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INVESTIGATION OF THE ELASTOPLASTIC BEHAVIOR 
OF FCC POLYCRYTALS USING A FFT NUMERICAL SCHEME 

ABDERRAHIM BELKHABBAZ1, BRIGITTE BACROIX1, RENALD BRENNER2*† 

Abstract. This work is devoted to the study of the effective mechanical response and 
strain and stress field fluctuations in FCC untextured polycrystals using a full-field 
numerical approach for a crystalline rate-independent elastoplastic constitutive behavior. 
The full-field simulations make use of the fast Fourier transform (FFT) numerical 
scheme. The first application of the developed scheme, which is presented in this paper, 
is the study of the elastoplastic behavior of non-hardening polycrystals in conjunction 
with two rate-independent crystal plasticity models: the standard Schmid law and the 
regularized Schmid law. The macroscopic yield stress is first obtained with the standard 
Schmid law by averaging the yield stresses calculated on several and different 
representative volume elements (RVE), each of them being constituted of 500 randomly 
distributed grains. This numerical estimate is then compared to published results for 
different nonlinear extensions of the self-consistent (SC) scheme for the case of 
viscoplasticity at very low rate sensitivity values. Among the different SC models 
considered, the second-order estimate developed by Ponte Castañeda in 1996 [1] appears 
to be the most accurate. The influence of the regularization of the Schmid law on the 
polycrystalline response is then studied using the FFT numerical scheme. It is shown 
that, unlike the incremental SC model, the FFT numerical estimate is not sensitive to the 
regularization of the local plastic yield criterion. 
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1. INTRODUCTION 

The homogenization techniques based on mean field approaches are widely 
used to describe the effective and local properties of polycrystalline aggregates 
(e.g. [2–5]). This kind of approach provides estimates of the macroscopic 
mechanical fields based on statistical information on the distributions of the 
corresponding quantities at the grain level. The self-consistent (SC) model, 
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originally developed by Hershey [6] and Kröner [7] for linear elasticity, is by far 
the mostly used method for estimating the macroscopic behavior of polycrystalline 
aggregates. For linear behaviors, this model delivers very accurate estimates for the 
effective properties as well as for the local strain and stress fields of polycrystalline 
microstructures [8–11]. This has been assessed by comparisons with full-field 
numerical results. However, in the case of non-linear behaviors (viscoplasticity for 
instance), several SC extensions have been proposed leading to very different 
predictions, especially for highly non-linear behaviors [8,  12, 13]. In order to 
improve the widely used first-order SC formulations which do not take into 
account the field fluctuations within the grains, a mean-field approach based on a 
variational approach has been proposed by Ponte Castañeda [1]. This 
homogenization scheme, which makes use of the intragranular fluctuations of the 
fields, delivers estimates that are exact to second-order in the mechanical contrast 
[14]. It is known as the second-order (SO) method. This method has been later 
improved by Ponte Castañeda [15,  16]. By comparing various self-consistent 
estimates to reference full-field calculations, the SO method has been shown to be 
the most accurate one for isotropic viscoplastic polycrystals [8]. However, until 
now, no comparison between full-field and mean field approaches has been 
performed for low rate-sensitivity or rate-independent materials. Such comparisons 
are thus necessary for the case of rate-independent elasto-plasticity. 

At the grain scale, several models can be used for the description of the local 
rate-independent plasticity criterion. If the standard Schmid law is by far the most 
widely used, regularized Schmid laws have also been proposed (see, for instance, 
Gambin [17]). This description is very similar to viscoplastic regularization but 
remains rate-independent. The crystalline plastic surface is defined by a unique 
yield function which is differentiable and all the slip systems are active when the 
plastic criterion is reached. Recently, Yoshida et al. [18] studied the influence of 
the regularization on the incremental self-consistent estimates [19,  20]. By 
incorporating both standard and regularized Schmid laws into the SC model, they 
showed that the local strain heterogeneity strongly depends upon the choice of the 
local constitutive law: the use of regularized Schmid law has been shown to predict 
much less heterogeneity within the local strain field and a stiffer overall response 
than the use of the standard Schmid law. Using the regularized law, the incremental 
SC estimate was found to be very close to the Taylor upper bound. These results 
have thus highlighted the fact the self-consistent model was significantly affected 
by the description of the local yield criterion. This is an important shortcoming for 
this type of approach, as long as more predictive models are searched for. 

