drawn. More precisely, the candidate center is uniformly drawn among
the SDmax potential candidate centers that could be contained in a model of size
SDmax. This version was obtained by changing lines 15 to 19 of the algorithm
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given in Figure 3, and replacing line 20 by W ′c,d ← 1, to have matrices W ′ and
W containing simply a 1 for a dimension that is used and a 0 otherwise.

All experiments were run on an Intel 2.67GHz CPU running Linux Debian
8.3, using a single core and less than 150 MB of RAM. The SubCMedians algo-
rithm has been implemented in C++ as a Python library and in Java as a Knime
component. The reported runtimes are the ones obtained with the C++/Python
version.

8.2 Datasets

The performances of SubCMedians are reported on real world data using the
seven benchmark datasets selected in [9] for their representativity: breast, dia-
betes, liver, glass, shape, pendigits and vowel (most of them coming from the UCI
archive [2]). These datasets have different dimensionalities and contain different
numbers of objects. These objects are already structured in classes, and the class
membership is used by quality measures to assess the cluster purity. However,
the number of classes does not necessarily reflect the number of subspace clus-
ters, and the objects of a class can form different groups in space and/or strongly
overlap with the objects of other classes.

SubCMedians was also executed on the 16 synthetic benchmark datasets
provided by [9]. These datasets are particularly useful to study the algorithm
performances, as the true clusters and their subspaces are known. Each dataset
contains 10 hidden subspace clusters laying in subspaces made by 50%, 60% and
80% of the total dimensions of the dataset. Seven synthetic datasets allow to
study scalability with respect to the dataset dimensionality (5, 10, 15, 20, 25,
50 and 75 dimensions). These datasets contain about 1500 objects each and are
extended with about 10% of noise objects. Five other synthetic datasets permit
to analyse the scalability with respect to the dataset size (1500, 2500, 3500, 4500
and 5500 objects), over 20 dimensions and also with about 10% of noise objects.
Finally four datasets allow to study the capacity to cope with noise, containing
10%, 30%, 50% and up to 70% of noise objects.

All datasets are made available by the authors of [9] at http://dme.rwth-
aachen.de/openSubspace/evaluation. We applied a z-score standardization to
all real and synthetic datasets in a preprocessing step.

8.3 Parameter values

SubCMedians parameters were set according to Section 7. Let D denote the
dimensionality of each particular dataset. For the synthetic datasets the num-
ber of expected clusters is about 10, thus the maximum model size was set to
SDmax = D × 10, the sample size was set to N = 25 × 10 and the number
of iterations was set to NbIter = 10 × 10 × SDmax. A weaker setting, not
based on the true number of clusters, but based on 20 expected clusters, was
also used, and as reported in Section 9 still permitted to exhibit structures of
about 10 clusters. For the real world datasets, the only information available
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about the structure of the datasets is the number of classes. However, as al-
ready mentioned, the number of classes may not correspond to the number of
clusters. Indeed, according to the results provided by [9], in these datasets the
state-of-the-art algorithms exhibit most of the time structures composed of more
clusters than the number of classes. The setting of SubCMedians parameters is
thus based on an expected number of clusters equal to three times the number
of classes and we let the algorithm regulate itself the number of output clusters.
Hence the maximum model size was set to SDmax = 3 × NbClasses × D, the
sample size was set to N = 25 × 3 × NbClasses and the number of iterations
was set to NbIter = 10× 3×NbClasses× SDmax.

8.4 Evaluation measures

In order to compare our algorithm to the others, we used the same standard
evaluation measures for clusters and subspace clusters as [9]: entropy (the nor-
malized entropy), accuracy, F1, RNIA and CE. We performed also the same
simple transformation on entropy and RNIA, by computing RNIA = 1−RNIA
and entropy = 1− entropy to have all evaluation measures ranging from 0 (low
quality) to 1 (high quality). The three first measures (entropy, accuracy and F1)
reflect how well objects that should have been grouped together were effectively
grouped. The two last measures (RNIA and CE) take into account the way the
objects are grouped and also the relevance of the subspaces found by the algo-
rithm. For these measures, when the true dimensions of the subspace clusters
were not known (for real datasets), then as in [9] all dimensions were considered
as relevant, but then the interpretation of these two measures should remain
cautious since the true sets of dimensions are likely to be smaller. Of course this
does not apply to the synthetic datasets, since for them the reference clusters
and their dimensions are known. We refer the reader to [9] for the detailed recall
of the evaluation measures.

