
HAL Id: hal-01577147
https://hal.science/hal-01577147

Submitted on 24 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EvoEvo Deliverable 2.7
Guillaume Beslon, Charles Rocabert

To cite this version:
Guillaume Beslon, Charles Rocabert. EvoEvo Deliverable 2.7: Specifications of the integrated evolu-
tionary model. [Research Report] INRIA Grenoble - Rhône-Alpes. 2015. �hal-01577147�

https://hal.science/hal-01577147
https://hal.archives-ouvertes.fr


EvoEvo Project 

 

Deliverable 2.7 
FP7-ICT FET Proactive EVLIT program Specifications of the integrated evolutionary model 
Project reference: 610427 Version 1.3 

 

   Page 1 of 22 
 

 

 

 

 

 

 

 

 
EvoEvo Deliverable 2.7 

 
Specifications of the integrated evolutionary 

model 
 
 
 

 

Due date: M12 (November 2014) 
Person in charge: Guillaume Beslon 
Partner in charge: INRIA 
Workpackage: WP2 (Development of an integrated modeling platform) 
Deliverable description: Specificiations of the integrated evolutionary model: Description of the 

modeling choices for the integrated model. This model should include most of 
the choices made for deliverables D2.2, D2.4 and D.2.6. 

 

Revisions: 
 

Revision no. Revision description Date Person in charge 

1.0 First version of the integrated evolutionary model 22/11/14 C. Rocabert (INRIA) 

1.1 Corrections and additions by G. Beslon and C. Rocabert 29/11/14 C. Rocabert (INRIA) 
1.2 Finalized version, transmitted to the partners 03/02/15 C. Rocabert (INRIA) 

1.3 Corrections and validation 10/02/15 G. Beslon (INRIA) 

    

    
    

    
 

  
 



EvoEvo Project 

 

Deliverable 2.7 
FP7-ICT FET Proactive EVLIT program Specifications of the integrated evolutionary model 
Project reference: 610427 Version 1.3 

 

   Page 2 of 22 
 

 

Table of Contents 

1.	   INTRODUCTION	   3	  

2.	   GENOTYPE-‐TO-‐PHENOTYPE	  MAPPING	  AND	  ARTIFICIAL	  CHEMISTRY	   4	  

2.1.	   REMINDER:	  THE	  N-‐TUPLE	  BAG	  AS	  A	  COMMON	  FORMALISM	   4	  
2.2.	   BASIC	  CONCEPTS	  ON	  ARTIFICIAL	  CHEMISTRIES	   5	  
2.3.	   DEFINING	  AN	  ARTIFICIAL	  CHEMISTRY	  WITH	  THE	  N-‐TUPLES	  BAG	  FORMALISM	   5	  
2.4.	   INSTANTIATION	  OF	  THE	  INTEGRATED	  MODEL	   6	  

3.	   GENOME	  LEVEL	   7	  

3.1.	   GENOME	  STRUCTURE	  AND	  ARTIFICIAL	  CHEMISTRY	   7	  
3.2.	   MUTATIONAL	  OPERATORS	   9	  

4.	   REGULATION	  LEVEL	   11	  

4.1.	   BASIC	  FEATURES	   11	  
4.2.	   ADDING	  NOISE	  IN	  THE	  GENETIC	  REGULATION	  NETWORK	   11	  

5.	   METABOLIC	  LEVEL	   12	  

5.1.	   BASIC	  FEATURES	   12	  
5.2.	   ESSENTIAL	  VS.	  NON	  ESSENTIAL	  METABOLITES,	  METABOLITES	  TOXICITY,	  CYTOPLASMIC	  HERITABILITY	   13	  

6.	   COUPLING	  THE	  GENETIC	  AND	  THE	  METABOLIC	  NETWORKS	   13	  

7.	   POPULATION	  AND	  ENVIRONMENT	  LEVELS	   15	  

7.1.	   INTERACTIONS	  BETWEEN	  INDIVIDUALS	   17	  
7.2.	   ADDITIONAL	  FEATURES	   18	  

8.	   GENERAL	  ALGORITHM	   18	  

9.	   CONCLUSION	   19	  

10.	   REFERENCES	   21	  

 

 

 

 

 

 



EvoEvo Project 

 

Deliverable 2.7 
FP7-ICT FET Proactive EVLIT program Specifications of the integrated evolutionary model 
Project reference: 610427 Version 1.3 

 

   Page 3 of 22 
 

1. Introduction 

The development of an integrated evolutionary model including multiple levels of selection is the 
ultimate goal of the Work Package 2 (WP2). As described in WP2 objectives, submodels produced 
in deliverables 2.1, 2.3 and 2.5 can be exploited separately (and this idea has been fully applied 
since an independent release exists for each model), but they are designed to be part of a nested 
model. 

Two major objectives constrained the development of the integrated model: 

1) Integrate all the biological levels (genome, metabolic network, population…) we consider to 
be mandatory to explore deeply Evolution of Evolution. The realism of each level is an 
essential element to observe complex enough genotype-to-phenotype mapping and 
fitness landscape, 

2) Maintain the model complexity low enough to enable its practical use. 

Clearly both objectives are antagonistic and their balancing has often driven the modeling choices 
described in this document. 

The integrated model is rooted in the knowhow of the EvoEvo partners, mainly INRIA and 
University of Utrecht (UU) and more generally in the field of Evolutionary Systems Biology (ESB, 
see Soyer & O’Malley, 2013). Such a disciplinary background implies some choices in the way 
biological processes are represented and the genotype-to-phenotype mapping takes a central 
place in that matter. Indeed, evolution shapes it, leading to diverse outcomes such that robustness, 
evolvability, or open-endedness. Another essential concept is the fitness landscape, which gives a 
direction to evolution, and defines the selective pressures. The concept of genotype-to-phenotype 
mapping naturally leads to the concept of levels (at least the genotype and the phenotype). The 
phenotype is encoded in the genotype, and is instantiated through the genotype-to-phenotype 
mapping. In the ESB field, a distinction is usually made within an organism between “levels” 
depending on the scale and the nature of implied biomolecules, e.g. the genome (made of DNA), 
the transcriptome (RNA molecules), the proteome (proteins) or the metabolome (metabolites and 
small components), but also higher levels such that tissues, organs, population, and so on. Those 
levels are considered as highly complex dynamic systems owing to the large number of 
interactions, layered in several networks (e.g. the genetic regulation network, the protein-protein 
network, the metabolic network, the trophic network…). 