These differences obtained with the incremental self-consistent scheme, 
together with the increasing availability of powerful full-field numerical 
simulations would thus plead in favor of the use of these full-field approaches. And 
indeed, the classical finite element method (FEM) has been commonly applied to 
obtain reference solutions for relatively large unit cells or so-called representative 
volume elements RVE [21–23]. However, the difficulties related to meshing as 
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well as the large number of degrees of freedom required by such FEM calculations 
limit the complexity and the size of the microstructures that can be investigated by 
these methods. In recent years, the drastic increase in computational power has also 
allowed the development of even more advanced full-field simulations of 
polycrystalline aggregates. In this context, a novel formulation, originally proposed 
by Moulinec and Suquet [24] and based on the Fast Fourier Transform FFT 
technique has been used to overcome the difficulty related to meshing. The latter 
has been shown to be well adapted to the treatment of composite materials, in 
which the main source of heterogeneity is related to the spatial distribution of 
different phases associated with different mechanical properties [25]. Full-field 
simulations provide, by definition, a numerical estimate of the local stress and 
strain fields at each voxel. From these local quantities, it is of course possible in 
turn to calculate statistical averages and fluctuations of stress and strain fields 
within the individual grains of a polycrystal. 

The aim of the present paper is thus to extend the FFT approach to the case of 
elasto-plasticity for polycrystalline materials. Especially, the influence of the 
chosen local plasticity criterion will be investigated, in order to see whether this 
numerical approach is affected or not by this choice (like the SC scheme). The 
macroscopic FFT estimates will then be compared to SC elastoplastic estimates in 
order to see whether or not this new approach provides a significantly different 
response from the one obtained with mean field approaches. 

The outline of the present paper is as follows: The main ingredients of the 
FFT numerical scheme proposed by Moulinec and Suquet [24] are first briefly 
recalled in Section 2 and the two selected rate independent crystal plasticity laws, 
i.e. the standard and regularized Schmid laws, are then presented in Section 3. The 
implementation of the first one is then tested in Section 4, in which the calculation 
of the tensile yield stress of a FCC isotropic polycristal is presented and compared 
to self-consistent estimates. The influence of the discretization of the investigated 
volume and selected number of grains is also discussed. In section 5, the influence 
of the regularisation of the Schmid law on the elastoplastic behavior is finally 
analyzed, both in terms of effective behavior and local stress and strain fields. 

2. FFT MODELLING 

Moulinec and Suquet and Michel et al. [24–26] have developed an iterative 
method for studying the effective properties and the local field fluctuations within 
elastoplastic composite materials. It has been further extended to 3D viscoplastic 
polycrystalline aggregates by Lebensohn [27]. This method allows to obtain a very 
detailed mapping of the intragranular mechanical fields that appear in a large 
polycrystalline RVE, in a very efficient way compared with a classical FEM 
calculation. As no meshing is required, this formulation is particularly adapted to 
the direct use of images describing the microstructure of the material, obtained 
either from numerical treatments (like the elaboration of so-called Voronoï 
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aggregates [10], see below) or experimental measurements [28] (e.g. series of 2D 
Electron Back Scattering Diffraction (EBSD) files obtained in a scanning electron 
microscope in order to get a 3D microstructure or direct 3D Diffraction Contrast 
Tomography (DCT) files obtained in a synchrotron, like that determined by 
Ludwig et al. [29], Maire et al. [30] or Salvo et al. [31]). Based on such a complete 
and discrete description of the microstructure, the stress and strains fields can then 
be computed for each considered voxel. The FFT method is based on the resolution 
of a unit-cell problem with periodic boundary conditions. The unit cell under 
consideration is discretized into  NV = Nx × Ny × Nz  voxels (in three dimensions). 
We recall that the FFT based algorithm is not restricted to linear behaviors. 
Problems involving non-linear behaviours like viscoplastic polycrystals [8, 27, 28] 
and elasto-viscoplastic polycrystals [32, 33] have already been considered. 