9 Experimental results

Because of the large number of results (23 datasets and 11 algorithms) used in
the comparison, aggregated figures reflecting the real detailed results are given.
However, there is no ever winning paradigm or clustering method, each having
its own advantages or interest. The main objective of this section is to provide
evidences to investigate the two following questions: Are subspace clusters based
on medians comparable to results obtained by state-of-the-art approaches? Is
SubCMedians an effective method for such a clustering?

9.1 Real dataset

This section presents the results obtained on the 7 representative real datasets
selected in [9] using the following aggregations.
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Cluster quality measures For each measure, on each data set, two rankings of
the 11 algorithms were computed: one for the bestMax score and one for the
bestMin score, with ranks ranging from 1 to 11, rank 11 being associated to the
algorithm obtaining the highest quality. The overall ranking of an algorithm was
then simply the average of its rank values.

Runtimes The same ranking was used to compare the algorithm using the run-
time measure, associating rank value 11 to the fastest. Even if SubCMedians
and Chameleoclust+ have been executed on a computer (2.67GHz CPU) differ-
ent from the one used by [9] (2.3GHz CPU), we report the runtimes comparison,
since at least the orders of magnitude can still be meaningful.

Coverage The same procedure was used to compare the coverages obtained.
The coverage denotes the fraction of objects of the dataset that are associated
to clusters. This measure is less than 1 if some objects are not associated to
one of the output clusters, or if they are identified as outliers or as reflecting
noise. When the coverage decreases, discarding some objects can result in a
direct improvement of several quality measures (because of clusters being more
homogeneous). Of course putting apart too many objects is likely to lead to less
representative models and is most of the time not desirable. For the coverage a
rank value of 11 was associated to the highest coverage.

Number of clusters The rankings were computed using the absolute value of
the difference between the number of clusters found by the algorithm and the
number of classes in the dataset. The rank value 11 is given to the smallest
absolute value. However, as previously mentioned, the number of classes does
not necessarily reflect the number of subspace clusters in the datasets.

The global trade-off is then to reach high quality measures while preserving
a high coverage (except for data containing many outliers or important noise),
and without splitting the data into too many clusters.

The average rank of each algorithm regarding the cluster quality measures,
the runtime, the coverage and the number of clusters found are given in Figure 4.
In addition, the results on the real world datasets are presented in Figure 5.
These tables report on the seven real world datasets, for the 10 state-of-the-
art algorithms, Chameleoclust+ and SubCMedians the bestMin and bestMax
values for the different quality measures, the coverage, the number of clusters
found, their average dimensionality and the runtimes. According to these results
SubCMedians is faster than Chameleoclust+ and usually outputs results with
higher quality.

Figure 4 shows evidence that the robustness of the medians still operates in a
subspace clustering task since competitive cluster qualities can be obtained with-
out discarding any object (100% coverage). SubCMedians was able to find these
clusterings in short execution times, and using an effective parameter setting
(no parameter optimization using an external ground truth). For the number of
clusters found, SubCMedians is above the average, and it seems that it does not
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tend to split the dataset into too many clusters. However, the true numbers of
clusters are not known here, in contrast to the synthetic datasets.
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Figure 4: Average rankings over all datasets regarding the quality, the runtime,
the coverage and the number of clusters.

9.2 Synthetic data

In this section, we report the results obtained on the 16 synthetic datasets of [9],
each one containing 10 known clusters. For each dataset, SubCMedians was ex-
ecuted 10 times and the model having the lowest SAE was retained (no use of
external labeling). These models are depicted as red circles in Figure 6. The
green shapes represent the areas where are located the best models found by
the 10 other algorithms over their parameter spaces (optimized using external
ground truth labeling). Here again, the results show evidences that a median
based approach is an interesting complementary tool for subspace clustering, and
in particular that SubCMedians reaches a competitive quality for the measures
that take into account not only the objects grouping, but also the dimensions
associated to the clusters (RNIA and CE). In these experiments the parame-
ters where computed according to the guidelines of Section 7 using an expected
number of clusters of 10, but no constraint on the sizes of their subspaces. In-
terestingly, a weaker setting based on an expected number of clusters of 20 still
permits to SubCMedians to exhibit most of the time a good quality clustering
of about 10 clusters (e.g., RNIA and Accuracy in Figure 7).