The EvoEvo project aims at studying bacterial evolution (Hindré et al., 2012). INRIA and UU have 
developed independently two formalisms that are specifically dedicated to the study of indirect 
selection in unicellular populations. INRIA used the “sequence-of-nucleotides” formalism to 
develop the aevol model (Knibbe et al., 2007a; Knibbe et al., 2007b). Using this formalism, INRIA 
showed that indirect selection could select specific genetic and transcriptomic structures 
depending on the mutational and selective pressures (Knibbe et al., 2007b; Beslon et al., 2010a; 
Beslon et al., 2010b). UU proposed the “pearls-on-a-string” formalism and showed that in time 
varying environments regulation networks, metabolic networks and species networks can acquire 
structures that increase the evolvability of organisms (see for example Crombach & Hogeweg, 
2008; Cuypers & Hogeweg, 2012). However, both formalisms are restricted to specific levels of 
organization. In the integrated model, we push the model complexity one step further, by including 
in one single model a genome structure, a genetic regulation network (GRN), a metabolic network, 
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a population and its environment. In practice, the model explicitly includes all those levels as 
predefined interacting classes. Higher levels of selection may emerge through evolution, such that 
trophic networks, ecosystems, and so on.  

Each level of selection and its interactions will be described in this deliverable. Section 2 presents 
the modeling choices made on the genotype-to-phenotype mapping and on the artificial chemistry. 
Sections 3, 4 and 5 deal with the genome structure, the genetic regulation network, and the 
metabolic network. Then, section 6 introduces the population level, and the interactions it allows 
between individuals and their environment. 

 

2. Genotype-to-phenotype mapping and artificial chemistry 

2.1. Reminder: the 𝒏-tuple bag as a common formalism 
A 𝑛-tuple is an ordered list 𝑥!, 𝑥!,… , 𝑥! :  𝑇!  ×  𝑇!  ×   …  ×  𝑇! with 𝑇 the “product type” of 𝑥! (e.g. ℝ, ℕ, 
…). In both the “sequence-of-nucleotides” and “pearl-on-a-string” formalisms, the genotype-to-
phenotype mapping is based on the extraction of an unordered set of 𝑛-tuples from the genotype 
(a “bag” of 𝑛-tuples1). Specified operators project the genome on a 𝑛-dimensional space (figure 1). 
The bag of 𝑛-tuples is then used to build the higher organism level in another specified space (a 
fuzzy set in aevol, or a GRN in pearls-on-a-string models). For example, aevol uses a complex and 
non-linear artificial genetic code to extract a set of triplets 𝑥!, 𝑥!, 𝑥! ∶   ℝ! from a circular double 
strand binary sequence. The mapping is done in two steps: the transcription and the translation. In 
“pearls-on-a-string” models, the genome is directly encoded as an ordered set of 𝑛-tuples. 
Depending on the complexity of projection operators, evolution outcomes on the genome structure 
and the mapping will not be the same. In both models, the locus of the 𝑛-tuples set do not impair 
fitness, but, since the 𝑛-tuples are encoded locally in the genome (in coding regions, or in pearls), 
the modification of their position (and relative positions) on the sequence can affect the organism’s 
evolution on the long term. 

 

Figure 1 - A set of 𝑛-tuples is extracted from the genome data-structure by projecting it on a 𝑛-dimensional 
space with specified operators. This projection can be a simple translation or a complex non-linear process 
(a mapping). 

                                                
1 This idea is directly inspired from the – simplistic – description of the cell as a “bag-of-proteins”. 

Genome space 

n-tuples n-dimensional space 

Projection or Mapping 
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2.2. Basic concepts on artificial chemistries 
An artificial chemistry (AChem) can be defined as a triplet (𝑆,𝑅,𝐴), where 𝑆 is the set of all 
possible molecules, 𝑅 is a set of reaction rules representing the interactions among the molecules, 
and 𝐴 is an algorithm describing the reaction vessel or domain and how the rules are applied to the 
molecules inside the vessel (Dittrich et al., 2001). 

The set of molecules 𝑆   =    {𝑠!, 𝑠!, . . . , 𝑠!} can potentially be infinite. A reaction rule 𝑟   ∈   𝑅 is a 
chemical equation 𝑠!   +   𝑠!  +  . . .+  𝑠!   →    𝑠!!   +   𝑠!!   +  . . .+  𝑠!!, with the reactants (or the substrates) on 
the left side and the products on the right side, 𝑖 being the order of the reaction. The set of reaction 
rules 𝑅 can be defined explicitly (all possible reactions 𝑟 are defined and are in finite number), or 
implicitly. In this example, stoichiometry is 1 for all reactants, but there is no constraint on this 
point. The algorithm 𝐴 is applied on an instance of 𝑆, that is, a collection 𝑃 of molecules. The set of 
chemical equations 𝑅 can be solved with stochastic or deterministic methods, possibly adding 
spatial rules. 

2.3. Defining an artificial chemistry with the 𝒏-tuples bag formalism 
We distinguish two ways to define an artificial chemistry with a 𝑛-tuples bag: 

(1) Each 𝑛-tuple codes for a reaction rule. In this case, each organism owns a specific set of 
reactions rules 𝑅, somehow carrying its own artificial chemistry. For instance, a 𝑛-tuple 
𝑥!, 𝑥!,… , 𝑥! , 𝑥!!!, 𝑥!!!,… , 𝑥!  could define the chemical equation of order 𝑛/2:  

𝑠!   +   𝑠!   +   …   +   𝑠!
!
  →    𝑠!

!!!
+   𝑠!

!!!
+⋯+   𝑠! 

with 𝑥! ≡ 𝑠!, 𝑖   ∈    {0,1,2, . . . , 𝑛}.  

Additional elements in the tuple can be used to define the reaction rates and the stoichiometry. 

(2) Each 𝑛-tuple codes for a chemical species, being potentially a reactant for a subset of reactions 
in 𝑅. In this case, 𝑅 is defined once for all the cells, a reaction occurring only if all the reactants are 
present in the cell. For instance, let’s consider the set of reaction rules 𝑅 containing reactions (1) 
𝑠! + 𝑠! ⟷ 𝑠! . 𝑠! and (2) 𝑠! . 𝑠! → 𝑠! +   𝑠! (𝑠! , 𝑠! , 𝑠! ∈ 𝑆, and "." representing a chemical bond), the 
singleton (𝑥!), with 𝑥! ≡ 𝑠! ,  catalyses the enzymatic reaction 𝑠! + 𝑠! ⟷ 𝑠! . 𝑠! → 𝑠! +   𝑠!. A pair (𝑥! , 𝑐!) 
with 𝑐! the concentration of 𝑥!, could be used, and so forth. A 𝑛-tuple could also produce useless 
compounds, not being reactant of any reactions. 