In the present case which concerns elasto-plasticity, we confine our work to 
small strains conditions, and we can thus consider the additive decomposition of 
the local strain rate into elastic and plastic parts 

 e p= +ε ε ε . (1) 

The elastic relation is then given by the Hooke’s law 

 : : ( )e e e p= = −σ C ε C ε ε , (2) 

where σ and Ce are the local true stress and forth-order elastic moduli tensor, 
respectively. As we deal here with FCC (face-centered cubic) metals, the moduli 
tensor is characterized by the cubic symmetry and thus contains only 3 distinct 
elastic constants, namely C11, C12 and C44, using the standard Voigt notation. The 
elastic anisotropy can thus be characterized by the so-called Zener parameter, 
which reads 

 44

11 12

2Ca
C C

=
−

. (3) 

The local problem on the unit cell with volume Ω and boundary ∂Ω then reads 

 ( )

( , ) : ( )    ( , ) [0, ]
div ( , ) 0

( , ) sym grad ( , ) ,    ( , ) ( , ) ,

( , ) ( , ) .    periodic on 
( , ).    anti-periodic on 

e px t x t T
x t

x t x t x t x t

x t x t x
x t n

⎧ = − ∈Ω ×
⎪ =⎪
⎪ = 〈 〉 =⎡ ⎤⎨ ⎣ ⎦
⎪ − 〈 〉 ∂Ω⎪
⎪ ∂Ω⎩

σ C ε ε
σ

ε u ε ε

u ε
σ

 (4) 

with ( )tε the imposed macroscopic strain rate and n the outward normal vector on 
the boundary ∂Ω. The problem is solved incrementally with the integration of the 
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local constitutive relation. For a given time step tn , the strain field solution reads 

 ( )0 0( , ) ( ) ( , ) : ( , ) ,n n n nx t t x t x t= − ∗ −ε ε Γ σ C ε  (5) 

with C0 the elasticity tensor of a homogeneous reference medium and Γ0 the 
corresponding Green operator. This implicit integral equation is solved iteratively 
by using the fixed point method [24]. The plastic flow rule remains to be specified. 

3. THE RATE INDEPENDENT CRYSTAL PLASTICITY MODELS 

Plastic deformation is supposed to be accommodated by crystallographic slip, 
which implies that the plastic strain rate takes the form 

 ( ) ( )p s s

s
= γ∑ε p  (6) 

with 

 ( )( ) ( ) ( ) ( ) ( )1
2

s s s s s= ⊗ + ⊗p n m m n , (7) 

where ( )sγ , ( )sn  and ( )sm  are the slip rate, the slip direction and the slip plane 
normal for the slip system (s), respectively. For FCC materials, the possible slip 
systems are the 12 {111} <110> systems (with {111} and <110> the Miller indices 
of the slip planes and direction families respectively). The resolved shear stress 

( )sτ  on each system (s) is written as 

 ( ) ( ) ( ) ( ). . :s s s sτ = =m σ n σ p . (8) 

From Eqs. (2), (6) and (8), the resolved shear stress rate is given as 

 ( ) ( ) ( ) ( ) ( ): : : :s s e l s e l

l
τ = − γ∑p C ε p C p , (9) 

where ( )sp  is assumed to be constant. Slip resistance for system (s) is denoted by 
( )s
cτ  (the so-called critical resolved shear stress, CRSS) and its evolution is 

governed by 

 ( ) ( )s sl l
c

l
hτ = γ∑ , (10) 

where slh  denotes the so-called hardening matrix, whose actual expression 
characterizes the selected crystal hardening law. 
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3.1. THE STANDARD SCHMID LAW (SSL) 

For a crystal-plasticity model based on the standard Schmid law (SSL), the 
local yield function f  can simply be written as 

 ( )
1,....,sup ,s s

s Nf f==  (11) 

with 

 ( ) ( ) ( ) 0s s s
cf = τ − τ = . (12) 

sN  represents the number of slip systems and ( )sf  describes the yield function 
for each slip system (s). The plastic strain rate (Eq. (6)) can be re-written as 

 ( )( ) ( ) ( )sgn ,p s s s

s
= τ γ∑ε p  (13) 

where the slip rates are now assumed to be positive. 
Based on sN  independent yield functions (Eq. (12)), potentially active and 

inactive slip systems are then classified as 

 ( ) ( ) ( )0    for  0  and  0s s sf fγ ≥ = = , (14a) 

 ( ) ( ) ( )0    for  0  and  0s s sf fγ = < < . (14b) 

From the consistency condition of the yield functions, the slip rates ( )sγ  on 
the active slip systems are determined from 

 ( ) ( ) ( ) 0,s s sl l

l
f R X= − γ =∑  (15) 

 ( ) ( ) ,s sl l

l
Y Rγ = ∑  (16) 

with 

 ( )( ) ( ) ( ): sgn : :s s s eR = τ p C ε , (17a) 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( ): sgn sgn : :sl sl s l s e lX h= + τ τ p C p , (17b) 