The results of the more naïve unweighted version of SubCMedians are rep-
resented in Figure 6 by blue triangles (same procedure used, retaining also the
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DATASET: F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
BREAST max min max min max min max min max min max min max min max min max min
CLIQUE 0.67 0.67 0.71 0.71 0.02 0.02 0.40 0.40 0.26 0.26 1.00 1.00 107 107 1.7 1.7 453 453
DOC 0.73 0.61 0.81 0.76 0.11 0.04 0.84 0.07 0.46 0.27 1.00 0.80 60 6 27.2 2.8 1E+06 37515

MINECLUS 0.78 0.69 0.78 0.76 0.19 0.18 1.00 1.00 0.56 0.37 1.00 1.00 64 32 33.0 33.0 40359 29437
SCHISM 0.67 0.67 0.75 0.69 0.01 0.01 0.36 0.34 0.35 0.34 1.00 0.99 248 197 2.3 2.2 158749 114609
SUBCLU 0.68 0.51 0.77 0.67 0.02 0.01 0.54 0.04 0.27 0.24 1.00 0.82 357 5 2.0 1.0 5265 16
FIRES 0.49 0.03 0.76 0.76 0.03 0.00 0.05 0.00 1.00 0.01 0.76 0.04 11 1 2.5 1.0 250 31
INSCY 0.74 0.55 0.77 0.76 0.02 0.00 0.24 0.11 0.60 0.39 0.97 0.74 2038 167 11.0 4.4 134373 63484

PROCLUS 0.57 0.52 0.80 0.74 0.51 0.11 0.65 0.43 0.32 0.23 0.89 0.69 9 2 24.0 18.0 703 141
P3C 0.63 0.63 0.77 0.77 0.04 0.04 0.19 0.19 0.36 0.36 0.85 0.85 28 28 6.9 6.9 6281 6281

STATPC 0.41 0.41 0.78 0.78 0.16 0.16 0.33 0.33 0.29 0.29 0.43 0.43 5 5 33.0 33.0 5187 4906
CHAMELEOCLUST+ 0.60 0.51 0.76 0.76 0.23 0.11 0.53 0.25 0.25 0.22 1 1 8 4 16.75 5.75 339 131

SUBCMEDIANS 0.66 0.57 0.79 0.76 0.18 0.14 0.56 0.51 0.31 0.25 1 1 19.0 13.0 12.36 9.26 8 7

DATASET: F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
PENDIGITS max min max min max min max min max min max min max min max min max min

CLIQUE 0.30 0.17 0.96 0.86 0.06 0.01 0.20 0.06 0.41 0.26 1.00 1.00 1890 36 3.1 1.5 67891 219
DOC 0.52 0.52 0.54 0.54 0.18 0.18 0.35 0.35 0.53 0.53 0.91 0.91 15 15 5.5 5.5 178358 178358

MINECLUS 0.87 0.87 0.86 0.86 0.48 0.48 0.89 0.89 0.82 0.82 1.00 1.00 64 64 12.1 12.1 780167 692651
SCHISM 0.45 0.26 0.93 0.71 0.05 0.01 0.30 0.08 0.50 0.45 1.00 0.93 1092 290 10.1 3.4 5E+08 21266
SUBCLU - - - - - - - - - - - - - - - - - -
FIRES 0.45 0.45 0.73 0.73 0.09 0.09 0.33 0.33 0.31 0.31 0.94 0.94 27 27 2.5 2.5 169999 169999
INSCY 0.65 0.48 0.78 0.68 0.07 0.07 0.30 0.28 0.77 0.69 0.91 0.82 262 106 5.3 4.6 2E+06 1E+06

PROCLUS 0.78 0.73 0.74 0.73 0.31 0.27 0.64 0.45 0.90 0.71 0.90 0.74 37 17 14.0 8.0 6045 4250
P3C 0.74 0.74 0.72 0.72 0.28 0.28 0.58 0.58 0.76 0.76 0.90 0.90 31 31 9.0 9.0 2E+06 2E+06

STATPC 0.91 0.32 0.92 0.10 0.09 0.00 0.67 0.11 1.00 0.53 0.99 0.84 4109 56 16.0 16.0 5E+07 3E+06
CHAMELEOCLUST+ 0.71 0.51 0.74 0.59 0.51 0.30 0.78 0.49 0.68 0.58 1 1 14 10 12.40 7.21 4476 4226

SUBCMEDIANS 0.92 0.89 0.92 0.89 0.40 0.34 0.80 0.78 0.89 0.86 1 1 41.0 34.0 12.21 10.51 556 523

DATASET: F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
DIABETES max min max min max min max min max min max min max min max min max min

CLIQUE 0.70 0.39 0.72 0.69 0.03 0.01 0.14 0.01 0.23 0.13 1.00 1.00 349 202 4.2 2.4 11953 203
DOC 0.71 0.71 0.72 0.69 0.31 0.26 0.92 0.79 0.31 0.24 1.00 0.93 64 17 8.0 5.1 1E+06 51640