The 𝑛-tuple formalism actually gives us a general framework to develop an artificial chemistry 
(figure 3). 
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Figure 2 - A general framework for the 𝑛-tuples bag formalism. (A) At each replication, the genome data-
structure undergoes mutations (point mutations, large rearrangements, recombinations, horizontal transfers). 
(B) A mapping corresponding to the transcription and translation processes, gives a set of 𝑛-tuples. (C) 
Depending on modeling choices, the set of 𝑛-tuples defines: (i) an independent set of reactions rules 𝑅 in 
each cell, or (ii) chemical products (proteins, catalysts, metabolites...) involved or not in a subset of reactions 
belonging to a predefined set of reactions 𝑅. (D) The set of reaction rules encoded in the genome defines the 
interactome of the cell (the biochemical network including all cell reactions). Depending on the modeling 
objectives, this biochemical network can be decomposed into several subnetworks (genetic regulation 
network, metabolic network…). 

2.4. Instantiation of the integrated model 
The integrated model is an instantiation of the formalism described above. Two interlaced networks 
are encoded in the genome: 

(1) a genetic regulation network, driving enzymatic and transcription factors concentrations, 

(2) a metabolic network, enabling the cell to control its growth rate via the production of essential 
metabolites and interactions with its local environment. 

For practical and efficiency reasons, we chose to use the “pearls-on-a-string” formalism for the 
genome structure. We extended it by using a circular single strand genome, non-coding 
sequences, and large rearrangement operators. The figure 3 represents a schematic view of the 
genotype-to-phenotype mapping. One can notice its strong similarity with ESB approaches. This 
will enable an easy interaction with other fields such that experimental evolution (Hindré et al., 
2012). 

Genome data-
structure 

n-tuples 
set 

(i) The set of n-tuples defines a set 
of reaction rules R 

(ii) The set of n-tuples defines 
products of genes and are possibly 
compounds or catalysts of a subset 
of reactions in R. 

(A) !

(B) !
(C) ! (D) !
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Figure 3 - The genotype-to-phenotype mapping in the integrated model. The upper diagram shows how 
instructions flows from the genome to other organism levels via the genotype-to-phenotype mapping. 
Interactions between the genetic regulation network (GRN) and the metabolic network allow for signaling and 
sensing. The growth rate and the fitness of the organism depend on metabolic products. The lower figure is 
another representation of the mapping. Metabolites tagged with red stars are essential for the cell’s growth. 
Black arrows show information fluxes between organism “layers”. 

The artificial chemistry is based on the first option described in section 2.3. A subset of the 𝑛-tuples 
codes for the genetic regulation network, which basically controls concentrations of other 𝑛-tuples: 
some acting as enzymes in the metabolic space (defining the metabolic network), some others 
acting as transcription factors. The metabolic space is defined in ℕ∗: metabolites are thus pairs 
(𝑥! , 𝑐!) with 𝑥! the “tag” of the metabolite 𝑖 (𝑥! ∈ ℕ∗), and 𝑐! its concentration. The artificial chemistry 
in detailed in the next section. 

3. Genome level 

3.1. Genome structure and artificial chemistry 
Each organism owns a circular single strand genome made of pearls being either functional or non 
coding. There are five types of pearls (table 1): 

(1) Pearls coding for enzymes in the metabolic network (type E). Those pearls code for enzymatic 
reactions described by the following Michaelis-Menten equation: 

(1) ![!]
!"

= !!"#  .[!]  .[!]
!!![!]

 

𝑠, 𝑝   ∈ ℕ∗, 𝑘!"# ∈   ℝ and 𝑘! ∈   ℝ!. 𝑠, 𝑝, 𝑘!"# and 𝑘! fully characterize the reaction. They are all 
encoded in the pearl’s 𝑛-tuple. [𝑠] and [𝑝] are the concentrations of the metabolites 𝑠 and 𝑝, and 
[𝐸] is the enzymatic (that is the 𝑛-tuple) concentration (here,  we assume that the concentration of 
free enzymes [𝐸] is always equal to the total concentration [𝐸!], i.e. the concentration of combined 
enzymes [𝐸𝑆] is always close enough to zero. In this case, Michaelis-Menten dynamics are slightly 
biased, but it strongly reduces the number of equations to solve). 

* 

Genome 

GRN 

Metabolic 
network 

Genome GRN Metabolic 
network 

Growth rate 
(fitness) 

* 
* 
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(2) Pearls coding for transcription factors (type TF). Each transcription factor 𝑖 owns an 
identification tag ∈ ℕ that specifies a binding site 𝑗, and an affinity 𝐴!" for this binding site. 

(3) Pearls coding for binding sites (type BS) specify which transcription factor may bind to them via 
their own identification tag  ∈ ℕ. 

(4) Pearls coding for promoters (type P) determine where the transcription should start. Each 
promoter 𝑖 owns a basal expression level 𝛽!. 

(5) Non-coding pearls (type NC) constitute the non-coding part of the genome and drift in the 𝑛-
tuple space. All type of pearl may become non-coding through the mutation process and a non-
coding pearl can be restored with some probability into one of the four functional pearls. 

Type of pearl Attributes Representation 
Enzyme gene (E) Source metabolite, target 

metabolite, 𝑘!, 𝑘!"#, 
concentration 𝑐 

 
 
 
 

Transcription factor gene (TF) Binding site tag, affinity 𝐴, 
concentration 𝑐 

 
 
 
 

Binding site (BS) Identification tag  
 
 

Promoter (P) Basal expression level 𝛽  
 
 
 

Pseudogene (NC)   
 
 

Table 1 - Types of pearl in the basic network model. Note that this formalism simplifies the future extensions 
of the model. For instance, one could easily add “terminator” pearls or “Insertion Sequences” (IS) pearls. 

Binding sites directly flanking a promoter regulate its transcriptional activity. The enhancer site 
directly precedes the promoter (upstream pearls) and is made of one or more contiguous binding 
sites. The operator site directly follows the promoter (downstream pearls) and is also made of one 
or more contiguous binding sites. TFs that bind the enhancer site increase the transcriptional 
activity. On the opposite, TFs that bind the operator site down-regulate the promoter activity (see 
figure 4). As in R-aevol (Beslon et al., 2010b), a promoter has a basal level activity 𝛽, such that 
regulation sites are not mandatory. Note that this mode of regulation mimics the transcription 
dynamics of prokaryotes but is very different of what is observed in eukaryotes. 

