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Generalized Method of Moments for an Extended Gamma Process

In reliability theory, a widely used process to model the phenomena of the cumulative deterioration of a system over time is the standard Gamma process. Based on several restrictions, such as a constant variance-to-mean ratio, this process is not always a suitable choice to describe the deterioration. A way to overcome these restrictions is to use an extended version of the Gamma process introduced by Cinlar (1980). In this paper, the aim is to propose statistical methods which enable us to estimate the unknown parameters of an EGP from a parametric form of the shape and scale functions. We here develop a generalized method of moments, which was introduced by Hansen (1982), based on the moments or the Laplace transform to estimate the parameters. Asymptotic properties are provided and the performance of the proposed estimation methods is illustrated on simulated data.

INTRODUCTION

Standard Gamma process is a widely used process to model the cumulative deterioration of a system over time (see [START_REF] Van Noortwijk | A survey of the application of gamma processes in maintenance[END_REF] for an overview). However, this process is not a suitable choice when the variance-to-mean ratio of a system is not constant over time. A way to overcome this restriction is to use an extended Gamma process (see C ¸inlar (1980)), defined as a stochastic integral with respect to a standard Gamma process. It is a non decreasing process with independent increments and it is characterized by a shape function and a scale function. In this paper, the aim is to propose statistical methods which enable us to estimate the unknown parameters of an extended Gamma process (EGP) from a parametric form of the shape and scale functions. Parameter estimation is an important task for a practical use of an EGP in an industrial reliability context. Maximum likelihood estimation (MLE) is the most classically applied estimation technique which however requires the complete specification of the probability density function (pdf). Based on the fact that an explicit expression is not available for the pdf of an EGP, standard maximum likelihood estimation is here not possible. One could also think of the empirical likelihood method of [START_REF] Qin | Empirical likelihood and general estimating equations[END_REF]. However, this method does not seem to be adapted to the present case of an EGP, since it requires estimating too many parameters. The moments and Laplace transform are available in full form for an EGP. We here develop generalized methods of moments (GMM) based on either one of these quantities. Recall that GMM was introduced by [START_REF] Hansen | Large sample properties of generalized method of moments estimators[END_REF]. It does not require a full knowledge of the pdf and it relies on a set of population moment conditions upon which estimation is based. GMM based on the empirical characteristic function has been the subject of many papers in the literature [START_REF] Feuerverger | On some Fourier methods for inference[END_REF][START_REF] Carrasco | Efficient GMM estimation using the empirical characteristic function[END_REF]. The remaining of the paper is organized as follows. Section 2 briefly introduces the general approach of GMM. Then, we elaborate about the two approaches of GMM for an EGP in Section 3 and provide asymptotic properties. In Section 4, the focus is on a parametric form of the shape and scale functions. Illustrations are presented in Section 5 and we finally conclude in Section 6.

GENERAL SPECIFICATION OF GMM

Let W be a random vector of dimension d and {W n , n = 1, . . . , N } a set of independent and identically distributed (i.i.d.) random vectors sharing the same distribution with W . Let θ = (θ 1 , . . . , θ p ) be a parameter vector that indexes the distribution of W and Θ ⊆ R p the parameter space. Let also f : R d × Θ → R q (q ≥ p) be a function such that

f (w, θ) =   f (1) (w (1) , θ) . . . f (d) (w (d) , θ)   , (1) 
where w = w (1) , . . . , w (d) and f (i) (w (i) , θ), i = 1, . . . , d is a column vector with dimension k.

The gradient of f (w, θ) can be given by

∂f (w, θ) ∂θ =    ∂f (1) (w (1) ,θ) ∂θ . . . ∂f (d) (w (d) ,θ) ∂θ    =     ∂f (1) (w (1) ,θ) ∂θ 1 . . . ∂f (1) (w (1) ,θ) ∂θp . . . ∂f (d) (w (d) ,θ) ∂θ 1 . . . ∂f (d) (w (d) ,θ) ∂θp     (2) if it exists, for all w ∈ R d , θ ∈ Θ.
The first step of GMM begins by defining the population moment condition and the sample moment condition.

Definition 2.1. [START_REF] Hall | Generalized method of moments[END_REF], Definition 1.1, p.14) Let θ 0 be the true unknown parameter vector to be estimated. Then the population moment condition takes the form

E[f (W , θ 0 )] = 0. (3) 
The population moment condition should provide sufficient information to identify the unknown parameters. It represents a set of q = kd equations for p unknowns which are exactly solved by θ 0 . The corresponding sample moment condition for an arbitrary θ is given by

ĝN (θ) = 0 (4)
where

ĝN (θ) = 1 N N n=1 f (W n , θ).
Next, the GMM estimator is defined as follows:

Definition 2.2. [START_REF] Hall | Generalized method of moments[END_REF], Definition 1.2, p.14) Let (P N ) be a sequence of positive semi-definite weighting matrices that converges in probability to a constant positive definite matrix P . Then, the GMM estimator based on the population moment condition (3) is given by θN = arg min θ∈Θ ĝN (θ) T P N ĝN (θ).