 
1( ) ( ):sl slY X

−
⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ . (17c) 

Under a particular hardening rule, ( )slh  and ( )slX  may become singular, and this 
results in a possible non-uniqueness of the set of the active slip systems for a given 
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deformation mode. But for perfect plasticity ( ( ) 0slh = ), it is always possible to 
choose at least one set of linearly independent slip systems from the potentially 
active slip systems such that ( )slX  is non-singular and Eqs. (15) and (16) are 
satisfied [19]. If more than five systems are linearly independent, five slip systems 
are then selected arbitrarily in the computation, a selection mode which has been 
shown to have a negligible effect on the actual response of the material [18]. 

Using Eqs. (2), (13) and (16), we finally obtain the rate form of the 
constitutive equation, :=σ L ε  in term of the elastoplastic tangent modulus, which 
writes 

 ( ) ( )( ) ( ) ( ) ( ) ( ): sgn : sgn :e s e s l sl l e

s l
Y

⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤= − τ ⊗ τ⎨ ⎬⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
∑ ∑L C C p p C . (18) 

3.2. THE REGULARISED SCHMID LAW (RSL) 

In order to avoid the possible singularity of the matrix ( )slX  mentioned 
above, a regularized Schmid law for rate-independent crystal plasticity has been 
proposed [17], which can be expressed as 

 

1
2 2

( )

( ) 1 0.
n n

s

s
cs

f
⎧ ⎫⎛ ⎞⎪ ⎪τ= − =⎨ ⎬⎜ ⎟τ⎝ ⎠⎪ ⎪⎩ ⎭
∑  (19) 

In this equation, the exponent n  is a material parameter which characterizes 
in a sense the difference between the normal and the regularized Schmid laws. The 
plastic strain (Eq. 7) can be derived from the normality rule associated with the 
yield function given by 

 p f∂
= Λ

∂
ε

σ
. (20) 

By combining Eqs. (6) and (20), the slip rate on a given slip system reads 

 

1 12 1 2 2( ) ( )( )
( ) ( ) ( ),   with  ,

n n ns ss
s s s

c c cs

−− ⎧ ⎫⎛ ⎞ ⎛ ⎞λ τ ⎪ ⎪τγ = λ = Λ ⎨ ⎬⎜ ⎟ ⎜ ⎟τ τ τ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∑  (21) 

where λ  is a positive plastic multiplier. By contrast to the SSL, all slip rates are 
derived from a unique plastic multiplier. Therefore, there is no need to classify 
active and inactive slip systems among the set of slip systems. Loading and unloading 
conditions are simply written as 
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 0   for  0  and  0f fλ ≥ = = , (22a) 

 0   for  0  and  0f fλ = < ≤ . (22b) 

From the consistency condition of the yield function, the plastic multiplier λ  
can be determined from 

 : : ( : : ) 0e ef H= − λ + =G C ε G C G  (23) 

and 

 : : ,
: :

e

e H
λ =

+
G C ε

G C G
 (24) 

with 

 
2 ( )( )

( ) ( ):
n ss

s s
c cs

⎧ ⎫⎛ ⎞⎪ ⎪τ= ⎨ ⎬⎜ ⎟τ τ⎝ ⎠⎪ ⎪⎩ ⎭
∑ pG , (25a) 

 
2 12 ( )( ) ( )

( ) ( ) ( ) ( )
1:

nn ls sl
s s l l

c c c cs l

h
−⎧ ⎫⎡ ⎤⎛ ⎞τ⎛ ⎞⎪ ⎪τ ⎢ ⎥⎜ ⎟= ⎨ ⎬⎜ ⎟ ⎢ ⎥⎜ ⎟τ τ τ τ⎝ ⎠⎪ ⎪⎝ ⎠⎢ ⎥⎣ ⎦⎩ ⎭

∑ ∑H . (25b) 

It is worth noting that in this case, no matrix inversion is necessary to get λ . 
Thus, the difficulty related to the choice of slip systems encountered with the SSL 
is completely avoided. The elastoplastic tangent modulus reads then 

 ( : ) ( : ):
: :

e e
e

e H
⊗

= −
+

C G G CL C
G C G

. (26) 