MINECLUS 0.72 0.66 0.71 0.69 0.63 0.13 0.89 0.58 0.29 0.17 0.99 0.96 39 3 6.0 5.2 3578 62
SCHISM 0.70 0.62 0.73 0.68 0.08 0.01 0.36 0.09 0.34 0.20 1.00 0.79 270 21 4.2 3.9 35468 250
SUBCLU 0.74 0.45 0.71 0.68 0.01 0.01 0.01 0.01 0.14 0.11 1.00 1.00 1601 325 4.7 4.0 190122 58718
FIRES 0.52 0.03 0.65 0.64 0.12 0.00 0.27 0.00 0.68 0.00 0.81 0.03 17 1 2.5 1.0 4234 360
INSCY 0.65 0.39 0.70 0.65 0.37 0.11 0.45 0.42 0.44 0.15 0.83 0.73 132 3 6.7 5.7 112093 33531

PROCLUS 0.67 0.61 0.72 0.71 0.34 0.21 0.78 0.69 0.23 0.19 0.92 0.78 9 3 8.0 6.0 360 109
P3C 0.39 0.39 0.66 0.65 0.56 0.11 0.85 0.22 0.09 0.07 0.97 0.88 2 1 7.0 2.0 656 141

STATPC 0.73 0.59 0.70 0.65 0.06 0.00 0.63 0.17 0.72 0.28 0.97 0.75 363 27 8.0 8.0 27749 4657
CHAMELEOCLUST+ 0.70 0.62 0.73 0.70 0.17 0.09 0.66 0.47 0.28 0.23 1 1 29 19 5.00 2.75 598 438

SUBCMEDIANS 0.69 0.64 0.73 0.70 0.21 0.08 0.55 0.40 0.25 0.21 1 1 16.0 13.0 3.69 2.87 3 3

DATASET: F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
GLASS max min max min max min max min max min max min max min max min max min
CLIQUE 0.51 0.31 0.67 0.50 0.02 0.00 0.06 0.00 0.39 0.24 1.00 1.00 6169 175 5.4 3.1 411195 1375
DOC 0.74 0.50 0.63 0.50 0.23 0.13 0.93 0.33 0.72 0.50 0.93 0.91 64 11 9.0 3.3 23172 78

MINECLUS 0.76 0.40 0.52 0.50 0.24 0.19 0.78 0.45 0.72 0.46 1.00 0.87 64 6 7.0 4.3 907 15
SCHISM 0.46 0.39 0.63 0.47 0.11 0.04 0.33 0.20 0.44 0.38 1.00 0.79 158 30 3.9 2.1 313 31
SUBCLU 0.50 0.45 0.65 0.46 0.00 0.00 0.01 0.01 0.42 0.39 1.00 1.00 1648 831 4.9 4.3 14410 4250
FIRES 0.30 0.30 0.49 0.49 0.21 0.21 0.45 0.45 0.40 0.40 0.86 0.86 7 7 2.7 2.7 78 78
INSCY 0.57 0.41 0.65 0.47 0.23 0.09 0.54 0.26 0.67 0.47 0.86 0.79 72 30 5.9 2.7 4703 578

PROCLUS 0.60 0.56 0.60 0.57 0.13 0.05 0.51 0.17 0.76 0.68 0.79 0.57 29 26 8.0 2.0 375 250
P3C 0.28 0.23 0.47 0.39 0.14 0.13 0.30 0.27 0.43 0.38 0.89 0.81 3 2 3.0 3.0 32 31

STATPC 0.75 0.40 0.49 0.36 0.19 0.05 0.67 0.37 0.88 0.36 0.93 0.80 106 27 9.0 9.0 1265 390
CHAMELEOCLUST+ 0.43 0.28 0.57 0.50 0.43 0.26 0.88 0.55 0.46 0.36 1 1 8 4 7.50 4.75 195 95

SUBCMEDIANS 0.65 0.51 0.71 0.60 0.32 0.24 0.85 0.76 0.64 0.55 1 1 23.0 19.0 6.74 5.7 18 16

DATASET: F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
LIVER max min max min max min max min max min max min max min max min max min
CLIQUE 0.68 0.65 0.67 0.58 0.08 0.02 0.38 0.03 0.10 0.02 1.00 1.00 1922 19 4.1 1.7 38281 15
DOC 0.67 0.64 0.68 0.58 0.11 0.07 0.51 0.35 0.18 0.11 0.99 0.90 45 13 3.0 1.9 625324 1625

