
HAL Id: hal-01577177
https://hal.science/hal-01577177v1

Submitted on 25 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EvoEvo Deliverable 5.1
Guillaume Beslon, Jonas Abernot, Sergio Peignier, Christophe Rigotti

To cite this version:
Guillaume Beslon, Jonas Abernot, Sergio Peignier, Christophe Rigotti. EvoEvo Deliverable 5.1. [Re-
search Report] INRIA Grenoble - Rhône-Alpes. 2016. �hal-01577177�

https://hal.science/hal-01577177v1
https://hal.archives-ouvertes.fr

EvoEvo Project

Deliverable 5.1
FP7-ICT FET Proactive EVLIT program EvoEvo data stream cluster analysis
Project reference: 610427 Version 1.2

EvoEvo Deliverable 5.1

Impact obtained from EvoEvo mechanisms on data stream

cluster analysis

Due date: M36
Person in charge: Guillaume Beslon
Partner in charge: INRIA
Workpackage: WP5 (EvoEvo applications)
Deliverable description: Impact obtained from EvoEvo mechanisms on data stream cluster analysis: A

report on the development and results of the data stream cluster analysis
software. The report should identify the strengths and weaknesses of the
EvoEvo approach for this application.

Revisions:

Revision no. Revision description Date Person in charge

1.0 First version 19/09/16 J. Abernot - S.
Peignier (INRIA)

1.1 Corrections and complement 14/10/16 C. Rigotti (INRIA)

1.2 Corrections and validation 24/10/16 G. Beslon (INRIA)

Abstract

Subspace clustering is a data mining task that searches for objects
that share similar features and at the same time looks for the subspaces
where these similarities appear. For this reason Subspace clustering is rec-
ognized as more general and complicated than standard clustering, since
this last task requires only to detect groups of similar objects or clusters.
In this report we present ChameleoClust+, an evolutionary algorithm to
tackle the subspace clustering problem. ChameleoClust+ is a bio-inspired
algorithm implementing an evolvable genome structure, including several
bio-like features such as a variable genome length, both functional and
non-functional elements and mutation operators including chromosomal
rearrangements. The main purpose of the design of ChameleoClust+ is
to take advantage of the large degree of freedom provided by its evolvable
structure to detect various number of clusters in subspaces of various di-
mensions. This algorithm was assessed and compared to the state of the
art methods, with satisfying results, on a reference benchmark using both
real world and synthetic datasets. While other algorithms may need more
complex parameter setting, ChameleoClust+ needs to set only one sub-
space clustering ad-hoc parameter: the maximal number of clusters. This
single parameter is responsible for setting the maximal level of detail of
the subspace clustering, and is a quite intuitive parameter. The remain-
ing parameters of ChameleoClust+ are related to the evolution strategy
(population size, mutation rate, ...) and it is possible to use a single set-
ting for them, that turns out to be effective enough for all the benchmark
datasets. A sensitivity analysis has also been carried out to study the
impact of each parameter on the subspace clustering quality. This report
also presents Evowave, an application of ChameleoClust+ to analyze a
real dynamic stream.

1 Introduction

Clustering is a data mining task that aims to group objects sharing similar
characteristics into a same cluster over the whole data space. Usually similarity
between objects is determined using a distance function. Subspace clustering
purpose does not only imply identifying groups of similar objects, it also aims to
detect the subspaces where similarity occurs. Subspace clustering can be con-
ceived as ”similarity examined under different representations” [1]. It is for this
reason that subspace clustering is recognized as a more complicated and general
task than standard clustering. Moreover retrieving meaningful subspaces turns
out to be particularly useful while dealing with high dimensional data [2].

Several evolutionary clustering approaches have been proposed [3], how-
ever very few of them address the subspace clustering task. Two earlier ap-
proaches [4] and [5] require non-evolutionary steps to tackle this problem. In-
stead, the algorithm presented in the report addresses the subspace clustering
task relying on evolution of evolution principles. According to [6] knowledge
from evolutionary and molecular biology should be taken into account in the in-
terest of conceiving better bio-inspired optimization algorithms. Among impor-
tant phenomena in evolutionary biology, the dynamic evolution of the genome
structure appears as a promising source of advances for bio-inspired optimiza-
tion. Important phenomena such as the variable genome length or the variable
percentages of coding or functional elements within the genome are related to

2

the evolution of genome structures phenomenon [7]. Several studies have shown
for instance that an evolvable genome structure allows evolution to shape the
effects of evolution principles themselves (e.g. mutations), phenomenon known
as evolution of evolution (EvoEvo) [8]. Among the state-of-the-art formalisms
used for in silico experimental evolution reviewed in [8], two models enable
genome structure evolution: [7] and [9]. Both formalisms have inspired key
aspects of our work.

In this report, we present ChameleoClust+, an evolutionary algorithm that
takes advantage of a genome having an evolvable structure to tackle the sub-
space clustering problem. This algorithm is an extension of the work presented
in [10] (best paper award in the category Evolutionary Machine Learning at the
conference GECCO-2015).

ChameleoClust+ genome is a coarse-grained genome, inspired on [9], and
defined as a list of tuples of numbers. The genome is mapped at the phenotype
level by using the genome tuples to denote core point locations in different
dimensions, which are then used to build the subspace clusters. Furthermore
the genome also contains a variable proportion of non-functional elements as
in [7]. During replications the genome undergoes both local mutations and
large random rearrangements similar to those used in [7] and [9], namely: large
deletions and duplications. Local mutations modify the genome elements and
rearrangements modify the genome length and the proportion of non-functional
elements. The key intuition in the design of the ChameleoClust+ algorithm is
to take advantage of such an evolvable structure to detect various number of
clusters in subspaces of various dimensions. In addition, ChameleoClust+ takes
advantage of the genetic memory through evolution to evaluate the fitness over
a sliding dataset sample, leading to an important reduction of the execution
time, without effective degradation of the clustering quality. Moreover the use
of a sliding dataset sample extends the possibility of using the algorithm for the
analyze of data streams.

In order to assess ChameleoClust+ we used the reference subspace clustering
evaluation framework presented in [11]. ChameleoClust+ was compared to state-
of-the-art algorithms on both real and synthetic datasets. The experiments
show that ChameleoClust+ obtains competitive results with a single parameter
related to the domain, i.e., the maximal number of clusters. We also carried out
a sensitivity analysis, by varying the main parameters one-at-a-time to study
their impact on the cluster quality. Finally, the capacities of ChameleoClust+

to perform subspace clustering on data streams were assessed using a real world
data stream containing the description of different wifi contexts in an application
called Evowave.

The rest of the report is organized as follows. The next section introduces the
proposed algorithm, and Sections 3 and 4 describe respectively the evaluation
method and results. Section 5 presents the real world stream analysis. Strength
and Weakness of the method are discussed both in Sections 4 and 5. And we
conclude in Section 6.

2 ChameleoClust+

ChameleoClust+ includes several bio-like features such as a variable genome
length and organization, presence of both functional and non-functional tuples,

3

and variation operators including large chromosomal rearrangements. These
features, inspired by the in silico experimental evolution formalisms of [7] and
[9], give the algorithm a large degree of freedom by making the genome structure
evolvable. ChameleoClust+ takes advantage of this structural flexibility to build
subspace clustering with various number of clusters and in subspaces having
different numbers of dimensions.

2.1 Dataset and clusters

A dataset S = {s1, s2 . . . } is a set of objects. Each object has a unique identifier
and is described in RD by D features (the coordinates of the objects). The size
of S is the number of objects in S, and D is the number of dimensions (i.e., the
dimensionality) of S. Each dimension is represented by a number from 1 to D
and the set of all dimensions of the dataset is denoted D = {1, . . . , D}. The
algorithm takes as input a dataset S and a parameter cmax that is the maximal
number of desired clusters. The algorithm outputs a subspace clustering in the
form of a set of disjoints clusters, where each cluster is defined as a set of objects
and a set of dimensions.

2.2 Overall clustering principle

Each individual encodes in its genome a subspace clustering. More precisely
a genome defines a set of so called core points located in various subspaces
having possibly less than D dimensions. If the objects of the dataset tends to
form groups around these core points, then a high fitness is associated to the
corresponding individual. The reproduction (including selection and mutations)
is performed for a whole generation in a synchronized way. After a given number
of generations the process is stopped and the subspace clustering corresponding
to the individual having the highest fitness is retained.

2.3 Preprocessing

As in many typical clustering problems, the first step is to standardize the
dataset to ensure that all features could have similar impact on the distance
computation during the clustering. Thus each feature value x is replaced by
its z-score: z = x−µ

σ , where µ is the dataset mean and σ is dataset standard
deviation for the given feature. After standardization, data values in different
dimensions are independent of the original offset and scale, and all features have
the same unitary standard deviation and a zero mean (i.e., the entire dataset is
centered around O). Finally the maximal value among all absolute values of the
z-score of all features is computed and is noted xmax in the rest of the report.

2.4 Genome structure

A genome Γ is a list [γ1, . . . , γi, . . . , γn] of tuples of the form γi = 〈g, c, d, x〉,
where g ∈ {0, 1} indicates if γ is a functional tuple of the genome (g = 1) or not
(g = 0), and c, d, x are used to define the phenotype only if g = 1. The previous
elements have the following specific domains: c ∈ {1, . . . , cmax}, d ∈ {1, . . . , D}
and x ∈ V alCoord, with V alCoord = {j×xmax/1000 | j ∈ {−1000, . . . , 1000}},
i.e. all values from −xmax to xmax with step xmax/1000. The genome structure

4

previously defined is evolvable: The number of functional and non-functional
elements and their respective positions in the genome may change. In Section 4.1
we show the adaptation of the genome size and the ratio of functional elements
to each particular dataset and Section 4.4 depicts that non-functional tuples
also have a beneficial impact on the subspace clustering quality.

2.5 Phenotype

A phenotype Φ is simply a set of core points. Informally a core point is a specific
point, around which objects can be grouped to form a subspace cluster. The
number of core points cannot exceed the maximal number of desired clusters
cmax. Each core point is identified by a number c ∈ [1, cmax] and is denoted
pc. The intuition of the genotype-phenotype mapping is that each functional
element of the genome 〈1, c, d, x〉 is a contribution of value x to the location of
core point pc in dimension d. More precisely, let xd be the coordinate of pc for
dimension d, then xd is the sum of all the values x contained in a tuple of the
form 〈1, c, d, x〉 in the genome Γ. The subspace associated to pc (and for which
pc is defined) is the set of dimensions Dpc = {d | ∃x, 〈1, c, d, x〉 ∈ Γ}, i.e., the
dimensions that contribute to pc in Γ. Notice that the non-functional elements
of Γ do not contribute to the phenotype.

For a given dataset S, a phenotype Φ defines a subspace clustering of S, by
associating each object of S to the best matching core point in Φ. A non empty
set of objects associated to a core point pc forms a cluster in subspace Dpc . The
precise definition of the notion of best match is given in the section 2.7 hereafter.

Notice that the length of the genome can be different among individuals,
leading to phenotypes containing different numbers of core points in various
subspaces and thus defining subspace clustering models with different number
of clusters in subspaces having different number of dimensions. Notice also that
the genotype to phenotype mapping is not bijective, and the same phenotype
can be obtained from different genotypes containing different functional or non-
functional elements.

2.6 Mutation operators

Each new genome is copied from a parent and modified by biologically inspired
mutation operators of two kinds: Global rearrangements and point mutations.
These operators are general mutation operators, they are not guided by some
criteria related to the subspace-clustering task, and both functional and non-
functional elements can be impacted by mutations. For a genome Γ, an appli-
cation of the point mutation operator is defined as follows.

• Point substitution: Let γi ∈ Γ of the form γi = 〈g, c, d, x〉, denote an
element uniformly drawn in the genome and let k ∈ {1, 2, 3, 4} a value
chosen uniformly. The point substitution operator modifies the k-th el-
ement of the tuple γi and replace it with a new random number drawn
uniformly in its associated range:

γi ←

〈U({0, 1}), c, d, x〉 if k = 1

〈g,U({1, . . . , cmax}), d, x〉 if k = 2

〈g, c,U({1, . . . , D}), x〉 if k = 3

〈g, c, d,U(V alCoord)〉 if k = 4

5

where U denotes the uniform random selection of a element in a set.