E 

NC 

TF 
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Figure 4 - Typical structure of a functional region in the genome. It starts with a promoter, possibly flanked by 
an enhancer site and/or an operator site (e.g. here, the enhancer site is made of one binding site, and the 
operator site is made of two binding sites). All contiguous E or TF pearls following the operator site are 
transcribed. The first pearl of another type interrupts the transcription (here a piece of non coding DNA). In 
this example the same unit of regulation controls the transcription of two coding pearls (an Enzyme and a 
Transcription Factor). Thus this functional region is an operon. 

All TF or E pearls following an operator site (or following a promoter is no operator is present) are 
transcribed, thereby allowing for operons. Downstream of the operator site, any pearl other than TF 
or E makes the transcription stop. To be functional, the promoter can be flanked by binding sites or 
not, but TF or E pearls must immediately follow the regulation unit (enhancer site + promoter + 
operator site, see figure 5). 

 

Figure 5 – (A) Three examples of pearls sequences coding for a functional region. The promoter can be 
flanked by binding sites or not, but TF or E pearls must immediately follow the regulation unit (enhancer + 
promoter + operator). (B) Two examples of non-functional pearls sequences. On the left, a non-coding pearl 
interrupts the transcription. On the right, the promoter is missing. 

3.2. Mutational operators 
The genome undergoes mutations during replication. When a point mutation occurs, the 𝑛-tuple of 
a pearl operates a jump in the tuples space by adding a 𝑛-dimensional random vector, even for NC 
pearls, which drift in the neutral space. A pearl can be unfunctionalized by a point mutation or 
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during a rearrangement if it is located on a breakpoint. Non-coding pearls can also be restored into 
one or another functional type, however it is impossible to mutate directly from a functional type to 
another (see figure 6). 

 

Figure 6 – Different mutation rates define the probability to switch from one pearl’s type to another. 
Functional types – binding sites (BS), transcription factors (TF), enzymes (E) and promoters (P) – can be 
unfunctionalized with probability pNC. A non-coding pearl can be restored to one type or another depending 
on 4 mutations rates: pBS is the probability to become a binding site (resp. for pPROM, pE and pTF). In 
summary, 5 mutation rates define the transition rates between pearl’s types. 

The genome also undergoes large chromosomal rearrangements: duplications, large deletions, 
inversions, and translocations. The various types of mutation can modify existing genes, but also 
create new genes, delete some existing genes, modify the length of the intergenic regions, modify 
gene order (as represented in the figure 7). 

 

Figure 7 - Overview of the genome structure. The genome is a circular single-strand sequence of pearls, 
each coding for a 𝑛-tuple. At each replication, the genome undergoes mutations: point mutations, but also 
(A) large duplications, (B) large deletions, (C) translocations, (D) inversions. Red arrows symbolize 
breakpoints in the sequence. (E) point mutations and breakpoints can unfunctionalize or functionalize pearls. 
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4. Regulation level 

4.1. Basic features 
The genetic regulation network is computed from the bag of 𝑛-tuples in three steps: 

(1) The activity 𝐴!(𝑡) of each binding site 𝑠 is: 

(2) 𝐴!(𝑡) =    𝑐! 𝑡 𝐴!"!  

with 𝑐!(𝑡) the concentration of the transcription factor 𝑗 at time 𝑡 and 𝐴!" the affinity of this 
transcription factor for the binding site 𝑠. 

(2) From (1), we deduce the activity of the enhancer site 𝐸!(𝑡) and of the operator site 𝑂!(𝑡) 
flanking the promoter 𝑖: 

(3) 
𝐸! 𝑡 = 𝐴!(𝑡)!  ∈  !"!!"#$%!
𝑂! 𝑡 = 𝐴!(𝑡)!  ∈  !"#$%&!"!

 

(3) Then, the transcription rate 𝑒! over time of the promoter 𝑖 is given by the Hill-like function: 

(4) 𝑒! 𝑡 =   𝛽!   .
!!

!! ! !!!!
   . 1 +    !

!!
− 1 !! ! !

!! ! !!!!
 

with 𝛽! the basal expression level of the promoter 𝑖, 𝑛 and 𝜃 being constant coefficients that 
determine the shape of the Hill function. 

The transcription rate 𝑒! is applied to each E or TF pearl being controlled by the promoter 𝑖, such 
that each protein product (enzyme or transcription factor) has its own concentration regulated 
through a synthesis-degradation rule, depending on 𝑒!: 

(5) 
𝑐! 0 =   𝛽!                                     
!!!
!"
= 𝑒! 𝑡 − 𝜙𝑐!(𝑡)

 

where 𝜙 is a temporal scaling constant representing the protein degradation rate. 

4.2. Adding noise in the genetic regulation network 
In the cellular environment, the number of molecules of some reactant (enzymes or transcription 
factors) can be of low order (10-100 molecules). In this case, the stochastic effects due to reactant 
population size become predominant, as it is specially the case during gene expression (Elowitz et 
al., 2002). Thus, the analysis of genetic regulation networks is complicated by fluctuations 
associated with discrete reaction events in small-number reactant pools. Even if deterministic 
models are often sufficient to describe those processes, in many examples, they fail to capture 
some essential features of the underlying stochastic system (see Kaern et al., 2005 for a review). 

Several mathematical models deal with the fundamental stochastic nature of biochemical 
reactions, from discrete and stochastic models (SSA, Tau-leaping, CME) to continuous and 
stochastic ones (mainly the Chemical Langevin equation – CLE – see Gillespie et al., 2013 for a 
review. Unfortunately, even if discrete models are more realistic, they are computationally very 
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costly and cannot be used in the case of an integrated model of evolution. We opted here for a 
continuous and stochastic model, by using stochastic differential equations (SDE). In this case, the 
assumption is made that the deterministic equations can be meaningfully separated from the 
stochastic fluctuations. The method consists in adding a random white noise term 𝜉(𝑡) to the 
deterministic equations describing protein concentrations (Scott, 2006). Many experimental studies 
agree with the fact that stochasticity in gene expression (SGE) mainly comes from stochasticity 
during transcription (Newman et al., 2006). Moreover, the structure of the promoter plays a major 
role in the noise strength (e.g. depending on the presence of a TATA box in eukaryotes). In 
prokaryotes, it is also recognized that promoters play a central role, and that the level of noise is 
somehow encoded in their structure and sequence (Roberts et al., 2011). 