MINECLUS 0.73 0.63 0.65 0.58 0.09 0.09 0.68 0.48 0.33 0.16 0.99 0.92 64 32 4.0 3.7 49563 1954
SCHISM 0.69 0.69 0.68 0.59 0.04 0.03 0.45 0.26 0.10 0.08 0.99 0.99 90 68 2.7 2.1 31 0
SUBCLU 0.68 0.68 0.64 0.58 0.11 0.02 0.68 0.05 0.07 0.02 1.00 1.00 334 64 3.4 1.3 1422 47
FIRES 0.58 0.04 0.58 0.56 0.14 0.00 0.39 0.01 0.37 0.00 0.84 0.03 10 1 3.0 1.0 531 46
INSCY 0.66 0.66 0.62 0.61 0.03 0.03 0.42 0.39 0.21 0.20 0.85 0.81 166 130 2.1 2.1 407 234

PROCLUS 0.53 0.39 0.63 0.63 0.26 0.11 0.66 0.25 0.05 0.05 0.83 0.46 6 2 5.0 3.0 78 31
P3C 0.36 0.35 0.58 0.58 0.55 0.27 0.96 0.47 0.02 0.01 0.98 0.94 2 1 6.0 3.0 172 32

STATPC 0.69 0.57 0.65 0.58 0.23 0.01 0.58 0.37 0.63 0.05 0.77 0.71 159 4 6.0 3.3 1890 781
CHAMELEOCLUST+ 0.65 0.59 0.68 0.62 0.20 0.10 0.53 0.41 0.14 0.07 1 1 27 22 2.48 1.85 202 158

SUBCMEDIANS 0.65 0.56 0.67 0.60 0.21 0.09 0.56 0.43 0.12 0.04 1 1 17.0 11.0 2.82 2.0 2 2

DATASET: F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
SHAPE max min max min max min max min max min max min max min max min max min
CLIQUE 0.31 0.31 0.76 0.76 0.01 0.01 0.07 0.07 0.66 0.66 1.00 1.00 486 486 3.3 3.3 235 235
DOC 0.90 0.83 0.79 0.54 0.56 0.38 0.90 0.82 0.93 0.86 1.00 1.00 53 29 13.8 12.8 2E+06 86500

MINECLUS 0.94 0.86 0.79 0.60 0.58 0.46 1.00 1.00 0.93 0.82 1.00 1.00 64 32 17.0 17.0 46703 3266
SCHISM 0.51 0.30 0.74 0.49 0.10 0.00 0.26 0.01 0.85 0.55 1.00 0.92 8835 90 6.0 3.9 712964 9031
SUBCLU 0.36 0.29 0.70 0.64 0.00 0.00 0.05 0.04 0.89 0.88 1.00 1.00 3468 3337 4.5 4.1 4063 1891
FIRES 0.36 0.36 0.51 0.44 0.20 0.13 0.25 0.20 0.88 0.82 0.45 0.39 10 5 7.6 5.3 63 47
INSCY 0.84 0.59 0.76 0.48 0.18 0.16 0.37 0.24 0.94 0.87 0.88 0.82 185 48 9.8 9.5 22578 11531

PROCLUS 0.84 0.81 0.72 0.71 0.25 0.18 0.61 0.37 0.93 0.91 0.89 0.79 34 34 13.0 7.0 593 469
P3C 0.51 0.51 0.61 0.61 0.14 0.14 0.17 0.17 0.80 0.80 0.66 0.66 9 9 4.1 4.1 140 140

STATPC 0.43 0.43 0.74 0.74 0.45 0.45 0.55 0.55 0.56 0.56 0.92 0.92 9 9 17.0 17.0 250 171
CHAMELEOCLUST+ 0.75 0.63 0.80 0.71 0.54 0.49 0.78 0.71 0.77 0.67 1 1 14 10 12.40 10.79 462 252

SUBCMEDIANS 0.82 0.72 0.86 0.79 0.57 0.53 0.86 0.80 0.83 0.77 1 1 19.0 16.0 13.5 12.56 101 91

DATASET: F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
VOWEL max min max min max min max min max min max min max min max min max min
CLIQUE 0.23 0.17 0.64 0.37 0.05 0.00 0.44 0.01 0.10 0.09 1.00 1.00 3062 267 4.9 1.9 523233 1953
DOC 0.49 0.49 0.44 0.44 0.14 0.14 0.85 0.85 0.58 0.58 0.86 0.86 64 64 10.0 10.0 120015 120015