For the rearrangements, Γ is considered as being circular (as bacterial genomes).
This means that the tuple γn is adjacent to the tuple γ1. In order to define the
possible rearrangements let us define two basic operators.

• Sublist extraction operator:

[γ1, . . . , γn]i,j =

[γi, . . . , γj] if i < j

[γi] if i = j

[] (the empty list) if i > j

• List concatenation operator:

[γ1, . . . , γn] +
[
γ′1, . . . , γ

′
m

]
=
[
γ1, . . . , γn, γ

′
1, . . . , γ

′
m

]
Rearrangements are responsible for increasing or decreasing the genome length.
The model uses two kinds of rearrangements: Large deletions and large du-
plications. For one application of a rearrangement operation on a genome
Γ = [γ1, . . . , γn], a portion of Γ bounded by two tuples γi, γj ∈ Γ is consid-
ered, where i and j are uniformly chosen in {1, . . . , n}. The two rearrangement
operators can then be defined as follows:

• Large deletions: The segment between tuples γi and γj is excised.

If i ≤ j:
Γ← Γ1,i−1 + Γj+1,n

If i > j, because of genome circularity, we have:

Γ← Γj+1,i−1

• Large duplications : The segment between tuples γi and γj is copied
and inserted at the location of a third tuple γp (uniformly chosen).

If i ≤ j:
Γ← Γ1,p + Γi,j + Γp+1,n

If i > j, because of genome circularity, we have:

Γ← Γ1,p + Γj,n + Γ1,i + Γp+1,n

During the reproduction of an individual, the whole mutation stage is defined
as follows. For each of the two kinds of rearrangement operations, the total
number of rearrangements is drawn from a binomial law B(L, um) where L is the
genome size and um is the mutation rate (same rate for all mutation operators).
Then the corresponding number of large deletions and large duplications are
performed in a random order. Once all rearrangements have been applied, the
number of point substitutions is drawn from a binomial law B(L′, um) where L′

is the genome size after applying the rearrangement operations. Then all these
point substitutions are carried out.

6

2.7 Fitness

The fitness of a individual of phenotype Φ is related to the quality of the sub-
space clustering defined by Φ over a given dataset. This quality measure is a
distance-based measure reflecting how the objects in the dataset tend to form
groups around the core points of Φ. In [12] and [13] it has been shown that dis-
tance comparisons are less meaningful when dimensionality increases, this effect
is called the concentration effect of the distances. Furthermore, distances do not
have the same meaning in subspaces with different numbers of dimensions: And
thus it is not fair to compare distances calculated in subspaces with different
dimensionality.

It has been shown in [13] that the Manhattan distance is robust to the con-
centration effect. In the ChameleoClust+ algorithm, the distance used is the
Manhattan segmental distance introduced in [14] for the well known subspace
clustering algorithm PROCLUS. It is a normalized version of the classic Man-
hattan distance to compare distances in subspaces with different number of
dimensions. Let y1 and y2 be two points in a space over the set of dimension
D, and y1,i (resp. y2,i) denotes the coordinate of y1 (resp. y2) in the dimension
i of D. Then, the Manhattan segmental distance is:

dD(y1, y2) =
∑
i∈D

|y1,i − y2,i|
|D|

This distance is used here to define a function E(x, pc) to assess the mismatch
of the assignment of an object x ∈ SF in space D to a core point pc in subspace
Dpc . The highest is E(x, pc), the worst is the association of x to pc. This function
is defined by:

E(x, pc) =
|Dpc | · dDpc (x, pc) + |D \ Dpc | · dD\Dpc (x,O)

| D |
Where O is the origin of the entire space.The mismatch evaluation E(x, pc)

increases with the distance between the core point pc and the object x (term
dD(x, pc)). E(x, pc) also increases if the subspace Dpc has not enough dimensions
to explain the shift of x with respect toO (term dD′\D(x,O)). The value E(x, pc)
is then simply the average of dDpc (x, pc) and dD\Dpc (x,O) weighted by their
respective subspace dimensionalities.

To evaluate the fitness of an individual with phenotype Φ, each object x in
the dataset S is assigned to the core point pc ∈ Φ for which E(x, pc) is minimal
(in the rare cases where several core points lead to the same minimal value,
then one of them is chosen nondeterministically). Let Spc be the set of objects
associated to pc, then if Spc is not empty, the core point pc defines the subspace
cluster 〈Spc ,Dpc〉, otherwise pc defines no cluster.

The fitness F is then defined as the opposite of the average of the mismatches
computed for the best possible assignments for the dataset objects:

F(Φ,S) = −
∑
pc∈Φ

∑
x∈Spc

E(x, pc)

|SF |
The fitness function F(Φ,S) goes to 0 when the evaluation of the mismatches

between objects and core points tends to 0 (perfect match), and is strongly neg-
ative when objects and core points are poorly related. Notice that a core point

7

pc with no associated object (Spc = ∅) is not penalized, and its corresponding
functional elements in the genome may then be preserved for further exploration
during evolution.

To guide the search, it is not necessary to evaluate the fitness over the
whole input dataset S, but it is sufficient to evaluate it over a sample St ⊆ S.
To avoid misleading consequences of poor sample selections (i.e., sample not
very representative of S) the sample St can be changed at each generation t.
As shown is Section 4, for reasonable sizes of St, this leads to an important
reduction of the execution time, without effective degradation of the clustering
quality. For this purpose, let us build a list L = [x1, x2 . . .] containing all the
dataset points in a random order. At each generation t the population is fed
with a set of elements of L of size ω defined as :

St =

t×ω+ω⋃
k=t×ω

{x in L at index (k mod |L|)}

St is simply the set of objects in L from index t × ω to index t × ω + ω,
restarting from the beginning of L when the last element is reached.

The following diagram illustrates the procedure used to build the sliding
sample with objects from the static dataset to compute the fitness population
at each generation.

x1, x2, . . .

S1

.
S2

. . . , x|L|, x1, . . .

St

. . . , x|L|, . . .

The incorporation of a sliding dataset sample also extends the possibility of
using the algorithm for the analyze of data streams. In this context we consider
the data stream as a list L = [x1, x2 . . .] of data stream objects arriving in
chronological order. When a new object xt arrives, the data sample used to
feed the population is updated using a first-in-first-out method and is defined
as:

St =

t⋃
k=t−ω

{x in L at index k}

St is simply the set of ω most recent objects from the stream. Thereupon
the same data sample St is used during τ generations before a new data stream
object is inserted into the sample. The procedure used to build the sliding
sample with data stream objects is illustrated in the diagram hereafter.

x1, x2, . . .

Sω
. , xt−ω, . . . , xt

St

.

2.8 Population

Each individual can be perceived as an asexual artificial organism containing
a single chromosome. The population evolves during T generations. At each
generation the population is completely renewed but its size N remains constant
over time. As in the evolution simulation model of [7] we rely on an exponential
ranking selection [15] in order to use the same distribution for the selection of
the individuals all over the evolution (i.e., the selection is not directly related

8

to fitness values but to ranks). In this selection scheme, the individuals of the
current generation are ranked according to their fitness, in increasing order of
performance (the worst has rank 1 and the best rank N). Then for each of
the N individuals of the offspring generation, the parent of this individual is
determined by a trial over a N classes multinomial law, where each class is
associated to an individual of the current generation. For this multinomial law,

an individual α has a success probability pα = (s − 1) s
(N−rα)

sN−1
where rα is the

rank of the individual α and s the selection pressure parameter.
In order to avoid the best fitness to decrease ChameleoClust+ uses an eli-

tist selection method. More precisely, it always adds in the next generation
an unchanged copy of the best current individual, and performs the random
reproduction using only N − 1 trials. In Section 4.4, we will show that elitism
has most of the time a beneficial impact on the subspace cluster quality. For
the first generation all genomes have the same size, denoted |Γinit|, and con-
tain only non-functional elements. The genomes of these initial individuals are
drawn independently, and filled with random tuples of the form:
〈0,U({1, . . . , cmax}),U({1, . . . , D}),U(V alCoord})〉.

3 Experimental setup

3.1 Experimental protocol

In order to evaluate and compare ChameleoClust+ to state-of-the-art algo-
rithms, we used the evaluation framework of reference designed for subspace
clustering and described in [11]. This evaluation framework relies on a system-
atic approach to compare the results of representative algorithms that address
the major subspace clustering paradigms. The comparison detailed in [11] was
made using different evaluation measures on both real and synthetic datasets.
We clustered with ChameleoClust+ the same datasets and computed the same
quality measures.

In the framework of [11], as each algorithm requires several parameters (from
2 to 9), they are executed with many different parameter settings to explore
the parameter space. Then, using an external labeling of the objects, only
the subspace clusterings that are among the best (with respect to the external
labeling) are retained. So, the results reported for these algorithms are in some
sense the best possible subspace clusterings that could be achieved if we were
able to find the most appropriated parameter values. Since generally no external
labeling is available when we search for clusters, parameter tuning is most of
the time a difficult task and these high quality subspace clusterings are likely
to be hard to obtain.

An important point to notice, is that for ChameleoClust+ we did not per-
form any parameter optimization using external information, but we simply
followed the parameter setting guideline presented in Section 3.3. Then, we
ran ChameleoClust+ and took the subspace clustering defined by the individ-
ual of the last generation having the best fitness. Since the algorithm is non-
deterministic, we ran it 10 times in the same conditions and report the minimal,
maximal and mean values of the measures over these 10 runs. So, we compare
clusterings effectively found by ChameleoClust+ to the best clusterings that
could potentially be found by the other algorithms. All experiments were run

9

on a quad-core Intel 2.67GHz CPU running Linux Ubuntu 14.04, using a single
core and less than 250 MB of RAM.

3.2 Datasets

We studied ChameleoClust+ performances on real world data using the six
benchmark datasets selected in [11] for their representativity: breast, diabetes,
liver, glass, shape, pendigits and vowel (most of them coming from the UCI
archive [16]). These datasets have different dimensionalities and contain differ-
ent numbers of objects. These objects are already structured in classes, and
the class membership is used by quality measures to assess the cluster purity.
However the number of classes does not necessarily reflect the number of sub-
space clusters, since even within a class the objects can form several clusters in
different subspaces.

We also ran ChameleoClust+ on the 16 synthetic benchmark datasets pro-
vided by [11]. These datasets are particularly useful to study the algorithm
performances, as the true clusters and their subspaces are known. Each dataset
contains 10 hidden subspace clusters laying in subspaces having 50%, 60% and
80% of the total dimensions of the dataset. Seven synthetic datasets were gener-
ated in [11] to study scalability with respect to the dataset dimensionality: D05,
D10, D15, D20, D25, D50 and D75 with 5, 10, 15, 20, 25, 50 and 75 dimen-
sions respectively. These datasets have about 1500 objects each and about 10%
of noise objects. In addition to the previous datasets, five synthetic datasets
were built to analyse scalability with respect to the dataset size: S1500, S2500,
S3500, S4500 and S5500 with 1500, 2500, 3500, 4500 and 5500 objects respec-
tively. For these datasets, the number of dimensions was set equal to 20 and the
percentage of noise objects close to 10%. Finally four datasets were generated
to study the capacity to cope with noise: N10, N30, N50 and N70 with 10%,
30%, 50% and 70% of noise objects in the dataset respectively. These datasets
were made by adding noise points to the dataset D20.

All datasets and additional description are made available by the authors
of [11] at http://dme.rwth-aachen.de/openSubspace/evaluation.

3.3 Parameter setting

Sliding sample size The dataset sample used to compute the fitness at each
generation should contain enough objects in order to be representative of the
entire dataset, but needs to be small enough in order to reduce the runtime.
Indeed, if the dataset sample is too small, there are chances that some clusters
of the dataset will not be represented by any point in the sample, or that they
will be represented by inaccurate points, in this case the data sample is non-
representative of the entire dataset and the subspace clusters produced are likely
to be inaccurate. We have decided to set the sliding sample size to 10% of the
dataset size in order to speed-up the algorithm while keeping enough points to
ensure that the sample is representative enough.