For the numerical applications presented below, we will restrict ourselves to 
the case of perfect plasticity, i.e ( ) 0slh =  and simulate the behavior of copper. 
Thus, the elastic constants are taken equal to  C11 = 166 GPa, C12 = 120 GPa  and  
C44 = 76 GPa, which gives a Zener parameter  a = 3.30  and the initial value of the 
CRSS for all 12 systems is equal to  ( ) 30 MPas

c cτ = τ = . Due to the absence of 
hardening, this value will remain constant with strain. 
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4. THE YIELD STRESS OF AN UNTEXTURED FCC POLYCRYSTAL 
DEFORMED IN UNIAXIAL TENSION  

4.1. THE UNIT CELL CONSTRUCTION 

As this section is focused on the determination of the yield stress of an 
isotropic FCC polycrystal using FFT numerical simulations, we first need to 
construct some isotropic polycrystalline aggregates. Unless otherwise specified, 
our standard aggregate will be represented by Mg = 500 grains or crystalline 
phases. Then, to construct a unit cell representative of this aggregate, the so-called 
Poisson-Voronoï tesselation technique is employed: in this procedure, a set of Mg 
initial seeds, randomly distributed within the 3D unit cell, is used to generate the 
tessellation of the whole space. This Poisson distribution of points indeed 
constitutes the nuclei of the growing grains. Each point within the 3D cell is then 
assigned to its nearest nucleus determining thus Mg different domains or phases (or 
grains). Each domain is then associated with a single crystalline orientation 
extracted from a list of triplets of Euler angles (φ1,Φ, φ2) established using a quasi-
random Sobol process. It has been previously checked that this set of orientations 
does lead to an isotropic (ODF) Orientation Distribution Function. Consequently, 
the so-obtained 3D unit cell, which is shown in Fig. 1, exhibits a global isotropic 
behavior. In this figure, each color represents a given crystalline orientation. 

 
Fig. 1 – An isotropic unit cell containing 500 grains discretized into 200×200×200 voxels  

(reference microstructure). 

This cubic unit cell is then further discretized into a regular grid consisting of 
NV = Nx×Ny×Nz voxels. By default, we will take Nx = Ny = Nz = 200, such that for the 
standard number of Mg = 500 grains, each grain comprises 16,000 voxels on 
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average. It is important to note again that periodic boundary conditions will then be 
imposed to this microstructure to be consistent with the requirements of the FFT-
based method. If, in most cases, these periodic conditions are expressed in terms of 
imposed displacement or strain rate, in some cases, it is necessary to impose 
instead the stress loading direction [24]. A typical example is provided by the 
uniaxial tension test along the 3 axis of the sample reference. We impose in this 
case the direction of the overall stress and we derive the strain loading by means of 
an auxiliary parameter t (arc length method). The overall stress and strain can be 
expressed as follows: 

 0 0  and  :k S S tσ = ε = , (27) 

where 0S  is the prescribed direction of overall stress, ε  is the overall strain, k is 
the unknown level of overall stress and t, which serves as a loading parameter, is 
the component of the overall strain in this direction. 

4.2. AVERAGING PROCEDURE OVER N  DIFFERENT CONFIGURATIONS 

In order to assess with accuracy the yield stress of an isotropic polycrystalline 
material, the constructed unit cell may be too small to constitute a real RVE. In 
particular, it does not contain several grains associated with the same crystalline 
orientation but different neighboring environments. In order to overcome this difficulty 
and to increase the statistical relevance of our calculations, we will calculate the 
mechanical response of N different unit cells, each of them being associated with 
the same set of orientations, but with different random distributions of both nuclei 
positions and associated orientations. By repeating this procedure e.g. 50 times, we 
end up in this way with 50 different configurations in which the same orientation 
can be surrounded by different environments. Then, the macroscopic quantities, which 
will characterize our isotropic polycrystalline material, will simply be obtained by 
averaging the corresponding quantities calculated for each of the 50 configurations. 
Taking therefore different grain environments into account by considering different 
configurations is expected to provide a good approximation of a large isotropic 
polycrystalline microstructure. In other words, the calculation of the macroscopic 
yield stress of an isotropic polycrystal will be assessed in the following by 
performing N calculations on N different unit cells composed of Mg grains and NV 
voxels. The larger the parameters N, Mg and NV, the more precise the mechanical 
characterization of our isotropic material will be. The use of such averages will 
then allow us to compare macroscopic and per phase quantities obtained from FFT 
simulations with analogous quantities obtained from SC formulations for 
aggregates with random microstructures. 