(5)

Under some technical assumptions, GMM estimator is consistent and asymptotically normal [START_REF] Hansen | Large sample properties of generalized method of moments estimators[END_REF][START_REF] Hall | Generalized method of moments[END_REF][START_REF] Newey | Handbook of econometrics, Large sample estimation and hypothesis testing[END_REF].

GMM FOR AN EGP

Section 2 introduced the general framework of GMM. The focus here is on GMM for a particular model, which is the EGP.

Definition of an EGP

Throughout we let R + = [0, +∞) and R * + = (0, +∞). Let A : [0, T ] × Θ → R + be a measurable, increasing and right-continuous function with A(0, θ) = 0 for all θ ∈ Θ and let b : (0, T ] × Θ → R * + be a measurable positive function such that, for t ∈ (0, T ], θ ∈ Θ:

(0,t] a(s, θ)ds b(s, θ) < ∞ (6)
where a(t, θ) is the derivative of A(t, θ) with respect to t on a given compact set [0, T ].

Following [START_REF]On a generalization of gamma processes[END_REF][START_REF] Dykstra | A Bayesian nonparametric approach to reliability[END_REF], the process X = (X t ) t∈[0,T ] is said to be an EGP with shape function A(t, θ) and scale function b(t, θ) (written

X ∼ Γ(A(t, θ), b(t, θ)))
if it can be represented as a stochastic integral with respect to a standard Gamma process (Y t ) t∈[0,T ] ∼ Γ(A(t, θ), 1):

X t = (0,t] dY s b(s, θ) , ∀t ∈ (0, T ], θ ∈ Θ (7)
and X 0 = 0. An EGP has independent increments and an explicit formula is available for the Laplace transform of an increment, with

L X t+h -Xt (λ, θ) := E e -λ(X t+h -Xt) (8) = exp - (t,t+h] log 1 + λ b(s, θ) a(s, θ)ds , (9) 
for all t ∈ [0, T ]; θ ∈ Θ; λ ≥ 0 and h > 0.

The mean and variance of an EGP are given by

E(X t ) = (0,t] a(s, θ)ds b(s, θ) , (10) 
V(X t ) = (0,t] a(s, θ)ds b(s, θ) 2 . ( 11 
)
Let us now consider

t 0 = 0 < t 1 < • • • < t d = T .
We assume that we observe N trajectories X n , n = 1, . . . , N at the same t i 's, i = 1, . . . , d which are issued from θ 0 . For a generic trajectory X, we set

W (i) = X t i -X t i-1 , i = 1, . . . , d (12) 
to be the i-th increment. This leads to a sequence of i.i.d. random vectors W n , n = 1, . . . , N . Now we discuss the choice of the population moment condition for each of the following approaches: GMM based on the moments and GMM based on the Laplace transform.

Approaches

GMM based on the moments

As in the classical method of moments, population moment condition for GMM based on the moments is defined by matching the theoretical moments of an EGP with the appropriate empirical ones. This matching is done for each increment. Note that, in the case of GMM, there are more equations than unknowns. Define

f (w, θ) = f (i) (w (i) , θ) 1≤i≤d = w (i) -m (i) (θ) w (i) -m (i) (θ) 2 -v (i) (θ) 1≤i≤d (13) 
where 6)) and then

m (i) (θ) = t i t i-1 a(s, θ)ds b(s, θ) ; v (i) (θ) = t i t i-1 a(s, θ)ds b(s, θ) 2 . Obviously, f satisfies E[f (W , θ 0 )] = 0. We have E[f (W , θ)] < ∞ for all θ ∈ Θ (from (
ĝN (θ) =       1 N N n=1 W (i) n -m (i) (θ) 1 N N n=1 W (i) n -m (i) (θ) 2 -v (i) (θ)       1≤i≤d = m(i) -m (i) (θ) v(i) (θ) -v (i) (θ) 1≤i≤d (14) 
with

m(i) = 1 N N n=1 W (i) n ; v(i) (θ) = 1 N N n=1 W (i) n -m (i) (θ) 2 .