Selection pressure Let α be an individual of the current generation and β
be an individual of the next generation, according to Section 2.8, α has the

probability pα = (s − 1) s
(N−rα)

sN−1
to be the parent of β. For the best individual

10

(rα = N), the previous expression simplifies to pα = s−1
sN−1

. Thus, the selection
pressure was set to s = 0.5 so that with a large population (N � 1) the best
individual has a success probability close to pα ' 0.5. Therefore each individual
of the next generation has one chance out of two to descend from the best
individual and thus explore its neighborhood and the same chance to descend
from a different individual and explore potentially different solutions.

Initial genome size Initial genomes contain only non-functional tuple and
their initial size was chosen to be equal to |Γinit| = 200. This genome size
matches with the amount of tuples required to build a typical subspace clustering
model, e.g., 10 clusters in 20 dimensions or 20 clusters in 10 dimensions. As the
genome size and the genome structure is not constrained and is able to evolve
(as illustrated in Figure 3b), the initial genome size is not a determining choice
for the algorithm.

A sensitivity analysis performed in Section 4.3 shows that the result quality
is not substantially modified for a large range of the three previous parameters.

Mutation rate The mutation rate was set according to its impact on the
number of replications that actually produce genomes that are different from or
identical to the parental genome. Let ϕ be the probability that no mutation of
any types (substitution, deletion, duplication) occurs during one replication of
an individual. As defined in Section 2.6, the number of mutations of a given type
that take place during one replication follows a binomial distribution B(|Γ|, um).
Thus the probability that no mutation of one type occurs is equal to (1−um)|Γ|

and ϕ = (1− um)3|Γ|.
ϕ depends strongly on the mutation rate and the genome length as illustrated

in the figure 1. Indeed, when the mutation rate is too low genomes are extremely
invariable regardless of their respective lengths, i.e., ϕ ' 1. Consequently, when
the mutation rate is too low, genomes are likely to evolve too slowly. On the
contrary when the mutation rate is too large genomes are extremely variable
regardless of their respective lengths, i.e., ϕ ' 0 . Consequently, when the mu-
tation rate is too high, genomes are susceptible to evolve improperly because
of drastic changes. Besides the previous effect, for intermediate mutation rates
Figure 1 illustrates that the genome variability estimated by the mutation prob-
ability increases together with the genome length, longer genomes being more
variable than shorter ones.

In order to tune properly the mutation rate, we consider a range of plausi-
ble genome sizes that individuals could grow in order to tackle the subspace-
clustering problem. Let us take |Γmin| = 50 as a minimal reasonable genome
length (e.g., Γmin can encode 10 clusters in subspaces having 5 dimensions or
5 clusters in subspaces having 10 dimensions and is a quite small clustering
model). Let us take |Γmax| = 400 as a maximal reasonable genome length (e.g.,
Γmax can encode 20 clusters in subspaces having 20 dimensions in average).
Γmax is also the more variable genome we consider.

A sensitivity analysis performed in Section 4.3 show that the results quality
are not substantially modified close to the mutation rates range defined previ-
ously. However mutation rates chosen far outside the given range lead to poorer
results.

11

0 1 2 3 4
um(1 · 10−3)

0

0. 2

0. 4

0. 6

0. 8

1. 0

ϕ

|Γ|= 50

|Γ|= 100

|Γ|= 200|Γ|= 300|Γ|= 400

Figure 1: ϕ value computed as a function of the mutation rate um for different
genome sizes. The suitable chosen range of genomic variability and its related
mutation rate range are delimited by dashed lines. The retained mutation rate
is marked by a vertical plain line.

A suitable range of mutation rates should allow the less variable genomes
to evolve fast enough and should not lead the more variable genomes to jump
too far in the genomes space. We decided to work with mutation rates that
allow Γmin to have at most 95% of chances to avoid mutations and Γmax to
have at least 5% of chances to avoid mutations. From the expression of ϕ,

we have um = 1 − ϕ
1

3×|Γ| , and thus umax = 1 − 0.05
1

3×|Γmax| ≈ 0.00249 and

umin = 1 − 0.95
1

3×|Γmin| ≈ 0.00034. Let us set the mutation rate to um =
umin+umax

2 ≈ 0.00142

Datasets used for empirical setting of the other parameters In order
to adjust the remaining parameters we decided to analyze fitness convergence
curves on three typical datasets. ChameleoClust+ parameters were not ad-
justed using any external evaluation (e.g., comparison to a ”true” labeling of
reference), but only using the fitness measure (internal to the algorithm). We
have decided to use shape and pendigits, two real world datasets and D20 a syn-
thetic dataset. Both real world datasets have enough dimensions and identified
classes, shape is the smallest real world dataset of the framework (160 objects)
and pendigits is the largest world dataset of the framework (7494 objects). We
have decided to use the synthetic dataset D20 because it has enough dimensions
and dataset objects and because it is somehow representative of the synthetic
datasets. Indeed the four datasets (N10, N30, N50 and N70) used by [11] to
assess the capacities to deal with noise points were build from D20, the datasets
generated to evaluate the scalability with respect to the dataset size have all 20
dimensions and 10% of noise points as D20.

Population size Figure 2 illustrates that the larger the population is, the
higher the fitness values are. Indeed a larger population has a higher explo-
ration power, and is more likely to reach optimal solutions. However these
improvements reach a plateau and tend to be less significant. Figure 2 illus-
trates that an appropriate fitness convergence is reached with a population size
set to N = 300.

12

10 100 300 500 1000
N

−800

−700

−600

−500

−400

−300

F

Figure 2: Mean fitness values ± standard deviation for the best individual of
the last generation for each one of the 10 runs on shape (red), pendigits (blue)
and D20 (green) as a function of the population size.

Number of generations At 5000 generations the algorithm achieved a good
convergence for fitness as illustrated in Figure 3a, where this convergence seems
complete for shape and D20 datasets, and nearly complete for the pendigits
dataset. A careful setting of the number of generations is not required before
performing the subspace clustering, because the user can monitor the fitness
curve during the process in order to stop it when the fitness convergence reaches
a plateau. However, as detecting such plateaux is somewhat subjective, here we
decided to evaluate ChameleoClust+ with an early stopping at 5000 generations
for all the experiments. Notice that, as could be expected and as shown by the
sensitivity analysis carried out in Section 4.3, allowing the algorithm to evolve
during more generations does not have a negative impact on the clustering
quality and can still slightly improve it.

Figures 3b and 3c illustrate that the early generations are characterized by a
fast evolution of the genome structure, and particularly of the number of func-
tional tuples in the genome and the fraction of functional tuples in the genome.
At 5000 generations the algorithm has already been able to take advantage of
the genome structure evolution, and particularly of the evolution of the func-
tional tuples of the genome, which are directly related to the subspace clustering
model encoded by the individual. Readers may notice that the convergence of
the genome structure may be slower than the fitness convergence. However the
main point with regard to the subspace clustering problem is to obtain well po-
sitioned core points (i.e., to have an optimized phenotype), and consequently it
is not necessary to run the algorithm until a stable genome structure is reached,
but the algorithm can be stopped earlier, as soon as a stable fitness is obtained
(Figure 3a).

Maximal number of subspace clusters cmax is the maximal number of
subspace clusters that are built, and is the only parameter that required to
be tuned, since for all the other parameters the same setting was used for
all datasets. Moreover, this parameter does not require a fine tuning since
ChameleoClust+ adapts the number of subspace clusters between 1 and cmax.

13

0 1 2 3 4 5 6 7 8 9 10 11 12

Generations(·104)

−800

−700

−600

−500

−400

−300

F

(a) Evolution of the fitness values.

0 1 2 3 4 5 6 7 8 9 10 11 12

Generations(·104)

0

200

400

600

800

1000

1200

|Γ
f
|

(b) Evolution of the number functional tuples.

0 1 2 3 4 5 6 7 8 9 10 11 12

Generations(·104)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

|Γ
f
|/
|Γ
|

(c) Evolution of the percentage of functional tuples.

Figure 3: Evolution of the mean ± standard deviation of different measures for
the best individuals for 10 runs over the real world datasets shape (red) and
pendigits (blue) and the synthetic dataset D20 (green).

14

In order to set this parameter we first executed ChameleoClust+ with cmax = 10.
When the algorithm outputs exactly cmax clusters, this means that the algo-
rithm is likely to have been limited by a too low value set for cmax. In this case,
the clustering was repeated with increasing values of cmax, with an increment of
10, until ChameleoClust+ output less than cmax clusters. Only the last value of
cmax is retained, allowing then ChameleoClust+ to regulate the number of clus-
ters built. Using this procedure, for the real world datasets the cmax parameter
was set to 10 for breast and glass, to 20 for shape and pendigits, to 30 for liver
and diabetes and finally to 40 for vowel. For the synthetic datasets, the same
procedure, leads to set cmax to 30 for D05, the dataset having 5 dimensions,
and to 20 for the fifteen other datasets.

3.4 Evaluation measures

In order to compare our algorithm to the others, we used the same standard
evaluation measures for clusters and subspace clusters as [11]: entropy, accu-
racy, F1, RNIA and CE (extension of Clustering Error to subspace clustering).
We performed also the same simple transformation of entropy and RNIA, by
computing RNIA = 1−RNIA and entropy = 1− entropy to have all evalua-
tion measures ranging from 0 (low quality) to 1 (high quality). The three first
measures (entropy, accuracy and F1) reflect how well objects that should have
been grouped together were effectively grouped. The two last measures, RNIA
and CE introduced in [1], take into account the way the objects are grouped
and also relevancy of the subspaces found by the algorithm. For these mea-
sures, when the true dimensions of the subspace clusters are not known (for real
datasets), then as in [11] all dimensions have been considered as relevant, but
then the interpretation of these measures should remain cautions since the true
sets of dimensions are likely to be smaller. Of course this does not apply to the
synthetic datasets, since for them the reference clusters and their dimensions are
known. We refer the reader to [11] for a detailed presentation of the evaluation
measures.

4 Experimental results

4.1 Real dataset

We computed the minimum, the maximum and the mean of the evaluation
measures over 10 standard runs of ChameleoClust+ using the same parameter
setting for all datasets as justified and given in Section 3.3, except of course
for the parameter specifying the maximum number of clusters (cmax) that was
tuned according to the simple procedure also given in Section 3.3. As explained
in Section 3.1, these results are compared to the ones provided by [11], that
represent the best possible outputs that could be produced by the main subspace
clustering approaches over their respective parameter space. More precisely, for
these other algorithms, on each real dataset only two outputs were retained: 1)
the one computed for the parameter setting that maximizes the F1 measure,
and 2) the one obtained when maximizing the accuracy. These two outputs
led in the result tables to two values for each measure, the smallest of the
two being called best min and the other best max. For all datasets we also

15

Table 1: Results for the shape real dataset: 17 dimensions, 9 classes, 160 objects

F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime

max min max min max min max min max min max min max min max min max min
CLIQUE 0.31 0.31 0.76 0.76 0.01 0.01 0.07 0.07 0.66 0.66 1.00 1.00 486 486 3.3 3.3 235 235

DOC 0.90 0.83 0.79 0.54 0.56 0.38 0.90 0.82 0.93 0.86 1.00 1.00 53 29 13.8 12.8 2E+06 86500
MINECLUS 0.94 0.86 0.79 0.60 0.58 0.46 1.00 1.00 0.93 0.82 1.00 1.00 64 32 17.0 17.0 46703 3266

SCHISM 0.51 0.30 0.74 0.49 0.10 0.00 0.26 0.01 0.85 0.55 1.00 0.92 8835 90 6.0 3.9 712964 9031
SUBCLU 0.36 0.29 0.70 0.64 0.00 0.00 0.05 0.04 0.89 0.88 1.00 1.00 3468 3337 4.5 4.1 4063 1891

FIRES 0.36 0.36 0.51 0.44 0.20 0.13 0.25 0.20 0.88 0.82 0.45 0.39 10 5 7.6 5.3 63 47
INSCY 0.84 0.59 0.76 0.48 0.18 0.16 0.37 0.24 0.94 0.87 0.88 0.82 185 48 9.8 9.5 22578 11531

PROCLUS 0.84 0.81 0.72 0.71 0.25 0.18 0.61 0.37 0.93 0.91 0.89 0.79 34 34 13.0 7.0 593 469
P3C 0.51 0.51 0.61 0.61 0.14 0.14 0.17 0.17 0.80 0.80 0.66 0.66 9 9 4.1 4.1 140 140

STATPC 0.43 0.43 0.74 0.74 0.45 0.45 0.55 0.55 0.56 0.56 0.92 0.92 9 9 17.0 17.0 250 171
CHAMELEOCLUST+ 0.75 0.63 0.80 0.71 0.54 0.49 0.78 0.71 0.77 0.67 1 1 14 10 12.40 10.79 462 252

mean 0.68 0.75 0.52 0.76 0.72 1 12.0 11.72 339

give the number of subspace clusters found, the average dimensionality of these
clusters, and their coverage. The coverage is here the percentage of objects of
the dataset that were associated to clusters, and could be less than 100%. This
is the case for algorithms that identified some objects as outliers or as reflecting
noise, and also for algorithms that were not able to identify a cluster for these
objects. Finally even though ChameleoClust+ has been executed on a computer
(2.67GHz CPU) different from the one used by [11] (2.3GHz CPU), we report
the runtimes, since at least their orders of magnitude can still be compared.