Before doing this comparison, it is first required to perform a preliminary 
study on the influence of the various parameters which characterize the proposed 
discretization (number of grid points, orientations and configurations) on the 
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macroscopic response, in order to determine the set of parameters which provides 
both satisfactory precision and computing time. For this goal, a tensile test is simulated 
for several configurations with different Voronoï tessellations and sets of crystalline 
orientations. 

4.3. INFLUENCE OF THE DISCRETIZATION ON THE OVERALL RESPONSE 

We start our preliminary study by the evaluation of the influence of the 
discretization (i.e. the NV number) on the overall response of the aggregate. The unit 
cell volume chosen for these simulations contains Mg = 500 grains associated with an 
isotropic texture and is discretized into NV = 83, 163, 323, 643, 1003 or 2003 voxels. The 
evolution of the normalised stress 33 / cσ τ  as a function of the imposed macroscopic 
strain ε  obtained for these different discretizations in uniaxial tension is shown in 
Fig.2a. Note that these simulations are performed with a deformation increment 

65 10−Δε = ⋅ . We choose here to impose very small increments and thus to reduce the 
performed calculations to small strains, because we first concentrate on the correction 
prediction of the elasto-plastic transition. We observe that for a discretization of at least 
323 voxels, all responses are practically superimposed. The absolute error calculated 
between the responses obtained using the different discretizations and the one obtained 
for the extreme case of 2003 voxels (that we will consider as the reference case for the 
FFT calculations) is also calculated and presented in Fig. 2b as a function of the 
imposed deformation. These curves show that the error calculated with a discretization 
of 323 voxels compared to the extreme case of 2003 voxels is already less than 0.1%, 
i.e. extremely low. We can thus conclude that the 323 discretization can satisfactorily 
allow the assessment of the macroscopic stress within a reasonable calculation time. 
This corresponds to a number of voxels per grain η = 65, which seems also quite 
reasonable, and that we will keep constant in all subsequent calculations. The volume 
of the RVE is then characterized by the number of grains Mg . 

 
Fig. 2 – a) Macroscopic response for an isotropic FCC polycrystalline aggregate deformed in uniaxial 
tension using different numbers of voxels NV; b) evolution with strain of the absolute error between 

the reference case and the various investigated discretizations. 

(a) (b) 
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4.4. INFLUENCE OF THE NUMBER OF GRAINS ON THE OVERALL RESPONSE 

We now focus on the influence of the number of grains composing the 
aggregate on the value the estimated macroscopic yield stress. The definition of the 
RVE plays a central role in the quality of the prediction of the effective properties 
of isotropic and heterogeneous materials. Usually, it is simply said that the volume 
must be large enough with respect to the characteristic length of heterogeneity, but 
must at the same time involve acceptable computation times. Indeed, the 
consideration of too large meshes leads to so heavy calculations, that the 
description of the single crystal constitutive law is often oversimplified in order to 
compensate the size effect. This is why different studies in the literature have 
proposed to calculate the effective response for intermediate size volumes [34]. 
This methodology has, e.g., been applied to characterize the macroscopic elastic 
behavior [10] or the viscoplastic response of 3D polycrystalline aggregates [8]. 

In the present work, as we increase the statistical relevance by repeating N 
times the calculation associated with a unit cell composed of a given number of 
grains Mg (associated with an imposed number η = 65 of voxels per grain), we 
expect that if Mg is increased, we will be able to reduce the number of realizations 
N  to obtain a satisfactory precision. Indeed, for a searched macroscopic property Z, 
we can evaluate the so-called average Z  and variance D  as follows 

 
___________

1

1( , ) ( )
N

g i g
i

Z Z N M Z MN
=

= = ∑  (28) 

and 

 ( )22 2

1

1( , ) ( )
N

Z g Z i g
i

D D N M Z Z MN
=

= = −∑ . (29) 

Then, we can estimate the so-called relative sampling error on the mean value as 
[34] 

 rel ___________
2 ( , ) 2

( , )

Z g Z

g

D N M D
Z NZ N M N

ε = = . (30) 

We thus expect that, if our unit cell is a RVE, the dispersion on the N 
calculations must be very low, and consequently, the relative sampling error as 
well. To quantify the accuracy of the full-field results at the global scale, the 
relative sampling error on the yield stress has thus been calculated for various 
numbers of configurations N and various numbers of grains Mg. As already 
mentioned, the number of voxels per grain is fixed to 65, and thus the various 
numbers of voxels NV associated with the various considered Mg numbers are listed 
in Table 1. 
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Table 1 