Let’s consider that the transcriptional noise is genetically encoded in the promoter. In the “pearls-
on-a-string” formalism, this comes down to add a noise 𝜂 to the promoter type. 𝜂 mutates as all 
others attributes of the pearl, allowing for evolution of the SGE. Then, of each promoter 𝑖, the 
temporal dynamics of the transcription rate 𝑒! becomes (eq. 6): 

(6) 𝑒! 𝑡 =   𝛽!   .
!!

!! ! !!!!
   . 1 +    !

!!
− 1 !! ! !

!! ! !!!!
+ 𝜉!(𝑡) 

with 𝜉! 𝑡  a random number drawn from the Gaussian distribution 𝒩(0, 𝜂!). 

Since stochasticity is inevitable (the cell cannot escape the physical and chemical laws), a minimal 
noise 𝜂! exists such that 𝜂! ≥ 𝜂!. 

 

5. Metabolic level 

5.1. Basic features 
Each pearl of type E (enzyme type) owns a 𝑛-tuple coding for one specific enzyme. In particular, 
the 4-tuple (𝑠, 𝑝, 𝑘!"# , 𝑘!), with 𝑠, 𝑝   ∈ ℕ∗, 𝑘!"# ∈   ℝ and 𝑘! ∈   ℝ!, completely describes the 
enzyme, 𝑠 and 𝑝 being the substrate and the product of the enzymatic reaction, and 𝑘!"# and 𝑘! 
being the constants of the corresponding Michaelis-Menten equation (eq. 7): 

(7) ! !
!"

= !!"#× ! × !
!!! !

  

With [𝑒] the concentration of the enzyme. If 𝑠   ≠   𝑝, the transition occurs in the cytoplasm of the 
cell. If 𝑠   =   𝑝, the enzyme becomes an inflowing or an outflowing pump depending on the sign of 
𝑘!"#. The entire set of enzymes gives rise to the cell metabolic network. 

To sum up, we defined an artificial chemistry (Achem) {𝑆,𝑅,𝐴} where: 

• The set of molecules 𝑆 is the integer space ℕ∗, 

• Each cell carries its own set of metabolic reaction rules 𝑅, defined by its genome. The 𝑛-
tuple coding for the reaction rule is also considered as a molecule (an enzyme) with a 
concentration regulated by the genetic regulation network. However, at least in the first 
version of the model, the enzymes will not be able to modify each other. 
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• The system of ordinary differential equations defining a cell’s metabolic network is 
integrated using a continuous and deterministic method. 

Thus, for each metabolic reaction rule 𝑟 ∈ 𝑅, the evolution of metabolite concentrations is 
described by the following equations: 

(8) 

![!]
!"

=   −   !!"#∗ ! ∗[!]
!!![!]

![!]
!"

=    !!"#∗ ! ∗[!]
!!![!]

 

5.2. Essential vs. non essential metabolites, metabolites toxicity, 
cytoplasmic heritability 

Essential and non-essential metabolites. As in real metabolism, some metabolic products are 
essential for the cell’s growth, and others are intermediate products or wastes. In the integrated 
model, prime numbers are considered to be essential metabolites: their production contributes to 
the growth and increases the probability to produce offspring. This contribution is simply the sum of 
all essential metabolite concentrations. 

Metabolites toxicity. As in real metabolism too, over producing metabolites can lead to toxicity for 
the cell. Hence, the model includes toxicity thresholds for essential and non-essential metabolites. 
Overreaching the toxicity threshold kills the cell. 

Cytoplasm heritability. During replication, daughter cells share cytoplasmic content at division. 
This behaviour can lead to very specific behaviour, especially if some metabolites are co-enzymes 
of transcription factors, as it will be explained below. 

 

6. Coupling the genetic and the metabolic networks 

Bacteria are able to sense their environment by detecting the presence of a particular molecule or 
signal, and to give an appropriate answer by updating their gene expression profile. A famous 
example of this behaviour is the lactose operon, described for the first time by François Jacob, 
Jacques Monod and André Lwoff. 

The lactose operon is made of three genes (lacZ, lacY and lacA) that are controlled by one 
promoter flanked by an operator. Another gene, lacI, codes for a transcription factor which 
inhibates the operon by binding on the operator. LacI is always expressed and its concentration in 
the cytoplasm is almost constant. However its conformation, hence its affinity for the operator is 
(indirectly) modified by lactose. In absence of lactose, lacI is active and down-regulates lactose 
operon expression by binding on the operon. If lactose is present, it represses lacI activity (by 
binding on it). In this case, lactose operon is expressed and the cell is able to metabolize lactose 
(see figure 8). 
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Figure 8 - (From http://apps.cmsfq.edu.ec/biologyexploringlife/) The lactose operon is inactive in the absence 
of lactose (top) because a repressor blocks attachment of RNA polymerase to the promoter. With lactose 
present (bottom), the repressor is inactivated, and transcription of lactose-processing genes proceeds. 

Co-enzymes can repress or activate transcription factors activity (they are repressors or 
activators). This very important biological feature is introduced in the integrated model by adding 
three elements to the transcription factor type (TF): 

• A co-enzyme identification tag (in the metabolic space ℕ∗), 
• A free activity (true or false), 
• A bound activity (true or false). 

A metabolite 𝑚   ∈ ℕ∗  can bind to the TF as a co-enzyme, and be a repressor or an activator. A TF 
has two conformations: one when the TF is free, and another when a co-enzyme binds to it. This 
behaviour is represented in table 2 by a structure with two arms linked by a pivotal point. The 
active site of the TF is located on one arm, and its exposure depends on the equilibrium state (or 
conformation) of the structure. Two configurations exist: one when the TF is free, another when a 
co-enzyme bind to the TF thanks to anchoring points located at arms end. The combination of the 
free activity and the bound activity gives rise to four type of behaviours, as described in table 2. 

(1) If the TF has no free activity, and has a bound activity, the co-enzyme acts as an activator, 

(2) If the TF has free activity, and has no bound activity, the co-enzyme acts as a repressor, 

(3) If the TF has no free activity neither bound activity, the TF is not active. 

(4) Finally, if the TF has free activity and bound activity, the co-enzyme has no effect. The TF is 
always active, whenever a co-enzyme binds to it or not. 
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Free TF Bound TF Free activity Bound activity 
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𝐹𝐴𝐿𝑆𝐸 

 
𝐹𝐴𝐿𝑆𝐸 

 
 

 

  
𝑇𝑅𝑈𝐸 

 
𝑇𝑅𝑈𝐸 

Table 2 - The TF is represented in black, its active site (the part which allow the TF to bind on the binding 
site) being represented in green. Depending on free and bound activities, the co-enzyme (in blue) acts as an 
activator or a repressor, and the active site is free to bind to the binding site or not. 