In order to illustrate the performances of ChameleoClust+ we focus on
dataset shape in Table 1. For the sake of completeness the results obtained
on the other datasets are given in the Appendix. In Table 1, when an algorithm
has a best possible run with a higher evaluation than ChameleoClust+ the result
is highlighted in grey, and if the evaluation is similar to ChameleoClust+ then
the result is simply emphasized in bold.

For Accuracy and CE ChameleoClust+ (together with DOC and MINECLUS)
has among the best results, while its parameters were not optimized using the
class labels to maximize the Accuracy.

For F1 and RNIA the best possible runs of DOC and MINECLUS are
observed with better results than standard runs of ChameleoClust+, but they
tend to split the dataset in more clusters (same behavior also on the synthetic
datasets) and have runtimes considerably higher than ChameleoClust+. The
best possible runs of PROCLUS achieve better results than ChameleoClust+

for F1, but their coverage falls to about 80% to 90% leaving an important part
of the dataset outside of the clusters.

Looking at entropy many algorithms have best possible runs leading to a
better entropy than ChameleoClust+. However, in clustering tasks, the entropy
cannot be interpreted regardless of the number of clusters, because usually the
entropy quality measure tends to improve when the number of clusters increases.
Indeed, by definition of the entropy measure, the best entropy is obtained for
the extreme case where we have one cluster per object. ChameleoClust+ and
three other algorithms (FIRES, P3C, STATPC) are able to avoid the spreading
of the data over too many clusters, but at the cost of a degradation of the
entropy measure. Notice that among them, ChameleoClust+ is the only one to
obtain such a reasonable number of clusters with a 100% coverage.

Regulation of the subspace clustering The mutational operators defined
on Section 2.4 and 2.6 allow the ChameleoClust+ genome structure to evolve,
reaching potentially different genome sizes and different percentages of func-
tional tuples according to each dataset. This allows ChameleoClust+ to adapt,

16

Table 2: Average number of clusters and average dimensionality per cluster
found for each dataset

Dataset NumClusters AvgDim |Γ| |Γf |
breast 5.1 12.15 733.2 276.8

diabetes 25.1 3.85 453.9 181.2
glass 6.9 6.18 504.3 184.7
liver 24.3 2.06 172.6 98.8

pendigits 11.6 10.01 1093.9 379.6
shape 12.0 11.72 926.1 409.7
vowel 28.0 5.41 749.6 331.3

for each dataset, the amount of information encoded within its genome. In
addition, the genotype-phenotype mapping, detailed in Section 2.5, permits
ChameleoClust+ to encode different number of clusters described in subspaces
with different dimensionalities. Let us analyze more precisely to which extent
ChameleoClust+ takes advantage of these degrees of freedom.

Before describing the results obtained by ChameleoClust+, it should be no-
ticed that most of the time the number of classes within a dataset does not
correspond to the number of clusters found by the algorithms. Indeed, there
is no integrity requirement enforcing the objects of a class to be grouped as a
single cluster in space, and consequently it is not surprising to obtain more clus-
ters than classes. Moreover, in some cases, a few algorithms found a very large
number of clusters (sometimes even more clusters than objects), this behavior
being due to their ability to output overlapping clusters.

Table 2 summarize the average number of clusters, their average dimension-
alities, the average genome length and the average number of functional tuples
in the genome for each one of the seven real world datasets. The subspace clus-
tering models produced by ChameleoClust+ are very different for each dataset:
the average number of clusters produced varies between 5.1 for breast dataset
to 28.0 for vowel dataset and the average dimensionality of the subspaces found
varies between 2.06 for liver to 12.15 for breast.

Similarly the average genome length varies from 172.6 for liver to 1093.9 for
pendigits and the average number of functional tuples goes from 98.8 for liver
up to 409.7 for shape. For all datasets, the number of clusters and the average
dimensionalities of the subspaces found by ChameleoClust+ are coherent with
the number of clusters found by the other algorithms.

Broader comparison For almost every dataset, the performances of ChameleoClust+

are competitive with respect to the best possible runs of the other algorithms.
In order to compare ChameleoClust+ and the state-of-the-art algorithms in a
broader way we decided to focus on the real world datasets and to analyze the
following evaluation measures: the coverage, the number of clusters found and
different quality measures (F1, Accuracy, CE, RNIA and Entropy). For each
real world dataset and each one of the measures presented above:

• We sorted the highest measures (column best max) obtained by the differ-
ent algorithms and then we ranked the methods according to their mea-
sures.

• The same was performed with the lowest measures (column best min) for
the different algorithms.

17

The different quality measures and the coverages were sorted in increasing order,
whereas the runtimes and the number of clusters obtained were sorted in de-
creasing order. While the choice of an increasing sorting order for the evaluation
measure and the choice of a decreasing order for the runtime is straightforward,
the sorting order for the coverage and the number of clusters needs further ex-
planations. We decided to sort the coverages in increasing order so the methods
that build less representative models excluding too many points will have lower
ranks. We also decided to sort the number of clusters in decreasing order, indeed,
the fewer the clusters in the clustering model, the easier their interpretation, so
methods building a few of easily interpretable clusters will be characterized by
a higher rank. After having ranked the algorithms according to their highest
and lowest measures:

• We compute the mean algorithm ranks related to their highest measure
by averaging the respective ranks along the different datasets.

• We compute the mean algorithm ranks related to their lowest measure by
averaging the respective ranks along the different datasets.

• We compute the mean algorithm rank by averaging the algorithm mean
ranks related to their lowest and highest measures.

The average ranks of the different algorithms for the highest and the lowest
results obtained for each one of the evaluation measures are illustrated in Fig-
ure 4 (colored dots). This figure also shows the average rank of each method
(red stars). ChameleoClust+ has the second best average ranking and is among
the best ranked algorithms together with MINECLUS, DOC and PROCLUS.
In addition ChameleoClust+ ranks are not widely dispersed, which means that
ChameleoClust+ has also a good compromise between the different evaluation
measures and is competitive with respect to the best results of the state-of-the-
art algorithms.

In order to compare ChameleoClust+, MINECLUS, DOC and PROCLUS,
the best ranked algorithms, we decided to analyze more precisely the number
of clusters they produce, their coverage and their runtimes. The table 3 sum-
marize the number of datasets where the highest and lowest number of clusters
found for each algorithm is interpretable (100 clusters or less), the number of
datasets where the highest and lowest coverage of each algorithm is reasonable
and the amount of excluded data points is not too high (coverage of at least
95%) and the number of datasets where the shortest and longest execution of
each algorithm last for a reasonable time (one hour or less). We will focus on
ChameleoClust+, MINECLUS, DOC and PROCLUS results but the other algo-
rithm results are also presented for the sake of completeness. ChameleoClust+,
MINECLUS, DOC and PROCLUS produced for each dataset an interpretable
number of clusters, PROCLUS and DOC usually produced lower coverage in
order to increase the results quality, finally MINECLUS and DOC had higher
run times and last for more than one hour while processing different datasets.
ChameleoClust+ produces good quality results together with low runtime and
high coverage.

18

1 2 3 4 5 6 7 8 9 10 11
Rankings

MINECLUS
CHAMELEOCLUST

DOC
PROCLUS

P3C
INSCY

STATPC
SCHISM
CLIQUE

FIRES
SUBCLU

Figure 4: Mean over the different datasets of the ranking of each algorithm for
the maximum and the minimum value obtained for each evaluation measure:
Accuracy, Entropy, F1, CE, RNIA, Number of cluster, Coverage, Runtime (col-
ored dots) and average ranking for each method (red stars).

Table 3: Number of datasets where the conditions on runtime (less than one
hour), coverage (more than 0.95%) and number of clusters (less than 100) were
fulfilled

Evaluation MINECLUS CHAMELEOCLUST DOC PROCLUS P3C INSCY STATPC SCHISM CLIQUE FIRES SUBCLU
max(NumClusters) ≤ 100 7 7 7 7 7 1 3 1 0 7 0
min(NumClusters) ≤ 100 7 7 7 7 7 4 7 4 2 7 2
max(Coverage) ≥ 95% 7 7 4 0 3 1 3 7 7 0 6
min(Coverage) ≥ 95% 4 7 1 0 0 0 1 2 7 0 5
max(Runtime) ≤ 1h 2 6 0 6 5 1 3 2 2 5 1
min(Runtime) ≤ 1h 4 6 2 6 5 2 3 4 7 6 4

4.2 Synthetic data

ChameleoClust+ was executed 10 times on each of the 16 synthetic datasets.
For each dataset we kept the run reaching the highest fitness (for the best
individual) among the 10 runs (notice that this selection is made without using
any external labeling, but only the fitness values). Then for each evaluation
measure, we plotted the measure value obtained with respect to the number of
clusters found by each of the 16 selected runs. The results are shown in Figure 5.
For each evaluation measure we also plotted in blue the shape of the area where
the other algorithm results lay (as reported in [11]). Again for these other
algorithms, their results correspond to there best runs over the parameter space.
More precisely, for each quality measure, the results were collected as follows.
For an algorithm and a given dataset the parameter space of the algorithm
were explored, and using the external labeling, only the execution leading to
the highest value of the measure has been retained. In the plots of the figure 5,
good performances correspond to regions where the outputs contain about 10
clusters (the real number of clusters) and reach a high value for the quality
measures. For almost every synthetic dataset the number of clusters found
by ChameleoClust+ is very close to the real number. ChameleoClust+ always
found between 6 and 25 clusters. As reported in [11] the other algorithms found
between 5 and 50 clusters, excepted a few cases where much more clusters were
found (up to more than several thousands). Most of the evaluation measures for
ChameleoClust+ are comparable to the ones reported in [11]. Keeping in mind
that for the other algorithms only the best values of the evaluation measures over
the parameter spaces were retained while the algorithm presented in this report

19

1 10 100 1000 10000
Number of clusters

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
cc
u
ra
cy

1 10 100 1000 10000
Number of clusters

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F
1

1 10 100 1000 10000
Number of clusters

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
N
IA

1 10 100 1000 10000
Number of clusters

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
n
tr
op
y

1 10 100 1000 10000
Number of clusters

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
E

Figure 5: Accuracy, F1, RNIA,
Entropy and CE as a function of
the number of clusters for the sub-
space clustering having the best fit-
ness among 10 runs for the synthetic
datasets (red dots) and region where
the state-of-the-art algorithm results
lay.

uses only a same standard parameter setting for the evolutionary parameters,
we could claim that ChameleoClust+ realistic results are at east as good, or
even better than the best results of the state-of-the-art algorithms.

In addition, we give Figure 6a and Figure 6b the runtime of ChameleoClust+

with respect to the number of dimensions and the number of objects of the
synthetic datasets. The corresponding curves show that the algorithm scales
rather linearly in both cases.

4.3 Sensitivity analysis

In order to study the impact of the different parameters on the quality of the
subspace clustering models obtained, a sensitivity analysis of the parameters
has been carried out by varying the main parameters values one-at-a-time. For
each parameter setting the execution was repeated 10 times and the average and
standard deviation of the two main measures used for subspace clustering are
given. As in Section 3.3, we consider the three representative datasets shape,
pendigits and D20 to carry out the sensitivity analysis. The parameters were

20

0 10 20 30 40 50 60 70 80

D

0

500

1000

1500

2000

2500

3000

3500
T
im
e(
se
co
n
d
s)

(a) Runtime vs. dimensionality of the
dataset.