MINECLUS 0.48 0.43 0.37 0.37 0.09 0.04 0.62 0.34 0.60 0.46 0.98 0.87 64 64 7.2 3.6 7734 5204
SCHISM 0.37 0.23 0.62 0.52 0.05 0.01 0.43 0.11 0.29 0.21 1.00 0.93 494 121 4.3 2.8 23031 391
SUBCLU 0.24 0.18 0.58 0.38 0.04 0.01 0.39 0.04 0.30 0.13 1.00 1.00 10881 709 3.6 2.0 26047 2250
FIRES 0.16 0.14 0.13 0.11 0.02 0.02 0.14 0.13 0.16 0.13 0.50 0.45 32 24 2.1 1.9 563 250
INSCY 0.82 0.33 0.61 0.15 0.09 0.07 0.75 0.26 0.94 0.21 0.90 0.81 163 74 9.5 4.3 75706 39390

PROCLUS 0.49 0.49 0.44 0.44 0.11 0.11 0.53 0.53 0.65 0.65 0.67 0.67 64 64 8.0 8.0 766 766
P3C 0.08 0.05 0.17 0.16 0.12 0.08 0.69 0.43 0.13 0.12 0.98 0.95 3 2 7.0 4.7 1610 625

STATPC 0.22 0.22 0.56 0.56 0.06 0.06 0.12 0.12 0.14 0.14 1.00 1.00 39 39 10.0 10.0 18485 16671
CHAMELEOCLUST+ 0.41 0.37 0.42 0.38 0.17 0.13 0.65 0.54 0.45 0.40 1 1 33 24 6.00 4.57 995 787

SUBCMEDIANS 0.53 0.48 0.53 0.47 0.16 0.14 0.75 0.70 0.56 0.52 1 1 50.0 45.0 6.82 6.3 364 339

Figure 5: Result tables for the 7 real world datasets.
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lowest SAE over 10 runs). The unweighted-SubCMedians outputted slightly more
clusters than expected, and has another more important drawback, that is the
lower quality obtained with respect to the dimensions found (RNIA and CE
graphics). As targeted by the design of the neighborhood exploration in Sec-
tion 6, the weighted strategy of SubCMedians could focus on more promising
clusters while unweighted-SubCMedians produced more (useless) candidate centers
(Figure 8) and failed to develop sufficiently the center dimensionalities when
the hidden cluster dimensionalities increased (Figure 9). Moreover, SubCMedi-
ans turned out to be slightly faster (see Figures 10 and 11), and unweighted-
SubCMedians suffered from a small overhead likely to be caused by its handling
of more candidate centers in the models.

1 10 100 1000 10000
Number of clusters

0. 0
0. 1
0. 2
0. 3
0. 4
0. 5
0. 6
0. 7
0. 8
0. 9
1. 0

A
cc
u
ra
cy

1 10 100 1000 10000
Number of clusters

0. 0
0. 1
0. 2
0. 3
0. 4
0. 5
0. 6
0. 7
0. 8
0. 9
1. 0

F
1

1 10 100 1000 10000
Number of clusters

0. 0
0. 1
0. 2
0. 3
0. 4
0. 5
0. 6
0. 7
0. 8
0. 9
1. 0

E
n
tr
op
y

1 10 100 1000 10000
Number of clusters

0. 0
0. 1
0. 2
0. 3
0. 4
0. 5
0. 6
0. 7
0. 8
0. 9
1. 0

C
E

1 10 100 1000 10000
Number of clusters

0. 0
0. 1
0. 2
0. 3
0. 4
0. 5
0. 6
0. 7
0. 8
0. 9
1. 0

R
N
IA

Figure 6: Quality measures and number of clusters obtained on synthetic datasets
by SubCMedians (red circles), unweighted-SubCMedians (blue triangles) and the
other algorithms (green areas).
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Figure 7: RNIA and Accuracy vs number of clusters obtained on synthetic
datasets by SubCMedians under weaker parameter setting (black stars).
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Figure 8: Number of candidate centers (avg. 10 runs) for SubCMedians (red cir-
cles) and unweighted-SubCMedians (blue triangles) vs dataset dimensionality.

10 EvoMove system

In the EvoMove system (Figure 1), SubCMedians is used as the move recognition
algorithm. In the first part of this section, we give more details about EvoMove,
and in particular we describe what are the input and output of SubCMedians in
this system. During the prototyping and tests of EvoMove, we had the occasion
to work with professional dancers to go deeper in our understanding of what is
happening in the system and to which extend it could be used and enhanced. Two
short videos of this exploration are given as supplementary material to this report
(EvoMove AnouSkan 1 https://www.youtube.com/watch?v=p_eJFiQfW1E and
EvoMove AnouSkan 2 https://www.youtube.com/watch?v=E85B1jJOiBQ). In
this section we also comment on some typical behaviors of the system, and give
some insight on how users perceived the system and their interaction with it.