Selected numbers of grains, voxels and configurations associated with a constant number of voxels 
per grain (η = 65) and a relative sampling error equal to 0.7% 

Volume of the unit cell =  
number of grains Mg 

Numbers of voxels NV within 
the unit cell in order to get  η = 

65 

Number of configurations N in 
order to get εrel = 0.7% 

100 193 1100 
250 263 150 
500 323 55 

1000 413 25 
5000 703 14 

Figure 3 presents the evolution of the relative sampling error on the tensile 
yield stress calculated for different numbers of grains and different numbers of 
configurations. A significant dispersion of the relative sampling error is observed 
for the smaller volumes (100 and 250 grains), when the number of configurations is 
also small (i.e. less than 50). As expected, a decrease of the error is obtained by 
increasing N. It is worth mentioning that the minimum attainable error depends on 
the local anisotropy, as well as on the discretization (NV) and the size of the unit 
cell (Mg). By imposing a threshold value to the sampling error, we can then define 
the necessary numbers of grains and configurations to reach an acceptable 
estimation of the searched property. For a selected threshold of 0.7% for the tensile 
yield stress of an isotropic FCC polycrystal, the associated N and Mg numbers are 
listed in Table 1. It is worth mentioning that the macroscopic response is thus identical 
for all these sets of parameters. The macroscopic tensile yield stress calculated at 
0.02% strain with the standard Schmid law for all these sets of parameters is found 
to be equal to 2.58. In the present case, where no hardening is considered, this 
value also corresponds to a plastic stationary value. To our knowledge, this is the 
first accurate computation of the Taylor factor for isotropic elastoplastic FCC 
polycrystals based on full-field computations for Voronoï tesselations. 

 
Fig. 3 – Evolution of the sampling error as a function of the number of configurations N 

for different volumes (defined by the number of grains Mg). 
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4.5. COMPARISON BETWEEN THE ELASTOPLASTIC FFT PREDICTION 
AND THE SELF-CONSISTENT ESTIMATES 

This elastoplastic FFT estimate of the tensile yield stress of an isotropic FCC 
aggregate is now compared to the various self-consistent estimates already 
published for the case of rate-dependent plasticity. These are reported in Fig. 4 in 
which the evolution of the normalised yield stress of an untextured FCC 
polycrystal is presented as function of the strain rate sensitivity m  for different 
self-consistent estimates in viscoplacity, including the FFT approach [12, 13]. The 
rate independent case corresponds to the limit m=0. It is worth mentioning that 
this estimate is not reported for very low values of m  for both FFT and SO 
approaches (see Fig. 4). This is likely due to convergence issues. It is also obvious 
that the discrepancy between the various nonlinear viscoplastic SC estimates 
increases with increasing nonlinearity (i.e. with decreasing m). It is recalled that, 
for m =1 (linear viscosity), all SC estimates coincide (see Fig. 4). 

 
Fig. 4 – Evolution of the normalized reference tensile stress of an FCC isotropic polycrystal with the 

strain rate sensitivity, calculated with various SC and FTT estimates [13]. In the legend, 
SEC = secant, TG = tangent, AFF = affine and SO = second order. 

More precisely, for low m  values, it is seen that the classical incremental SC 
estimate (i.e. the secant one) tends to the upper bound approach (the Taylor model) 
and predicts thus a too stiff response. On the other hand, the tangent, second-order 
and affine estimates, which all rely on a similar linearization scheme, are seen to 
produce a softer response. It is known that the tangent approach rigorously coincide 
with the static model (lower bound) for m = 0. The affine and second-order estimates 
are clearly different for high nonlinearity. 