1500 2500 3500 4500 5500

|S|
1000

1500

2000

2500

3000

3500

4000

4500

5000

T
im
e(
se
co
n
d
s)

(b) Runtime vs. number of objects in the
dataset.

Figure 6: Average± standard deviation of the mean runtime of ChameleoClust+

on each synthetic dataset.

set to the default values specified in Section 3.3,the sliding sample size SF was
set to 10% of the dataset size, the selection pressure to s = 0.5, the initial
genome size to |Γinit| = 200 elements, the mutation rate to um = 0.00142,
the population size to N = 300 individuals, we let ChameleoClust+ running
during 5000 generations and finally the maximal number of subspace clusters
was set to cmax = 20 for the three datasets. The corresponding fitness curves
for different population sizes and for number of generations have been provided
in Figure 2 and 3a respectively. The fitness curves obtained modifying the
remaining parameters are given for the sake of completeness in the Appendix
as Figures 19a, 19b, 19c and 19d.

Sliding sample size The results obtained on the three datasets for sample
sizes of 5%, 10%, 30%, 50%, 70%, 90% and 100% of the dataset size, are given
in Figure 7a and Figure 7b. These curves show that the impact of the dataset
sample size on the subspace cluster quality is low when the sliding sample used
to compute the fitness is about 10% of the dataset size or more. As could be
expected, using a small ratio on a small dataset leads to the most important
degradations. This is the case for the smallest one, shape, that contains only
160 objects, and for which a 5% sample contains only 8 objects.

Selection pressure Figure 8a and Figure 8b present the results obtained
when varying the selection pressure (values 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 0.999).
This change has a weak impact on the subspace cluster quality for s in [0.1, . . . , 0.9].
This is not the case when the selection pressure is low (s > 0.9), according to
Section 2.8 almost the same reproduction probabilities are assigned to each
individual, and thus promising individuals have almost the same number of
children as unadapted ones. Consequently, the algorithm allocates almost the
same exploration resources to all individuals, and a degradation of the cluster-
ing quality is observed in the figures 8a and 8b. When the selection pressure
is high (s < 0.1), almost the complete future generation comes from the best
individual of the present generation (individual having a very high reproduction
probability). In this case, the genetic variability within the new generation is
reduced, and again Figure 8 shows a decrease of the cluster quality measures.

21

0 10 30 50 70 90 100

|St|/|S|(%)

0. 0
0. 1
0. 2
0. 3
0. 4
0. 5
0. 6
0. 7
0. 8
0. 9
1. 0

C
E

(a) CE vs. dataset sample size.

0 10 30 50 70 90 100

|St|/|S|(%)

0. 0
0. 1
0. 2
0. 3
0. 4
0. 5
0. 6
0. 7
0. 8
0. 9
1. 0

R
N
IA

(b) RNIA vs. dataset sample size.

Figure 7: Mean ± standard deviation of quality measures for the best individual
of the last generation for each one of the 10 runs on shape (red), pendigits (blue)
and D20 (green) as a function of the dataset sample size relative to the dataset

size |St||S| (percentage of the dataset size).

0 0.1 0.3 0.5 0.7 0.9 1

s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
E

(a) CE vs. selection pressure.

0 0.1 0.3 0.5 0.7 0.9 1

s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
N
IA

(b) RNIA vs. selection pressure

Figure 8: Mean ± standard deviation of quality measures for the best individual
of the last generation for each one of the 10 runs on shape (red), pendigits (blue)
and D20 (green) as a function of the selection pressure parameter s.

22

10 100 200 300 400 500

|Γinit|
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
E

(a) CE vs. initial genome size.

10 100 200 300 400 500

|Γinit|
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
N
IA

(b) RNIA vs. initial genome size.

Figure 9: Mean ± standard deviation of quality measures for the best individual
of the last generation for each one of the 10 runs on shape (red), pendigits (blue)
and D20 (green) as a function of the initial genome size.

Initial genome length Set of values used: 10, 50, 100, 200, 300, 400, 500.
As illustrated in Figure 9a and Figure 9b, the impact of the initial genome size
is minor when the initial size is at least equal to 50. Indeed, ChameleoClust+

genome size is evolvable and can be modified by large deletions and large du-
plications, consequently the initial size does not have a considerable impact on
the algorithm quality. However we must note that small genomes have a higher
probability to undergo replication without mutations and tend to evolve very
slowly as it has been discussed in the paragraph dedicated to the mutation
rate of the section 3.3. Consequently it is harder for genomes to reach suitable
genome lengths and as evolution tends to be slower for smaller genomes, results
tend to be poorer.

Population size Set of values used: 10, 50, 100, 300, 500, 1000. As illustrated
in Figure 10a and Figure 10b the larger the population the better the results.
Indeed smaller populations may only explore a small portion of the solution
space and tend also to have a smaller genetic variability leading to poorer results.
However increasing the population size tends also to increase the algorithm
runtimes. In order to achieve some sort of trade-off between improving the
exploration power through increasing the population size and keeping reasonable
runtimes, we must notice that improvements induced by larger populations turn
to be minor when the population is already large enough to have a proper degree
of exploration of the solution domain.

Mutation rate Set of values used: 0.0001, 0.00034, 0.00142, 0.00249, 0.01.
We decided to test the mutation rates delimitating the suitable mutation rate
range defined in Section 3.3 (um = 0.00034 and um = 0.00249), the default
mutation rate (um = 0.00142) and two values outside the suitable mutation
rate range (um = 0.01 and um = 0.0001). If the mutation rate is chosen inside
the boundary defined in Section 3.3, it does not have a major impact on the
subspace clusters quality whenever, as showed in Figure 11a. However, if we
choose a mutation rate far outside the boundary, the subspace clusters quality
decreases. On one hand when the mutation rate is too low, the evolution process
will become very slow, as most of the individuals do not mutate at all, on the

23

10 100 300 500 1000

N

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
E

(a) CE vs. population size.

10 100 300 500 1000

N

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
N
IA

(b) RNIA vs. population size.

Figure 10: Mean ± standard deviation of quality measures for the best individ-
ual of the last generation for each one of the 10 runs on shape (red), pendigits
(blue) and D20 (green) as a function of the population size N .

10002491423410

um (·10−5)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
E

(a) CE vs. mutation rate.

10002491423410

um (·10−5)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
N
IA

(b) RNIA vs. mutation rate.

Figure 11: Mean ± standard deviation of quality measures for the best individ-
ual of the last generation for each one of the 10 runs on shape (red), pendigits
(blue) and D20 (green) as a function of the mutation rate um.

other hand, when the mutation rate is too high, the mutations are too brutal
and it becomes harder for the organisms to converge towards a suitable subspace
clustering.

Number of generations We have run ChameleoClust+ 10 times for each
chosen dataset over 120000 generations. The different evaluation measures were
computed each 100 generations. As illustrated in Figures 12a and 12b, the more
generations we let the algorithm evolve the better are the results. However the
improvements tend to be less significant and results reach finally a plateau.
Consequently we can conclude that it is not necessary to wait for the genome
structure to converge to get good quality subspace clusters. Indeed the fitness
seems to be a good enough witness to notice when accurate subspace clusters
are reached. As discussed in the paragraph related to the number of generations
of the section 3.3, the earlier generations are characterized by a fast evolution of
the genome structure and of the subspace clusters quality. Well positioned core
points are rapidly found, and it is not necessary to wait for too many generations

24

0 1 2 3 4 5 6 7 8 9 10 11 12

Generations(·104)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
E

(a) Evolution of CE quality measure.

0 1 2 3 4 5 6 7 8 9 10 11 12

Generations(·104)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
N
IA

(b) Evolution of RNIA quality measure.

Figure 12: Evolution of the mean ± standard deviation of quality measures for
the best individual for 10 runs of ChameleoClust+ for shape (red), pendigits
(blue) and D20 (green).

to get good results. However slightly better results can be achieved by allowing
the algorithm to evolve during more generations.

4.4 Alternative models

Aside from its evolvable genome size driven by large duplications and deletions,
ChameleoClust+ is determined by two further strategic choices, its elitist re-
production method and mainly the presence of non-functional elements. In this
section both strategic choices impacts are studied using the three datasets pre-
viously chosen, i.e., pendigits, shape and D20. We have decided to carry out the
comparison between the different choices under the best possible conditions re-
garding the free parameter cmax, i.e., setting it equal to real number of groups
for the synthetic dataset (cmax = 10 for D20), and to the number of classes
(cmax = 9 for shape and cmax = 10 for pendigits) and also to twice the number
of classes for the real world datasets (cmax = 18 for shape and cmax = 20 for
pendigits), as the real number of groups is not necessarily equal to the number
of classes. In both cases we will focus on the RNIA and CE quality measures in
order to analyze the impacts of the choices (fitness curves are provided in the
Appendix as Figure 20b).

Elitism In order to study the impact of an elitist reproduction method, we
executed ChameleoClust+ 10 times for each dataset and each value of cmax.
One serie of runs was carried out using the usual parameters setting while the
other serie of runs was obtained switching off elitism. Figures 13a and 13b
illustrate respectively the impact of elitism on CE and RNIA in the conditions
detailed above. In most of the cases, the different quality measures increased
slightly when elitism was incorporated to the algorithm. Elitism ensures that
the best subspace clustering found in the present generation will not be lost
during reproduction. Even though its effect is not shown to be very important
on the figures, it seems to have a slightly positive interest here.

Non-functional elements In order to study the impact of non-functional
elements, we ran ChameleoClust+ 10 times for each dataset and each value

25

shape
 cmax=9

shape
 cmax=18

pendigits
 cmax=10

pendigits
 cmax=20

D20
 cmax=20

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.8
0.9
1.0

C
E

(a) Impact of elitism on CE.

shape
 cmax=9

shape
 cmax=18

pendigits
 cmax=10

pendigits
 cmax=20

D20
 cmax=20

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.8
0.9
1.0

R
N
IA

(b) Impact of elitism on RNIA.

Figure 13: Mean ± standard deviation of quality measures for 10 runs on shape,
pendigits and D20, with (red) and without (blue) elitism. For each real world
dataset two cmax values where tested: the number of classes in the dataset and
twice this number and the real number of cluster was used as cmax value for the
synthetic dataset.

of cmax. One serie of runs has been achieved using the standard parameter
setting previously defined while the second serie has been achieved avoiding
the existence of non-functional elements (i.e. ∀γi = 〈gi, ci, di, xi〉 ∈ Γ, gi = 1).
Figures 14a and 14b illustrate respectively the impact of non-functional elements
on CE and RNIA (the associated fitness curves are provided in the Appendix
as Figure 20a). In most of the cases, the different quality measures increased
considerably when non-functional elements were incorporated to the algorithm.

5 Real world stream analysis

The experiments on static datasets were completed with experiments on a dy-
namic data stream, within task 5.1 of the EvoEvo project (Document DOW
p.33), leading to the Evowave demonstrator introduced in section 6.3.1 of the
mid-term dissemination report (Deliverable 6.5). Even though the problem ad-
dressed is still a subspace-clustering problem, new difficulties are added by the
context of a dynamic stream:

1. Number of classes may change over time.

2. The location of the classes is also susceptible to change over time.

3. Descriptors of the incoming objects are also susceptible to change (i.e.,
features can appear or disappear).

The goal of these experiments is to assess the efficiency of the EvoEvo approach
to tackle these new difficulties.

The real-world data stream used for these experiments is the wifi environ-
ment in which a micro-computer is immersed, i.e., the strength of the signal
from every wifi antenna in the neighborhood. This environment depends espe-
cially on available routers and other computers, so it is linked to the context of
use of the computer : work, teaching, house, etc.

26

shape
 cmax=9

shape
 cmax=18

pendigits
 cmax=10

pendigits
 cmax=20

D20
 cmax=10

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.8
0.9
1.0

C
E

(a) Impact of non-functional tuples
on CE.

shape
 cmax=9

shape
 cmax=18

pendigits
 cmax=10

pendigits
 cmax=20

D20
 cmax=10

0.0

0.2

0.4

0.6

0.8

1.0

R
N
IA

(b) Impact of non-functional tuples
on RNIA.