Let’s 𝑐!(𝑡) be the concentration of the TF 𝑖 at time 𝑡 and 𝑐𝑜𝐸!(𝑡) the concentration of its co-enzyme. 
Depending on the state of the free activity 𝐴!! and the bound activity 𝐴!!, the concentration of the 
TF 𝑖 that is active  𝑎!(𝑡) at time 𝑡 is: 

(9) 𝑎!(𝑡) =

𝑚𝑖𝑛 𝑐! 𝑡 , 𝑐𝑜𝐸!(𝑡) , 𝐼𝐹(  𝐴!!   𝑖𝑠  𝑓𝑎𝑙𝑠𝑒    𝐴𝑁𝐷    𝐴!!   𝑖𝑠  𝑡𝑟𝑢𝑒      )
𝑚𝑎𝑥 𝑐! 𝑡 − 𝑐𝑜𝐸! 𝑡 , 0 , 𝐼𝐹(  𝐴!!   𝑖𝑠  𝑡𝑟𝑢𝑒        𝐴𝑁𝐷    𝐴!!   𝑖𝑠  𝑓𝑎𝑙𝑠𝑒  )

𝑐!(𝑡), 𝐼𝐹(  𝐴!!   𝑖𝑠  𝑡𝑟𝑢𝑒        𝐴𝑁𝐷    𝐴!!   𝑖𝑠  𝑡𝑟𝑢𝑒      )
0, 𝐼𝐹(  𝐴!!   𝑖𝑠  𝑓𝑎𝑙𝑠𝑒    𝐴𝑁𝐷    𝐴!!   𝑖𝑠  𝑓𝑎𝑙𝑠𝑒  )

 

 

7. Population and environment levels 

Open-endedness requires individuals to interact with each other. However, inter-individual 
interactions must not occur at the whole population level (i.e. all individuals interacting with all 
individuals), otherwise there is a strong risk to reduce the variability between individuals. That is 
why, following the work of P. Hogeweg’s group, the integrated model uses a spatial structure. 
Individuals are dispatched on a 2D lattice of size 𝑊.𝐻  (with 𝑊 the width and 𝐻 the height of the 
lattice), each grid cell containing at most one individual. The physical environment is also 
described at the lattice level: each lattice cell contains a list of free metabolites, each with its 
concentration level. Those free metabolites diffuse and degrade, both processes being controlled 
by two parameters: the diffusion rate 𝐷 and the degradation rate 𝐷!. 

• Diffusion: at each time step, a proportion of the free metabolites of a given cell i are spread 
to its Moore neighbourhood (the 8 surrounding cells). This proportion will be controlled by 
the diffusion parameter 𝐷. 

• Degradation: at each time step, a proportion of the free metabolites of a given cell i are 
removed. This proportion is controlled by the degradation parameter 𝐷!. 

Individuals compete for the free metabolites and to produce offspring in empty cells. Individuals 
interact with their local environment by pumping metabolites in and out and releasing their content 
at death (see below). 
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The formalism presented above allows for several outcomes. First, population size is variable. 
Depending on growth rate, lattice size, and interactions between individuals, simulations can lead 
to steady state, but also to oscillations or even extinctions. Second, since individuals can interact 
with their surroundings via intake and release of metabolites, interactions between individuals can 
emerge such as necrophagy, public goods sharing, arms race by releasing toxic metabolites, and 
so on. 

In order to vary the strength of the spatial structure, a random fraction 𝑚𝑖𝑔 of organisms and free 
metabolites can be swapped at each time step. To do so, pairs of lattice cells are randomly chosen 
and their contents are swapped. Depending on the 𝑚𝑖𝑔 value, one can vary the population 
structure from well-mixed (𝑚𝑖𝑔 = 1) to perfectly local (𝑚𝑖𝑔 = 0). Moreover, some metabolites can 
also be artificially maintained at a constant concentration, be regularly provided locally or globally 
in the environment or, on the opposite, be regularly washed-out from the environment. Thus, 
various real experimental setups can be mimicked, including serial plates or chemostat 
(Mozhayskiy & Tagkopoulos, 2012). Similarly, some individuals can be regularly picked up in the 
environment to seed a new colony, thus mimicking a mutation accumulation experiment. All these 
optional features will be useful for further experiments in WP3 and to mimic the wet experiments of 
WP1 (figure 9). In order for the simulation to be computationally tractable, a minimum 
concentration threshold is defined. Bellow this threshold a given metabolite is considered absent 
from the local environment. 

 

 

Figure 9 – Parallel in vivo (top) and in silico (bottom) experimental evolution. The experiments conducted in 
vivo are mimicked in the computational framework. Figure from (Hindré et al., 2012). 
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adaptation, as well as global laws that link evolutionary 
processes and organismal structure. However, using 
such an evolutionary perspective is difficult, mainly 
because the relevant events that resulted in the present 
organismal structure occurred at some unknown time 
in the past, in unknown conditions and with unknown 
constraints. Thus, specific tools are necessary to directly 
observe evolutionary dynamics and relate these events to 
the real conditions in which they occur.

The past three decades have seen the emergence of 
experiments that are designed to reproduce evolution 
in controlled conditions in the laboratory2 and, more 
recently, on a computer3. Laboratory in vivo evolu-
tion experiments focus on the single most important, 
integrative and complex phenotype of all: fitness. They 
allow rigorous connections to be made between genetic 
changes and phenotypic outcomes in a complex adaptive 

system, such as a bacterial cell. The adaptive muta-
tions that are discovered during evolution experiments 
are often subtle in their phenotypic effects and there-
fore different from those observed in more traditional 
genetic studies, in which genes are typically knocked 
out and selective screens usually rely on extreme ‘plus 
or minus’ phenotypes. In parallel — and often inde-
pendently — evolution experiments have also been 
conducted on artificial, non-living substrates. For two 
decades, computer simulations and in silico experimen-
tal evolution approaches have been developed, in which 
artificial organisms (so-called digital organisms) evolve in 
a computational environment. In these digital experi-
ments, practitioners are aware of all possible evolution-
ary events (including variations that appear and are not 
further selected for), and the experiments are highly 
reproducible, and can be carried out in multiple con-
texts and under multiple evolutionary conditions. In vivo 
experimental evolution enables a better understanding 
of the pace of evolution and its main features in living 
organisms2,4. When combined with molecular biology 
and high-throughput technologies, it also allows pheno-
typic variations to be related to the molecular events that 
occurred in the course of the experiment5–7. In silico 
experimental evolution can bypass species-specific traits 
and generate more general observations.