Interestingly, it can be noted that, among the different nonlinear extensions of 
the SC model, the SO method predicts the most accurate value compared to our 
reference FFT result, when m  is close to 0. This result is consistent with previous 
results for highly anisotropic viscoplastic polycrystals [3, 8]. 
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5. THE INFLUENCE OF THE REGULARIZATION OF THE SCHMID LAW 

5.1. THE UNIAXIAL TENSILE STRESS 
FOR AN UNTEXTURED FCC POLYCRYSTAL 

In order to analyze now the influence of the regularization of the Schmid law 
on the elastoplastic FFT estimate of the polycrystal response, we again simulate a 
tensile test on the same FFC polycrystal (elastically anisotropic and untextured) as 
the one used in Section 4. Its microstructure is thus represented by 500 crystalline 
phases and no hardening is considered. The predicted macroscopic uniaxial stress-
strain curve is presented in Fig. 5a for different values of the exponent n. The stress is 
normalized by the critical resolved shear stress of the slip systems (one single and 
constant value for all systems of all the grains). As expected, the softer response is 
found for the lowest n value and the response obtained with the regularized Schmid 
law is very close to the one obtained with the standard one for high values of n (i.e. 
larger than 50). We obtain in this case the same value of the yield stress as the one 
obtained with the standard Schmid law, namely 2.58. It is worth noting that the yield 
stress obtained with the regularised Schmid law using the elastoplastic FFT model is 
significantly lower than the value obtained using the incremental secant self-
consistent estimate [8]. For the latter case, the yield stress saturates at the value of 
3.06, which is the same as the well-known upper bound Taylor value for rigid plastic 
FCC polycrystals (see Fig. 5b). Thus, in opposition to the SC incremental model, the 
elastoplastic FFT model is not sensitive to the regularization of the Schmid law, 
which is indeed a major positive point for this model. 

 

Fig. 5 – Macroscopic uniaxial stress-strain curves for FCC isotropic polycrystals obtained with: 
a) the elastoplastic FFT model in conjunction with the regularized Schmid law with different n  

exponents; b) the Taylor and SC incremental models [18] with the standard (SSL) 
and regularized Schmid laws. 

(a) 
(b)
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5.2 THE LOCAL FIELD FLUCTUATIONS  

The attention is now focused on the quantitative comparison of the local field 
fluctuations during the the elastoplastic transition obtained in tension with the FFT 
model, using either the standard Schmid law or its regularised version. The 
exponent of the regularized Schmid law is taken equal to n = 50, in order to get 
very close responses between both Schmid laws. Figure 6 shows the evolution of 
the local strain component within each of the 500 grains, normalized by the 
macroscopic tensile strain using respectively the standard Schmid law (left) and the 
regularised one (right). We can observe that both laws predict the same range of 
heterogeneity for the deformation field. Especially, after only 0.2% strain, the 
range of variation of the local 33ε  strain component is ±64%, and the two 
calculated strain fields are hardly distinguishable. We can thus conclude that these 
two descriptions of the crystalline plastic behavior will lead to very close global 
plasticity criteria and can thus be equally used. This was not the case for the SC 
model, as shown in ref. [18]. 
 

 

 
Fig. 6 – Evolution of the local strain within each of the 500 grains as a function 

of the macroscopic one, using: a) the standard Schmid law; b) the regularized Schmid law. 

(a) 

(b) 
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6. CONCLUSIONS 

In this paper, the homogenization technique based on the FFT numerical 
scheme has been used to calculate estimates of the effective behaviour, as well as 
of the strain field fluctuations within untextured FFC polycrystals in conjunction 
with two rate independent crystal plasticity models, namely the standard Schmid 
law and the regularised Schmid law. The standard Schmid one has been used to 
characterize the macroscopic yield stress for untextured microstructures. To be 
more representative, this yield stress has been estimated from the calculation of 
averages performed on rather small unit cells. Our analysis focused first on the 
influence of the simulation parameters (numbers of grains, voxels and 
configurations) on the macroscopic response. This preliminary study showed a 
relatively weak influence of the voxel number on the macroscopic response, but a 
significant influence of the number of configurations. 

Various self-consistent estimates of the macroscopic response of isotropic 
FCC aggregates, associated with very low values of the rate sensitivity parameter 
m, have then been compared to a reference case calculated with the elastoplastic 
FFT approach (large number of grains and configurations). Among all tested SC 
estimates, the SO one appears to be the closest to our reference value. 

Then, the effect of the regularization of the Schmid law on the macroscopic 
response has been investigated. It has been shown, that with an appropriate choice 
of the exponent n, the two Schmid laws provide undistinguishable macroscopic 
responses as well as local strain fields. This is thus different from what was found 
for the SC incremental model, which was shown to abnormally depend on the local 
single crystal plasticity law. 

As a general conclusion, the FFT method has been shown to be quite robust 
in elasto-plasticity and to provide very precise estimates of the global and local 
response of untextured polycrystals. There remains now to test further this 
approach on textured and hardening materials. 
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