https://www.youtube.com/watch?v=p_eJFiQfW1E
https://www.youtube.com/watch?v=E85B1jJOiBQ
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Figure 9: Subspace mean size of the centers (avg. 10 runs) for SubCMedians (red
circles) and unweighted-SubCMedians (blue triangles) vs subspace mean size of
the hidden clusters.
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Figure 10: Runtimes (avg. 10 runs) for SubCMedians (red circles) and
unweighted-SubCMedians (blue triangles) vs sample sizes (|S̃|) for the synthetic
dataset of size 5500.
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Figure 11: Runtimes (avg. 10 runs) for SubCMedians (red circles) and
unweighted-SubCMedians (blue triangles) vs synthetic dataset dimensionalities.
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10.1 Description of the system

At the beginning of each session, the set of available audio samples and the num-
ber of sensors, as well as a few options are chosen, and then a new instance of
SubCMedians is launched. Each sensor is an Inertial Measurement Unit (IMU)
composed of three orthogonal accelerometers, three orthogonal gyroscopes mea-
suring angular speed, and three orthogonal magnetometers. They are embedded
in small black boxes visible tight to the wrists of the dancers in the videos. Each
IMU is delivering information at 50 Hz, that is collected by a gateway compo-
nent. This information is aggregated every time step. This adjustable time step
is set to correspond to a beat of the played music. For instance, if the tempo is
set to 60 bpm, as in the videos, the time step will be one-second long. At the
end of each time step, the mean and variance of the 9 measures (3 accelerations,
3 angular speeds, 3 magnetic field measures) collected during this time step are
computed. Computing these means and variances of the 9 measures leads to 18
values to describe the move that occurs during the time step, and forms a data
point in a space having 18 dimensions. This data point is then sent as input to
the SubCMedians instance associated to the session. So, each time step corre-
sponds to a point in a data stream that is clusterized by SubCMedians, where
each cluster contains data points corresponding to a similar move. In the videos,
the instance of SubCMedians uses a value of 100 for parameter SDmax, a sliding
window containing 100 data points (size of data sample), and performs a local
exploration in the model space using 100 neighbors each time the sliding window
is updated.

After the acquisition of a new data point P , EvoMove determines the group
of moves the most similar to P by finding the cluster center that is the closest
to P , and sets a trigger to start to play (on the next beat) the audio sample
associated to this cluster identifier. The sliding window is then updated (P is
added to the window and the oldest point in the window is removed). And next,
SubCMedians performs a local exploration of the neighborhood of the current
clustering model, to try to build a better clustering using the updated window.
From the user perspective, if the tempo is set to 60 bpm (as for instance in
the two videos), this means that every second a description of the user move
is computed, an audio sample is started, and the system adapts its clustering
model.

Beyond the preprocessing (computing means and variances over one time
step), and the SubCMedians settings, the interaction can be influenced by several
other parameters. Here are the ones used in the sessions recorded on the videos:

– When does an audio sample start ? At the end of a time step the user move
made during this time step is associated to a cluster identifier that is mapped
to the audio sample to be played. This sample started to be played on the
next beat.

– What is the duration of an audio sample ? The used samples have a duration
ranging from one time step up to four time steps (most of them spreading
over four time steps). When samples are longer than one time step, then a



25

sample can be started while the previous one is not finished, and thus the
sound of both can be superimpose. This results in several samples (up to four)
being superimposed at some time steps. This gives a feeling of "trails", moves
initiating sounds that will fully stop later. Notice the following particular
case: If it is the same sample that is started while it was already being
played then it is not superimposed onto itself, and its ongoing playback is
stopped, while a new playback of it is started.

– How many instances of SubCMedians are used at the same time ? In the
videos, dancers are equipped with two sensors and two different instances of
SubCMedians are running, each one processing the data points coming from
one of the sensor and using its own set of audio samples.

This detailed setup is only one of the numerous possible ones with this system.
For instance, several users could wear sensors, several sensor measures could be
combined to describe moves (e.g., using the difference between two measures or
their product). And of course, different audio samples could be used, including
samples that could be modified during a session over time such as in preliminary
experiments we have presented in [1].

10.2 User perception and system behavior

Several questions motivated the EvoMove demonstrator. Besides questions about
the efficiency of the technology, we wondered what it would be like to interact
with this system. Does the user has the feeling of an interaction ? Does it seem to
her/him that the system behaves randomly or that she/he influences the system
in some directions ?