Here, we review in vivo and in silico evolution experi-
ments for bacteria; although there have also been reports 
of these experiments for viruses8,9 and higher eukaryotes 
such as Drosophila melanogaster10, they are not discussed 
in this Review. We focus especially on new insights from 
experimental evolution that link global microbial pheno-
types (such as physiology and behaviour) with molecular 
and regulatory observations. We also discuss the limits 
of experimental evolution, as well as future perspectives, 
including the need for closer collaboration between 
researchers using in vivo and in silico approaches.

+P|XKXQ and KP|UKNKEQ experimental evolution
Biological systems emerge through Darwinian evolution, 
which is characterized by random genetic modifications 
followed by selection of well-adapted individuals11. This 
combination of ‘chance and necessity’ can be stud-
ied efficiently by propagating organisms in controlled 
environments (FIG. 1). This strategy, called experimen-
tal evolution, provides complementary advantages to 
most classical genetic studies (BOX 1). Owing to their 
short replication times, large populations and easy stor-
age2, microorganisms are excellent candidates for use in 
experimental evolution4,6,7 (TABLE 1). Replicate popula-
tions have been propagated from microbial ancestors 
over different evolutionary timescales, from tens to 
tens of thousands of generations, and under diverse 
environ mental conditions. These different environments 
impose selection for changes in either specific pheno-
types (including growth in the presence of inducible or 
non-native substrates, and resistance to stresses such as 
antibiotics, atypical pH or temperature) or broad pheno-
types (such as growth in the presence of preferred car-
bon sources12–17 or fluctuating levels of resources18; social 
behaviours, including differentiation and the production 

Figure 1 | +P|XKXQ microbial and KP|UKNKEQ evolution experiments. Ancestral microbial 
organisms (top) or artificial organisms (bottom) are propagated in defined wet or 
computer environments, respectively. The main advantage in these experiments is the 
availability of an ancestor and the evolved populations that are sampled throughout 
evolution. All living and artificial organisms can be frozen or stored in databases, 
respectively, and revived at any time for further analyses. Many parameters can be varied. 
+P|XKXQ, the ancestor (a

1
) can be any microorganism, the only constraint being its ease of 

cultivation; ancestral digital organisms (a
2
) can be randomly constructed, or designed to 

have capabilities such as replication or minimal metabolism. The number of replicate 
cultures (b

1
 and b

2
) can be varied, leading to independent populations derived from the 

common ancestor. +P|XKXQ, culture conditions can be varied, including the media, the 
physical parameters, the structure of the environment (batch or chemostat culture; 
heterogeneous or homogeneous environments), the effective population size and the 
bottlenecks at each transfer (c

1
). +P|UKNKEQ, almost all parameters can be tested independently 

or in combination, including mutation rates, mutation biases and selection strength, 
which define the way in which the KP�UKNKEQ transfer (c

2
) is carried out. The total duration (d

1
) 

and sampling times of KP|XKXQ experiments can be varied; KP|UKNKEQ experiments classically 
run for hundreds of thousands of generations (d

2
).
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To summarize, the environment level is characterized by the following parameters: 

• Environment size 𝑊.𝐻 (𝑊.𝐻 thus being the maximal carrying capacity2 of the 
environment), 

• Diffusion coefficient 𝐷, 
• Degradation rate 𝐷!, 
• Metabolites inflow 𝐼! (for each metabolite 𝑖), 
• Metabolites outflow 𝑂! (for each metabolite 𝑖), 
• The migration coefficient 𝑚𝑖𝑔, 
• The minimum concentration threshold. 

Note that the dynamics of inflow/outflow can be constant (i.e. applied at each time step) or time 
dependent. 

At a given time t each lattice cell of coordinate (𝑥, 𝑦) is characterized by: 

• The individual that occupies the cell (possibly null) 
• The list of free metabolites that are available and their concentrations 𝐶!(𝑡)  

Given the parameters of the environment, the dynamics of a free metabolite 𝑖 in a lattice cell 𝑘 is 
then given by (𝐶!,! being the concentration of metabolite 𝑖 in the lattice cell 𝑗): 

(10) 𝐶!,! 𝑡 + 1 = 𝐶!,! 𝑡 − 𝐷!𝐶!,! 𝑡 +    𝐷!  !"  !"#$!!"#$% 𝐶!,! 𝑡 − 8𝐷𝐶!,!(𝑡) + 𝐼!(𝑡) − 𝑂!(𝑡) 

7.1. Interactions between individuals 
The environment level described above enables interactions between individuals through 
modification of a shared environment. For these interactions to be efficient and effectively lead to 
complex evolutionary dynamics and open-endedness, individuals must be able to structure their 
environment and the environment of their neighbours, thus influencing their “life” and evolutionary 
fate. To do so, we provide the individuals with three properties: 

(1) The ability to release metabolites in the environment, 

(2) The ability to intake metabolites from their environment, 

(3) The possibility to indirectly modify the inner metabolites concentration of their neighbours, due 
the permeability of the cell membranes. 

These properties are achieved through special proteins called pumps. As explained above in our 
artificial chemistry, E pearls encode enzymes that transform a substrate (actually an integer 𝑠 ∈ ℕ∗) 
into another one, the product (another integer 𝑝 ∈ ℕ∗), with a specific rate but we consider that the 
enzymes for which the substrate and the product are equal (i.e. 𝑠   =   𝑝) are inflowing or outflowing 
pumps for the metabolite 𝑠. The orientation of the pump (inflow or outflow) and its efficacy are 
specified by the reaction constants encoded in the 𝑛-tuple. Using such pumps, the individuals are 
able to control their cytoplasm composition and to maintain their internal homeostasis. 

                                                
2 The actual carrying capacity may depend on the species needs and on the metabolites available in the 
environment. In a complex situation where the environment contains different co-evolving species, the 
carrying capacity of each species may depend on the metabolites released by the other ones and on the 
dynamic of metabolites inflow/outflow. 
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The pumps are important mechanisms for the cell to maintain a stable metabolic activity. However, 
by themselves, they do not allow for complex cell-to-cell interactions since each individual can fully 
and autonomously control its internal composition. That is why we added two mechanisms allowing 
for resource cycling and complex cell-to-cell interactions: 

• “Necrophagy”: each time an individual dies, all the metabolites it contains are released in 
the local environment and start diffusing on the grid. This mechanism will lead for a 
progressive complexification of the environment as long as evolution creates more and 
more complex individuals. 