Figure 14: Mean ± standard deviation of quality measures for 10 runs on shape,
pendigits and D20, with (red) and without (blue) non-functional tuples. For
each real world dataset two cmax values where tested: the number of classes in
the dataset and twice this number and the real number of cluster was used as
cmax value for the synthetic dataset.

If the wifi signals from different contexts are dissimilar enough from each
other, we expect that ChameleoClust+ should be able to discriminate differ-
ent contexts from the data. This corresponds to a dynamic stream problem
as new classes, i.e., context of use of the computers, are always susceptible to
appear/disappear, and the present wifi antennas are never the same in different
contexts (features appearing/disappearing). This example is also challenging
regarding the high dimensionality and noise level of the data. A precise de-
scription of the experimental setup is given in section 5.1, and results of the
experiments are given and discussed in section 5.2.

This report is sided by the Evowave package, which combines several ma-
terials. It includes anonymized data and necessary materials to repeat the
experiments, as well as code to run new experiments. Installation instructions
and requirements are given in section 5.3.

5.1 Workflow

The experimental setup is split in four steps :

• Acquisition of data

• Preprocessing

• Clustering using ChameleoClust+

• Visualization of the resulting clusters and comparison with ground-truth

This section details each part of the workflow.

Acquisition

27

Principle of acquisition Every wifi-card is permanently listening for in-
put communications from any wifi device. Hardware and software are then used
to filter/accept these communications. However, every communications attempt
that reaches the wifi-card can be recorded and their characteristics (e.g., MAC
address of the source) can be obtained via specific software tools. The tshark
utility is one of these. It is free and open-source piece of software distributed
as a command-line tool, and allows to collect during a given period of time
information about messages reaching the wifi-card of a computer. Especially,
it allows to identify the sender of the message, via its MAC address, which
is an unique identifier of network interface of the sender, and the intensity of
the signal received. These are the two characteristics used in our experiments.
Indeed, we used an approximation of the distance between the computer and
the sender, estimated from the signal intensity. The signal intensity gives infor-
mation about the distance between the computer used and the sender, because
the more distant is the computer from a sender, the lower is the intensity of
the received signal. These distance can be estimated using the classical Friis
transmission equation.

The tshark utility handles only the raw part of the acquisitions of the
signals. The scheduling of the acquisitions and the distance estimation is carried
out by a software component developed within the EvoEvo project (a Python
program called WifiCapture.py). This program contains both an interface to
the tshark software and the necessary code to perform the Friis computation.
Installation details and examples of commands are given in section 5.3.

Dataset The data stream is made of data collected between January 2015
and June 2016. These acquisition were performed using the same computer in
5 different places (4 different buildings of the University and a private house),
each places being visited many times. This places are used as ground-truth
classes to evaluate the output of our stream analysis using ChameleoClust+ to
identify similar wifi context in the stream. At a finer evaluation grain, these
classes are split into sub-classes corresponding to different rooms in the same
building. Here the wifi signals measured for sub-classes of the same class are
likely to be very similar, and this is used to assess the ability of the algo to
differentiate between very close groups. A few acquisitions were also performed
in other locations so as to introduce noise/outliers in the data. These acquisition
are tag under a specific label outliers in the ground-truth.

The duration of each acquisition is 30 minutes, alternating between 1-minute
periods of scan to collect wifi signal intensity and 2-minutes periods of pause.
The result of each of these 1-minute periods is the set of the MAC addresses
of the wifi devices that communicate at some moment in this period. To each
MAC address is also associated a list of values. For an address XX, these values
represent the estimated distances of the source XX computed for each intensity
measured for the communication/message coming from XX during the period.
The acquisition were repeated from January 2015 to June 2016 several times
per week. The results is is a set of file containing information about the time
and location of the acquisition and MAC address/list of distances pairs.

Preprocessing The main goal of our preprocessing step is to reduce the di-
mensionality and to anonymized the data. Indeed, in this setup each MAC

28

address identify a dimension, and the distance between wifi-cards is the value
associated to this dimension. The length of MAC addresses (12 hexadecimals
numbers), thus the raw dimensionality of the full space is 1612 = 3e1014. Even
though not every possible mac address is present in our collect, tens of thousands
of them appear. Our solution, detailed below, implies both filtering out some di-
mensions and arbitrarily gathering some of the remaining solutions (projecting
the whole space over no more than 256 dimensions).

First, each MAC address from which we have received less than two distance
measures per second are considered not very active sources, thus not represen-
tative of the environment, and filtered out. Then, for each 1-minute scan, for
each MAC address the mean of the distance measures estimated during this
period is computed. Data for a 1-minute scan is now only a list of rather active
MAC addresses associated with an average distance measure. The dimensions
are then gathered. Only the last byte of each MAC address is kept and used as
an identifier of the dimension. If two or more than two MAC addresses share
the same last byte value, the corresponding distance measure is the mean of
their distances. Given that only the last byte of the MAC address are kept, the
number of dimensions is at most D = 256. These two steps are performed using
the program WifiLog.py, developed within the project. The script csv2h5.py
is then used to format data for the next steps.

For this application, distances should be considered more in term of relative
changes rather than in term of absolute changes. Indeed, a change of distance
from 1 meter to 10 meters away from our device is more important than a change
from 101 meters to 110 meters. Therefore the next transformation made is to
take the logarithm base-10 of the feature values, rather than the raw feature
values themselves.

Intuitively the wifi environment is likely to be highly determined to the
near surrounding rather than by very distant sources. So small distance are
more important to identify a context. In ChameleoClust+, it is the opposite,
large feature values are considered as being more important than smaller ones
(see section 2.7). Thus the following computation is operated to reverse the
scale of the values: Let H be the set of the maximal distances observed in each
dimension. Let xmax denote the median of the base-10 logarithm of the elements
in H. Each feature value x is then replaced by z = xmax − x.

Finally, if a record does not contain a value for a given dimension, we consider
that the value is equal to zero, leading to a feature value z = xmax−0. It is equiv-
alent to consider the corresponding antenna to be very far from the computer.
These lasts steps and appropriate formatting operations for ChameleoClust+

are performed by the preprocessing logMax-log.py program. Examples of
use of each program are given in section 5.3.

Visualization tool In order to achieve a better analysis of the performance of
ChameleoClust+ on dynamic streams such as the one described above, we have
developed a set of visualization functions. This visualization tool includes a
contingency table that depicts the cluster membership of the data points in the
current sliding window with respect to their class-membership in the ground-
truth. This tool also enables to track the evolution of the location of the core-
points (center of the clusters) produced by the algorithm. The visualization

29

tool has been used to record videos of the execution of ChameleoClust+ (videos
provided in the Evowave package).

The central element in the visualization tool is a contingency matrix that
illustrates the cluster membership of the sliding window data points with respect
to their class-membership. The rows of the contingency table correspond to
the class-membership of the data points and the columns correspond to the
cluster-membership. The contingency table has cmax columns (ChameleoClust+

parameter), one column for each of the core-point identifiers that could be used
by ChameleoClust+ to describe clusters. Empty columns are associated to core-
points that are not encoded in the genome or to core-points encoded in the
genome that describe no cluster (no data points associated to this core-point).

Aligned with each column, we represent the coordinates of the corresponding
core-point in the 256-dimensional space in a radar chart diagram. Half of the
radar chart are placed above and half below the contengency matrix. Here, a
radar chart diagram represent one core-point, and consists of 256 equiangular
radii, each radius representing the location of this core-point along one of the 256
dimensions. For each core-point we also represent as black radii in this report
(and in white in the video) the median location of the data points associated to
the corresponding core-point, and the thickness of the beam is used to denote the
number of points associated to the location. Moreover we represent two circles
in the diagrams, the inner circle corresponds to a zero coordinate value and the
outer circle corresponds to the median of the highest values along all dimensions.
Using this visualization tool it is possible to distinguish the subspace of each
core-point, the coordinates of each core-point along each dimension and the
median location of the data points associated to each core-point.

Figure 15 illustrates a typical output of the visualization tool. In this ex-
ample 5 classes are present in the sliding window: The classes 2.A, 3.A, 3.B,
4.B, 4.C and 5. These classes are represented by 6 clusters: cluster 0, cluster
3, cluster 4, cluster 5, cluster 7 and cluster 8. Class 3.A is mainly described by
cluster 5, class 3.B is mainly split in two clusters: cluster 3 and cluster 8, class 5
is described by cluster 7, class 2.A by cluster 4 (only one point). The remaining
core-points (1, 2, 6 and 9) are encoded in the genome but denote no cluster. For
example the cluster 2 exists in a two dimensional subspace (2 beams in its radar
chart) but contains no data point (as can be seen in the column elow in the con-
tengency table) and thus does not denote a cluster. The radar chart diagrams
of the different clusters illustrates the fact that each cluster has potentially a
different subspace. For example cluster 7 exists in a one dimensional subspace
while cluster 3 or cluster 5 are described in higher dimensional subspaces.

5.2 Results

We executed 5 independent runs of ChameleoClust+ on the data stream built
as described in the previous section, and containing 2951 objects. During a
run we used a sliding windows, and each 10 generations the oldest object in
the sliding sample was replaced by the next in the stream (First-In-First-Out
method). Before updating the sliding sample, different measures describing
the genotype and the model of the best individual were stored and several
evaluation measures were computed (F1, Accuracy, CE and entropy). Given
that the clusters subspaces were not known beforehand, we could not rely on

30

Figure 15: Illustration of the visualization tool output.

31

subspace clustering evaluation measure (RNIA and subspace version of CE)
for this study.

Experimental results obtained with the default parameter setting of
ChameleoClust+ presented Section 3.3 The average of different evalua-
tion measures (Accuracy, F1, Entropy and CE), the mean number of clusters,
the mean dimensionality of the clusters and the mean number of genes are rep-
resented in Figure 16 as functions of the location of the sliding sample along the
data stream (red curves). According to Figure 16, the genome structure of the
organisms adapts to the changes in the data stream. The same applies to the
best individual subspace clustering model, indeed the number of clusters and
the cluster dimensionalities evolve along the data stream. Despite the changes
in the data stream, the quality of the subspace clusters produced by the individ-
uals tends to remain interesting. The algorithm seems to be adaptable enough
to cope with the changes in the data stream by adapting the subspace clustering
models encoded in the genomes.

Figure 17 illustrates three snapshots of the execution of the algorithm at
different positions in the stream, using the visualization tool introduced in the
previous section. Notice that the genome structure contains far more genes than
those needed to encode the model. This can be seen especially, in the two first
snapshots (top and middle) of Figure 17 (at positions 970-1070 and 1010-1110
in the stream) where only two core-points denote clusters (clusters 5 and 7).
The other core-points correspond to no data point, even though they have high
dimensionalities and many genes involved in their description. Such core-points
appear to be inappropriate while dealing with such a dynamic environment.

ChameleoClust+ cluster evolution Following the dynamics of the core-
points of the best individuals along evolution, we notice that core-points that
manage to capture data points have usually small subspaces. Then, the sub-
space dimensionalities of these core-points increase little by little when obtaining
a coordinate along a new dimension can offer a selective advantage (a better fit-
ness). However, while the data stream changes, it may happened that no more
points in the current sample are associated to one of these core-points. Then
this core-point stops being under selection pressure and is free to drift randomly.
It can accumulate more and more changes and drifts around randomly. Increas-
ing the dimensionality of such an empty core-point can turn it to be too specific
to catch any data point further in the stream. This can be seen for core-point
3 in Figure 17 with the snapshot 970-1070 and the snapshot 1010-1110. Hope-
fully, when the number of empty core-points increases, there are more chances
that big deletions remove genes associated to core-points that are not directly
responsible for the good fitness. This can remove many dimensions of a core-
point that is associated to no data point, and then can lead to its reuse to form
a non-empty clusters. That this has been the case for core-point 3 in Figure 17
between the snapshot 1010-1110 and the snapshot 1050-1150.

phenotype and individuals are more likely to be able to reuse core-points
that acquired a small subspace. Indeed, in Figure 17 we can see that the
genomes underwent big deletions between the snapshot 1010-1110 and the snap-
shot 1050-1150, that allowed them to reuse core-points 2 and 3 to form non-
empty clusters. Moreover core-points 5 and 9 have only a few dimensions and

32

could be reused easily. A video of the execution of the algorithm with the
parameter settings established in Section 3.3 and using a seed equal to zero
for the pseudo-random numbers generator is provided in the Evowave package
(EvoWave run default params.mov).