During the development of the project, we had the occasion to organize trial
sessions with different users. During these sessions we also ask them about their
feeling about the system and their interaction with it. These tests were per-
formed with people having different backgrounds and different approaches of
the system, ranging from people that were the developers of the project them-
selves, to professional dancers and also musicians. From the discussions we had
with these different users, it appeared that they had very distinct representa-
tions of what the system was doing. In particular they imagined very different
usages/applications of the system, ranging from its use as a dance improvisation
companion to its use as an electronic instrument that could be master to control
what sound will be played by the system and when.

It turned out that the users also thought/spoke about the system in very
different ways. Here are three examples of these mental representations and
feeeling about the interactions: (The descriptions given here have been collected
from different users after their first trial of the system)

– A musician: Felt like being involved in a teaching relationship with the sys-
tem, trying to repeat gestures so as for the machine to memorize it, trying to
insist on some distinctions between gestures, etc, as if she/he were teaching
a trick to an animal.
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– A dancer: Perceived the system as a good monitoring tool for her moves,
that was noticing small move differences by playing a different sound, as if
a specialist (a dance teacher) were checking the correctness of her moves.

– One of the developers of the system: As the system is based on a clustering
algorithm dealing with sets of points and subspaces, he thought about it in
a geometrical way. His perception, when using the system, is to be placing
points in a multidimensional space, so as to push and pull candidate cluster
centers around in this space.

These really different representations illustrate the wide scope of applications
of this EvoEvo technology. Moreover, some emergent behaviors of the systems
we did not predict seems really interesting. Let us illustrate two examples of this
behaviors on the video EvoMove AnouSkan 1.

Concept drift In nature, evolution does not happen in a static world, but in an
evolving one. Thus, organisms have to constantly adapt there existing functions
to new environments. For instance, predators have to adapt their weapons (teeth,
claws, etc) to their co-evolving preys. In the EvoMove system, functions are
clusters. A new cluster appears when a new move is introduced by the user. But
the user could also decide to modify a bit one of her/his moves. Thanks to its
adaptable nature the system is able to follow this modification. An example of
this behavior is really clear in the video EvoMove AnouSkan 1, from timestamp
1’28 to 1’54 where we can see the dancer slightly transforming her moves at each
repetition, while the sound remains the same. As each audio sample corresponds
to a cluster, we know that the same cluster is used all along these thirty seconds,
but has been drift in the clustering space by the system, following the gradual
changes of the move made by the dancer when repeating it.

Seasonality Some proteins are specific to a situation, or environment to which
living organisms could be confronted. The genes required for this protein may
be never used during a generation but useful for the next one. In the EvoMove
system, this can be the case for moves that are recognized at a time, and then
that do not occur during a period of time longer than the temporal interval cor-
responding to the sliding window (interval of 1’40 in the videos). However, such
moves can sometimes still be recognized in a further future, thanks to elements
remaining in the genome through several generations (encoding candidate cen-
ters corresponding to empty clusters during all this period). This can be observed
for instance in the video EvoMove AnouSkan 1 in which the three occurrences
of a walk around the room that happen at timestamps 2’00, 4’10 and 6’00 are
accompanied by the same sounds.

11 Conclusion

In this report, we presented EvoMove, a motion-based musical companion. Using
wireless sensors, this system is able to identify the different moves performed by
the user and to play audio samples according to the moves. An important feature
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is that the move categories are not predefined, but are built dynamically by
clustering the stream of data coming from the motion sensors. This clustering is
performed by a new algorithm, SubCMedians, which takes advantage of EvoEvo
features that showed their interest in the Chameleoclust+ algorithm (Deliverable
5.1). The major improvement of SubCMedians is to be based on more abstract
mutation operators and genome representation, increasing the efficiency and
allowing on-the-fly processing of the data stream acquired from the sensors.

SubCMedians is a median-based subspace clustering method, and was as-
sessed using the evaluation framework of [9]. SubCMedians was executed on real
and synthetic benchmark datasets and its results were compared to those of the
main subspace clustering paradigms. These results showed that SubCMedians
leads to good quality subspace clusters, while being much more faster than other
approaches. We also proposed some guidelines for easy default parameter set-
ting. These guidelines were effective when dealing with all the datasets of the
benchmark.

The EvoMove system has been tested by a dozen of users, having differ-
ent backgrounds, leading to very encouraging feedbacks. An interesting future
direction of work is to explore the artistic landscape opened by this musical
companion. While several examples of performances, as Variations V by Merce
Cunningham and John Cage, or Virus//Antivirus by Cie Lanabel, also use sets
of motion sensors, the novelty of EvoMove is to let more open the mapping be-
tween the motion space and the sound space. Indeed, the correspondence between
sounds and motions is not chosen in advance, it is built on-the-fly depending on
the moves made and repeated by the performers. So, the performers have to find
their own way through a musical landscape generated by them and for them.
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