•  “Permeable membrane”: the cell membranes are not perfect barrier for metabolites. As 
well as metabolites diffuse on the environment grid, they diffuse from the grid cell (i.e. the 
local physical environment of the individual) to the individual itself with a diffusion coefficient 
𝐷!. At each time step, a fraction 𝐷! of the metabolites diffuse through the cell membrane, 
resulting in a progressive balancing of the metabolites concentrations in the environment 
and in the cell. Thus, pumps are active mechanisms that the cell can use to maintain an 
internal concentration different from the external one3. Consequently, a metabolite actively 
released by an individual in its environment will diffuse to the neighbouring lattice cells (with 
diffusion coefficient 𝐷) and to the individuals that “live” there (with a diffusion coefficient 
𝐷!), possibly perturbing their internal metabolic activity, unless these individuals have 
evolved mechanisms to protect themselves against these perturbations. 

These two additional mechanisms are likely to initiate complex dynamics at the ecosystem level 
(creation of a trophic network, niche construction…) and at the cell-to-cell level (release of public 
good or, on the opposite, of bacterial toxins). 

7.2. Additional features 
In order to increase the level of complexity and realism of the environment, some features could be 
added to the current specifications, for example: 

• Allow for the diffusion of enzymes, TF and/or plasmids in the environment, 
• Allow for the release of DNA in environment at death, 
• Define some metabolites that behave like toxins, 
• Allow for bacterial conjugation or transformation. 

 

8. General algorithm 

Population of organisms are evolved in a dedicated program that controls the variation-selection 
process. At each simulation time step, organisms are evaluated and either killed, updated or 
replicated depending on their current state and on the states of the other organisms living in their 
Moore neighbourhood. In particular, organism’s replication is determined by its relative fitness and 
by the availability of a gap in its Moore neighbourhood. 

                                                
3 Depending on the 𝐷! value, the pumps will precisely control the internal composition of the cytoplasm 
(𝐷! = 0) or they will have no effect (𝐷! = 1). In between, pumps and membrane permeability will balance 
each others and stabilize the in/out metabolites concentration. 
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(1) Death probability follows a Poisson law of parameter 𝑝!"#$!, defined at the beginning of the 
simulation. At death, organism’s cytoplasm is released in the local environment (i.e. metabolite 
concentrations) and can feed other organisms. 

(2) If the organism do not die and is unable to divide (e.g. because there is no gap in its 
neighbourhood), its state is updated. Genetic regulation network and metabolic network are 
updated, and the score of the cell is computed by summing essential metabolites concentrations. 
In details, equations 2, 3, 4, 5 (or 6), 8 and 9 are solved via an ODE numerical solver, using the 
explicit embedded Runge-Kutta-Fehlberg method. Equation 10 and the score are computed 
directly using Euler’s method. 

(3) For each gap, a competition occurs in the Moore neighbourhood to select the replicating 
individual, depending on the differences of fitness. Each organism 𝑖 is allowed to compete if 
𝑠𝑐𝑜𝑟𝑒! >   Θ ∗ 𝑠𝑐𝑜𝑟𝑒!"# with 𝑠𝑐𝑜𝑟𝑒! the score of the organism 𝑖, Θ ∈ [0,1] fixed at the beginning of 
the simulation, and 𝑠𝑐𝑜𝑟𝑒!"# the maximum score in the population. The fitness 𝑤! of each 
individual 𝑖 is then computed as following: 

(11) 𝑤! =
!"#$%!

!"#$%!"#

!
 

with 𝑝 a positive factor increasing the selection pressure. To avoid biases, gaps are explored 
randomly. 

9. Conclusion 

The integrated model has been developed to study highly complex evolution dynamics. To do so, 
we followed the principles of Artificial Life by mimicking biological evolution in a computer-world. 

The way such a complex model is implemented, optimized and tested is of primary importance. 
Like for every modelling process, inevitable simplifications have been made. As a consequence, 
we cannot keep the resolution applied in previous models (e.g. the detailed genomic structure in 
aevol, or the complex equations driving binding sites dynamic in the virtual cell model). However, 
like in numerical weather predictions, details of subprocesses can be neglected in the face of the 
whole system evolution, understood that simplifications no dot significantly affect higher level 
predictions. To observe evolution of evolution, interactions between objects are probably more 
important than their nature (in vivo or in silico) and the details of their representation. For instance, 
our representation of the genome is coarse-grained compared to aevol, however, main outcomes 
of indirect selection on the genome structure are maintained (non coding DNA amount, number of 
genes, …). We also strongly simplified the transcriptional noise model, as well as equations driving 
transcription factors and binding sites activity. The artificial chemistry is simplified, since chemical 
basis of the reactions has been abstracted (e.g. the absence of chemical bonds or complex 
molecules). 

But, as illustrated in the figure 10, we think that an integrated model of evolution is able to give a 
big picture of how evolution shapes a complex system, even if the representation of each 
interacting entity is smoothed. Our approach is quite similar to real experimental approaches 
(Beslon, 2008). Our work includes three main steps: 

• Do parametric exploration and identify parameter variations having (or not) significant 
effects on evolutionary dynamics, 
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• Build experimental protocols to study the effect of the identified parameters. 
• Compare in vivo and in silico results, offer new hypothesis and insights on a particular 

subject, give guidance on which data are most important to gather experimentally. 

Using the simulation as an experimental system is “an efficient way to mimic complex systems and 
manipulate them in ways that would be impossible, too costly or unethical to do in natural 
systems”. (Peck, 2004). Indeed, the way we represented biological processes in the integrated 
model fills a little more the gap between in vivo experimental evolution and in silico experimental 
evolution. A system biology and artificial life progressively come closer and tend to explore similar 
objects with a common vocabulary. This tendency is strongly lightened in the EvoEvo project, since 
we also built the model in agreement with the work of our partners in experimental biology (UJF 
and CSIC). 

 

Figure 10 – Let’s suppose that one can only have a closer look to this painting of Vincent Van Gogh (“Champ 
de blé aux corbeaux”, 1890), famous for unfortunate reasons. Probably one will be able to identify a black 
bird, but very poorly detailed. Other shapes (mainly brush strokes) will remind one grass, or even wheat with 
some imagination. One will probably assert this is abstract art. In reality, details of small entities don’t matter 
if our interest focuses on their interactions. Now, if one can see the global picture, one will observe that grass 
only grows on field borders, that birds behave collectively and probably eat wheat, and that something drawn 
mud trails. Even more, if one could have the complete history of this landscape, one would understand a lot 
more, e.g. that grass do not grow on trails because workers crush it, neither in fields because wheat 
monopolizes water resources. Our integrated model will give us the same metaphoric picture of evolutionary 
dynamics, in order to study the emergence of complex EvoEvo strategies. 
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