Notice that the genome of the best individual accumulates elements en-
coding empty core-points (for points 970-1070, 1010-1110 in the stream), such
core-points become very specific and unlikely to describe clusters. However af-
ter undergoing big deletions the genome is able to reduce empty core-points
dimensionalities so this core-points can describe clusters.

Direction for future improvements A possible way to limit the accumu-
lation of many dimensions in empty (useless) clusters is to limit the promotion
of non-functional elements to functional ones. In order to have some prelimi-
nary evidences of the effect of such a modification, we run ChameleoClust+ 5
times while reducing the probability of transition from non-functional elements
to functional ones. Let γi ∈ Γ of the form γi = 〈g, c, d, x〉, denotes an element
uniformly drawn in the genome and let k ∈ {1, 2, 3, 4} a value chosen uniformly.
In ChameleoClust+, the point substitution operator modifies the k-th element
of the tuple γi and replaces it with a new random number drawn uniformly in
its associated range. For k ∈ {2, 3, 4} we still use the definition made in Sec-
tion 2.6, but here we redefine it when k = 1. In the definition in Section 2.6,
the new value of g should be drawn uniformly in {0, 1}, now we change it as
follows. If the current value of g is 1, then as before its new value is drawn from
{0, 1} uniformly, but if the current value of g is 0, then it is replaced by a 1
with a probability of 0.1 and stay unchanged with a probability of 0.9. Over
the five runs, we computed again the average of different evaluation measures,
the mean number of clusters, the mean dimensionality of the clusters and the
mean number of genes. The results are presented in Figure 16 as a function
of the location of the sliding sample in the data stream using green curves.
It seems that the quality measures tend to be higher most of the time along
the stream when compared to the previous results in red. This can suggest
that the individuals are now able to adapt more quickly to the changes in the
stream because they have less core-points corresponding to empty clusters with
high dimensionalities. This change in the number and dimensionality of the
core-points is supported by Figure 18 that gives the three new snapshots ob-
tained at the same locations in the stream as the ones in Figure 17. A video
of the execution with the modified probability for the mutation of g (but same
parameters, and random seed also set to 0) is provided in the Evowave pack-
age (EvoWave run modified params.mov). Further promising work will
be to study more deeply this modification of the probability of promotion from
non-functional elements to functional ones, and in particular to investigate its
relationship to the speed of the changes that occur in the data stream itself.

5.3 Software package

We provide a package for ChameleoClust+ and Evowave containing the pro-
grams and the data, that enables the replication of the experiments and the
realization of new ones. Except for the free program tshark, all programs and
scripts were developed within the EvoEvo project. To run new experiments
from scratch, the user will have to install its own version of tshark.

33

0 500 1000 1500 2000 2500 3000

Points

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
u
ra
cy

0 500 1000 1500 2000 2500 3000

Points

0.0

0.2

0.4

0.6

0.8

1.0

F
1

0 500 1000 1500 2000 2500 3000

Points

0.0

0.2

0.4

0.6

0.8

1.0

E
n
tr
op
y

0 500 1000 1500 2000 2500 3000

Points

0.0

0.2

0.4

0.6

0.8

1.0
C
E

0 500 1000 1500 2000 2500 3000

Points

0

2

4

6

8

10

N
bC
lu
st
er
s

0 500 1000 1500 2000 2500 3000

Points

0

5

10

15

20

A
vg
C
lu
st
er
D
im

500 1000 1500 2000 2500 3000

Points

0

100

200

300

400

500

600

700

800

|Γ
f
|

Figure 16: Accuracy, F1, Entropy,
CE, Number of clusters, Average
cluster dimensionality and Number
of genes as a function of the sliding
sample location in the data stream, for
the ChameleoClust+ algorithm (red)
and for a modified version (green).

34

Figure 17: Snapshots of the program execution respectively for points 970-1070,
1010-1110 and 1050-1150 of the data stream.

35

Figure 18: Snapshots of the execution of a modified version of ChameleoClust+

respectively for points 970-1070, 1010-1110 and 1050-1150 of the data stream.

36

Implementation of ChameleoClust+ The ChameleoClust+ algorithm has
been implemented in C++ as a Python library, and thus can be easily called
from Python programs. The syntax of the calls intents to be similar to the one
used by scikit-learn, a free machine learning library for Python. A ChameleoClust+

object can be created specifying the desired parameters or using the default pa-
rameters defined in Section 3.3. Once the ChameleoClust+ instance has been
created, two specific methods can be used to produce rather a subspace clus-
tering model for a static dataset or for a data stream. Users can eventually
specify some parameters related to the evolution process such as the number of
generations to be computed each time the data sample is modified and the size
of the part of the data sample to be changed.

Package installation and content Installation details and example usages
are given in the README.txt file at the root directory of the Evowave package.
A Python script (chameleoclust example.py), a toy dataset (pendigits.h5 [16])
and a README file are provided with the ChameleoClust+ library and can be
used as introductory example to use ChameleoClust+ on a static dataset. The
package contains also all programs developed in the project for the Evowave
application and the data stream corresponding to the results presented in this
Section 5.

6 Conclusion

We have presented ChameleoClust+, a new evolutionary algorithm that is based
on a variable genome length, using both functional and non-functional elements
and relying on mutation operators that include chromosomal rearrangements.
This evolvable genome structure allows to tackle the subspace clustering problem
over dynamic data stream and to detect clusters that vary over time. These
changes can be on the number of clusters, on the location of the clusters and
also in the set of dimensions used by each cluster.

ChameleoClust+ was shown to obtain very good performances when com-
pared to the well-established subspace clustering methods using a reference
benchmark containing both real world and synthetic datasets. ChameleoClust+

also turned out to be very well suited to analyze real dynamic streams within
the Evowave application. A dedicated visualization tool of the evolution process
enabled to monitor and assess the subspace clusters, showing that the large de-
gree of freedom of ChameleoClust+, provided by its evolvable genome structure,
allows it to adapt the clusters to the changes appearing within the stream over
time.

Moreover, the parameter setting of ChameleoClust+ was very easy. Indeed,
only the maximal number of clusters needed to be changed, and the other pa-
rameters, that are them related to the evolutionary process, could be set to the
same default values for all reported experiments. However, even though these
settings were satisfactory, based on complementary experiments on a dynamic
stream, we pointed out a very promising extension. This future direction of work
is based on the reduction of the probability of promotion from non-functional
elements to functional ones that showed preliminary evidences of performance
improvement. The key hint will be here to relate the setting of this probability
to the speed of the changes within the stream itself.

37

References

[1] A. Patrikainen and M. Meila, “Comparing subspace clusterings.” IEEE
Transactions on Knowledge and Data Engineering, pp. 902–916, 2006.

[2] H.-P. Kriegel, P. Kröger, and A. Zimek, “Clustering high-dimensional data:
A survey on subspace clustering, pattern-based clustering, and correlation
clustering,” ACM Transactions on Knowledge Discovery from Data, vol. 3,
no. 1, pp. 1:1–1:58, Mar. 2009.

[3] E. R. Hruschka, R. J. G. B. Campello, A. A. Freitas, and A. C. P. L. F.
de Carvalho, “A survey of evolutionary algorithms for clustering,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 39, no. 2, pp. 133–
155, 2009.

[4] I. A. Sarafis, P. W. Trinder, and A. Zalzala, “Towards effective subspace
clustering with an evolutionary algorithm,” in Proc. of the IEEE Congress
on Evolutionary Computation (CEC 2003), 2003, pp. 797–806.

[5] A. Vahdat, M. I. Heywood, and A. N. Zincir-Heywood, “Bottom-up evolu-
tionary subspace clustering.” in Proc. of the IEEE Congress on Evolution-
ary Computation (CEC 2010), 2010, pp. 1–8.

[6] W. Banzhaf, G. Beslon, S. Christensen, A. James, F. Képès, V. Lefort,
F. Julian, M. Radman, and J. J. Ramsden, “Guidelines: From artificial
evolution to computational evolution: a research agenda,” Nature Reviews
Genetics, vol. 7, no. 9, pp. 729–735, 2006.

[7] C. Knibbe, A. Coulon, O. Mazet, J.-M. Fayard, and G. Beslon, “A Long-
Term Evolutionary Pressure on the Amount of Noncoding DNA,” Molecular
Biology and Evolution, vol. 24, no. 10, pp. 2344–2353, Oct. 2007.

[8] T. Hindré, C. Knibbe, G. Beslon, and D. Schneider, “New insights into
bacterial adaptation through in vivo and in silico experimental evolution,”
Nature Reviews Microbiology, vol. 10, pp. 352–365, May 2012.

[9] A. Crombach and P. Hogeweg, “Chromosome rearrangements and the evo-
lution of genome structuring and adaptability.” Molecular Biology and Evo-
lution, vol. 24, no. 5, pp. 1130–9, 2007.

[10] S. Peignier, C. Rigotti, and G. Beslon, “Subspace clustering using evolv-
able genome structure,” in Proc. of the ACM Genetic and Evolutionary
Computation Conference (GECCO 2015), 2015, pp. 1–8.

[11] E. Müller, S. Günnemann, I. Assent, and T. Seidl, “Evaluating clustering in
subspace projections of high dimensional data,” in Proc. 35th Int. Conf. on
Very Large Data Bases (VLDB 2009), Lyon, France, 2009, pp. 1270–1281.

[12] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is ”nearest
neighbor” meaningful?” in Proc. of the 7th Int. Conf. on Database Theory,
London, UK, 1999, pp. 217–235.

[13] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising behav-
ior of distance metrics in high dimensional space,” in Proc. of the 8th Int.
Conf. on Database Theory. Springer, 2001, pp. 420–434.

38

[14] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park, “Fast
algorithms for projected clustering,” in Proc. of the 1999 ACM SIGMOD
Int. Conf. on Management of Data, New York, NY, USA, 1999, pp. 61–72.

[15] T. Blickle and L. Thiele, “A comparison of selection schemes used in evolu-
tionary algorithms,” Evolutionary Computation, vol. 4, no. 4, pp. 361–394,
Dec. 1996.

[16] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.

39

0 10 30 50 70 90 100

|St|/|S|(%)

−800

−700

−600

−500

−400

−300

F

(a) Fitness vs. dataset sample size relative
to the dataset size.

0 0. 1 0. 3 0. 5 0. 7 0. 9 1

s

−800

−700

−600

−500

−400

−300

F

(b) Fitness vs. selection pressure.

10 100 200 300 400 500

|Γinit|
−800

−700

−600

−500

−400

−300

F

(c) Fitness vs. initial genome size.

10002491423410

um(· 10−5)

−800

−700

−600

−500

−400

−300

F

(d) Fitness vs. mutation rate.

Figure 19: Mean ± standard deviation of the fitness of the best individual of
the last generation for each one of the 10 runs on shape (red), pendigits (blue)
and D20 (green) under different conditions.

7 Appendix

We report in this Appendix complementary results.

Table 4: Results for the breast real dataset: 33 dimensions, 2 classes, 198 objects

F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
max min max min max min max min max min max min max min max min max min

CLIQUE 0.67 0.67 0.71 0.71 0.02 0.02 0.40 0.40 0.26 0.26 1.00 1.00 107 107 1.7 1.7 453 453
DOC 0.73 0.61 0.81 0.76 0.11 0.04 0.84 0.07 0.46 0.27 1.00 0.80 60 6 27.2 2.8 1E+06 37515

MINECLUS 0.78 0.69 0.78 0.76 0.19 0.18 1.00 1.00 0.56 0.37 1.00 1.00 64 32 33.0 33.0 40359 29437
SCHISM 0.67 0.67 0.75 0.69 0.01 0.01 0.36 0.34 0.35 0.34 1.00 0.99 248 197 2.3 2.2 158749 114609
SUBCLU 0.68 0.51 0.77 0.67 0.02 0.01 0.54 0.04 0.27 0.24 1.00 0.82 357 5 2.0 1.0 5265 16

FIRES 0.49 0.03 0.76 0.76 0.03 0.00 0.05 0.00 1.00 0.01 0.76 0.04 11 1 2.5 1.0 250 31
INSCY 0.74 0.55 0.77 0.76 0.02 0.00 0.24 0.11 0.60 0.39 0.97 0.74 2038 167 11.0 4.4 134373 63484

PROCLUS 0.57 0.52 0.80 0.74 0.51 0.11 0.65 0.43 0.32 0.23 0.89 0.69 9 2 24.0 18.0 703 141
P3C 0.63 0.63 0.77 0.77 0.04 0.04 0.19 0.19 0.36 0.36 0.85 0.85 28 28 6.9 6.9 6281 6281

STATPC 0.41 0.41 0.78 0.78 0.16 0.16 0.33 0.33 0.29 0.29 0.43 0.43 5 5 33.0 33.0 5187 4906
ChameleoClust+ 0.60 0.51 0.76 0.76 0.23 0.11 0.53 0.25 0.25 0.22 1 1 8 4 16.75 5.75 339 131

mean 0.56 0.76 0.17 0.40 0.24 1 5.1 12.15 230

40

shape
 cmax=9

shape
 cmax=18

pendigits
 cmax=10

pendigits
 cmax=20

D20
 cmax=10

−800

−700

−600

−500

−400

−300
F

(a) Fitness with (red) and without (blue)
elitism.

shape
 cmax=9

shape
 cmax=18

pendigits
 cmax=10

pendigits
 cmax=20

D20
 cmax=20

−800

−700

−600

−500

−400

−300

F

(b) Fitness with (red) and without (blue)
non-functional tuples.

Figure 20: Mean ± standard deviation of the fitness of the best individual
of the last generation for 10 runs on shape, pendigits and D20 under different
conditions. For each real world dataset two cmax values where tested: the
number of classes in the dataset and twice this number and the real number of
cluster was used as cmax value for the synthetic dataset.

Table 5: Results for the pendigits real dataset: 16 dimensions, 10 classes, 7494
objects

F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
max min max min max min max min max min max min max min max min max min

CLIQUE 0.30 0.17 0.96 0.86 0.06 0.01 0.20 0.06 0.41 0.26 1.00 1.00 1890 36 3.1 1.5 67891 219
DOC 0.52 0.52 0.54 0.54 0.18 0.18 0.35 0.35 0.53 0.53 0.91 0.91 15 15 5.5 5.5 178358 178358

MINECLUS 0.87 0.87 0.86 0.86 0.48 0.48 0.89 0.89 0.82 0.82 1.00 1.00 64 64 12.1 12.1 780167 692651
SCHISM 0.45 0.26 0.93 0.71 0.05 0.01 0.30 0.08 0.50 0.45 1.00 0.93 1092 290 10.1 3.4 5E+08 21266
SUBCLU - - - - - - - - - - - - - - - - - -

FIRES 0.45 0.45 0.73 0.73 0.09 0.09 0.33 0.33 0.31 0.31 0.94 0.94 27 27 2.5 2.5 169999 169999
INSCY 0.65 0.48 0.78 0.68 0.07 0.07 0.30 0.28 0.77 0.69 0.91 0.82 262 106 5.3 4.6 2E+06 1E+06

PROCLUS 0.78 0.73 0.74 0.73 0.31 0.27 0.64 0.45 0.90 0.71 0.90 0.74 37 17 14.0 8.0 6045 4250
P3C 0.74 0.74 0.72 0.72 0.28 0.28 0.58 0.58 0.76 0.76 0.90 0.90 31 31 9.0 9.0 2E+06 2E+06

STATPC 0.91 0.32 0.92 0.10 0.09 0.00 0.67 0.11 1.00 0.53 0.99 0.84 4109 56 16.0 16.0 5E+07 3E+06
ChameleoClust+ 0.71 0.51 0.74 0.59 0.51 0.30 0.78 0.49 0.68 0.58 1 1 14 10 12.40 7.21 4476 4226

mean 0.64 0.68 0.43 0.67 0.63 1 11.6 10.01 4347

Table 6: Results for the diabetes real dataset: 8 dimensions, 2 classes, 768
objects

F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
max min max min max min max min max min max min max min max min max min

CLIQUE 0.70 0.39 0.72 0.69 0.03 0.01 0.14 0.01 0.23 0.13 1.00 1.00 349 202 4.2 2.4 11953 203
DOC 0.71 0.71 0.72 0.69 0.31 0.26 0.92 0.79 0.31 0.24 1.00 0.93 64 17 8.0 5.1 1E+06 51640

MINECLUS 0.72 0.66 0.71 0.69 0.63 0.13 0.89 0.58 0.29 0.17 0.99 0.96 39 3 6.0 5.2 3578 62
SCHISM 0.70 0.62 0.73 0.68 0.08 0.01 0.36 0.09 0.34 0.20 1.00 0.79 270 21 4.2 3.9 35468 250
SUBCLU 0.74 0.45 0.71 0.68 0.01 0.01 0.01 0.01 0.14 0.11 1.00 1.00 1601 325 4.7 4.0 190122 58718

FIRES 0.52 0.03 0.65 0.64 0.12 0.00 0.27 0.00 0.68 0.00 0.81 0.03 17 1 2.5 1.0 4234 360
INSCY 0.65 0.39 0.70 0.65 0.37 0.11 0.45 0.42 0.44 0.15 0.83 0.73 132 3 6.7 5.7 112093 33531

PROCLUS 0.67 0.61 0.72 0.71 0.34 0.21 0.78 0.69 0.23 0.19 0.92 0.78 9 3 8.0 6.0 360 109
P3C 0.39 0.39 0.66 0.65 0.56 0.11 0.85 0.22 0.09 0.07 0.97 0.88 2 1 7.0 2.0 656 141

STATPC 0.73 0.59 0.70 0.65 0.06 0.00 0.63 0.17 0.72 0.28 0.97 0.75 363 27 8.0 8.0 27749 4657
ChameleoClust+ 0.70 0.62 0.73 0.70 0.17 0.09 0.66 0.47 0.28 0.23 1 1 29 19 5.00 2.75 598 438

mean 0.68 0.72 0.13 0.55 0.25 1 25.1 3.85 480

Table 7: Results for the glass real dataset: 9 dimensions, 6 classes, 214 objects

F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
max min max min max min max min max min max min max min max min max min

CLIQUE 0.51 0.31 0.67 0.50 0.02 0.00 0.06 0.00 0.39 0.24 1.00 1.00 6169 175 5.4 3.1 411195 1375
DOC 0.74 0.50 0.63 0.50 0.23 0.13 0.93 0.33 0.72 0.50 0.93 0.91 64 11 9.0 3.3 23172 78

MINECLUS 0.76 0.40 0.52 0.50 0.24 0.19 0.78 0.45 0.72 0.46 1.00 0.87 64 6 7.0 4.3 907 15
SCHISM 0.46 0.39 0.63 0.47 0.11 0.04 0.33 0.20 0.44 0.38 1.00 0.79 158 30 3.9 2.1 313 31
SUBCLU 0.50 0.45 0.65 0.46 0.00 0.00 0.01 0.01 0.42 0.39 1.00 1.00 1648 831 4.9 4.3 14410 4250

FIRES 0.30 0.30 0.49 0.49 0.21 0.21 0.45 0.45 0.40 0.40 0.86 0.86 7 7 2.7 2.7 78 78
INSCY 0.57 0.41 0.65 0.47 0.23 0.09 0.54 0.26 0.67 0.47 0.86 0.79 72 30 5.9 2.7 4703 578

PROCLUS 0.60 0.56 0.60 0.57 0.13 0.05 0.51 0.17 0.76 0.68 0.79 0.57 29 26 8.0 2.0 375 250
P3C 0.28 0.23 0.47 0.39 0.14 0.13 0.30 0.27 0.43 0.38 0.89 0.81 3 2 3.0 3.0 32 31

STATPC 0.75 0.40 0.49 0.36 0.19 0.05 0.67 0.37 0.88 0.36 0.93 0.80 106 27 9.0 9.0 1265 390
ChameleoClust+ 0.43 0.28 0.57 0.50 0.43 0.26 0.88 0.55 0.46 0.36 1 1 8 4 7.50 4.75 195 95

mean 0.37 0.54 0.37 0.78 0.42 1 6.9 6.18 154

41

Table 8: Results for the liver real dataset: 6 dimensions, 2 classes, 345 objects

F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
max min max min max min max min max min max min max min max min max min

CLIQUE 0.68 0.65 0.67 0.58 0.08 0.02 0.38 0.03 0.10 0.02 1.00 1.00 1922 19 4.1 1.7 38281 15
DOC 0.67 0.64 0.68 0.58 0.11 0.07 0.51 0.35 0.18 0.11 0.99 0.90 45 13 3.0 1.9 625324 1625

MINECLUS 0.73 0.63 0.65 0.58 0.09 0.09 0.68 0.48 0.33 0.16 0.99 0.92 64 32 4.0 3.7 49563 1954
SCHISM 0.69 0.69 0.68 0.59 0.04 0.03 0.45 0.26 0.10 0.08 0.99 0.99 90 68 2.7 2.1 31 0
SUBCLU 0.68 0.68 0.64 0.58 0.11 0.02 0.68 0.05 0.07 0.02 1.00 1.00 334 64 3.4 1.3 1422 47

FIRES 0.58 0.04 0.58 0.56 0.14 0.00 0.39 0.01 0.37 0.00 0.84 0.03 10 1 3.0 1.0 531 46
INSCY 0.66 0.66 0.62 0.61 0.03 0.03 0.42 0.39 0.21 0.20 0.85 0.81 166 130 2.1 2.1 407 234

PROCLUS 0.53 0.39 0.63 0.63 0.26 0.11 0.66 0.25 0.05 0.05 0.83 0.46 6 2 5.0 3.0 78 31
P3C 0.36 0.35 0.58 0.58 0.55 0.27 0.96 0.47 0.02 0.01 0.98 0.94 2 1 6.0 3.0 172 32

STATPC 0.69 0.57 0.65 0.58 0.23 0.01 0.58 0.37 0.63 0.05 0.77 0.71 159 4 6.0 3.3 1890 781
ChameleoClust+ 0.65 0.59 0.68 0.62 0.20 0.10 0.53 0.41 0.14 0.07 1 1 27 22 2.48 1.85 202 158

mean 0.62 0.64 0.14 0.47 0.11 1 24.3 2.06 179

Table 9: Results for the vowel real dataset: 10 dimensions, 11 classes, 990
objects

F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
max min max min max min max min max min max min max min max min max min

CLIQUE 0.23 0.17 0.64 0.37 0.05 0.00 0.44 0.01 0.10 0.09 1.00 1.00 3062 267 4.9 1.9 523233 1953
DOC 0.49 0.49 0.44 0.44 0.14 0.14 0.85 0.85 0.58 0.58 0.86 0.86 64 64 10.0 10.0 120015 120015

MINECLUS 0.48 0.43 0.37 0.37 0.09 0.04 0.62 0.34 0.60 0.46 0.98 0.87 64 64 7.2 3.6 7734 5204
SCHISM 0.37 0.23 0.62 0.52 0.05 0.01 0.43 0.11 0.29 0.21 1.00 0.93 494 121 4.3 2.8 23031 391
SUBCLU 0.24 0.18 0.58 0.38 0.04 0.01 0.39 0.04 0.30 0.13 1.00 1.00 10881 709 3.6 2.0 26047 2250

FIRES 0.16 0.14 0.13 0.11 0.02 0.02 0.14 0.13 0.16 0.13 0.50 0.45 32 24 2.1 1.9 563 250
INSCY 0.82 0.33 0.61 0.15 0.09 0.07 0.75 0.26 0.94 0.21 0.90 0.81 163 74 9.5 4.3 75706 39390

PROCLUS 0.49 0.49 0.44 0.44 0.11 0.11 0.53 0.53 0.65 0.65 0.67 0.67 64 64 8.0 8.0 766 766
P3C 0.08 0.05 0.17 0.16 0.12 0.08 0.69 0.43 0.13 0.12 0.98 0.95 3 2 7.0 4.7 1610 625

STATPC 0.22 0.22 0.56 0.56 0.06 0.06 0.12 0.12 0.14 0.14 1.00 1.00 39 39 10.0 10.0 18485 16671
ChameleoClust+ 0.41 0.37 0.42 0.38 0.17 0.13 0.65 0.54 0.45 0.40 1 1 33 24 6.00 4.57 995 787

mean 0.39 0.40 0.15 0.60 0.42 1 28.0 5.41 910

42