GMM based on the Laplace transform

A similar procedure as for the previous method is followed. Instead of using moments, we rely on the Laplace transform at distinct points λ l , 1 ≤ l ≤ o and we match it with the empirical Laplace transform at the same points λ l . Let

f (i) (w (i) , θ) 1≤i≤d = exp(-λ l w (i) ) -L (i) (λ l , θ) 1≤i≤d 1≤l≤o ( 15 
)
where

L (i) (λ l , θ) = exp - t i t i-1 ln 1 + λ l b(s, θ) a(s, θ)ds .
If the arbitrary θ is replaced by the true value, we have E[f (W , θ 0 )] = 0. Also, E[f (W , θ)] < ∞ for all θ ∈ Θ and the sample moment is given by

ĝN (θ) = L(i) (λ l ) -L (i) (λ l , θ) 1≤i≤d 1≤l≤o (16) 
with

L(i) (λ l ) = 1 N N n=1 exp(-λ l W (i) n ).

Asymptotic properties

In this subsection, general asymptotic results for GMM for an EGP are presented. For any parametric form of the shape and scale functions, one need to verify the assumptions given below to show consistency and asymptotic normality of GMM for an EGP estimator. The results are derived from [START_REF] Newey | Handbook of econometrics, Large sample estimation and hypothesis testing[END_REF] 

(H 2 ) E[f (W , θ)] = 0 if and only if θ = θ 0 (identification condition), (H 3 ) Θ is compact, (H 4 ) There exists I 1 : [0, T ] → R + such that a(s,θ) b(s,θ) ≤ I 1 (s) for all s ∈ [0, T ], θ ∈ Θ with T 0 I 1 (s)ds < ∞, (H 5 ) There exists I 2 : [0, T ] → R + such that a(s,θ) b(s,θ) 2 ≤ I 2 (s) for all s ∈ [0, T ], θ ∈ Θ with T 0 I 2 (s)ds < ∞.
Then θN converges in probability (respectively, almost surely) to θ 0 .

In the following, the convergence in probability is denoted by "Prob", the almost sure convergence by "a.s." and the convergence in distribution by "D".

In addition to assumptions (H 1 -H 5 ) given in Theorem 3.1, more conditions are needed for the asymptotic normality: Theorem 3.2 (Asymptotic Normality). If (H 1 -H 5 ) and the following conditions hold

(H 6 ) θ 0 is an interior point in Θ, (H 7 ) D T 0 P D 0 is non-singular with D 0 = -∂m (i) (θ 0 ) ∂θ -∂v (i) (θ 0 ) ∂θ 1≤i≤d
,

(H 8 ) There exists J 1 : [0, T ] → R + such that ∂ ∂θ a(s, θ) b(s, θ) ≤ J 1 (s) for all s ∈ [0, T ], θ ∈ Θ with T 0 J 1 (s)ds < ∞, (H 9 ) There exists J 2 : [0, T ] → R + such that ∂ ∂θ a(s, θ) b(s, θ) 2 ≤ J 2 (s) for all s ∈ [0, T ], θ ∈ Θ with T 0 J 2 (s)ds < ∞, (H 10 ) T 0 a(s, θ)ds b(s, θ) 3 < ∞, T 0 a(s, θ)ds b(s, θ) 4 < ∞ for all θ ∈ Θ.

Then

√ N ( θNθ 0 ) is asymptotically normal with mean 0 and asymptotic variance V = HSH T where H = (D T 0 P D 0 ) -1 D T 0 P .

Theorem 3.2 indicates that the weighting matrix affects the asymptotic properties of the estimator via the covariance matrix. The optimal weighting matrix, in the sense of minimizing the asymptotic covariance matrix, is given by the following theorem.

Theorem 3.3 (Optimal weighting matrix). If assumptions (H 1 -H 10 ) hold, then the minimal asymptotic variance of θN is D T 0 S -1 D 0 -1 and this can be obtained by setting P = S -1 with S = E f (W , θ 0 )f (W , θ 0 ) T .

GMM based on the Laplace transform

The following theorems state the asymptotic results for GMM based on the Laplace transform.

Theorem 3.4 (Consistency). Assumptions (H 1 -H 4 ) imply θN

P rob ---→ N →∞ θ 0 .
Theorem 3.5 (Asymptotic Normality). Assumptions (H 1 -H 4 ) and (H 6 -H 8 ) imply

√ N ( θN -θ 0 ) D -→ N (0, V ) with V = HSH T ; H = (D T 0 P D 0 ) -1 D T 0 P ; D 0 = -∂L (i) (λ l ,θ 0 ) ∂θ 1≤i≤d 1≤l≤o
.

Theorem 3.6 (Optimal weighting matrix). If (H 1 -H 4 ) and (H 6 -H 8 ) hold, then the minimal asymptotic variance of θN is D T 0 S -1 D 0 -1 and this can be obtained by setting

P = S -1 with S = E f (W , θ 0 )f (W , θ 0 ) T .
Notice that less assumptions are required to show the asymptotic properties of GMM based on the Laplace transform than GMM based on the moments.

Estimation

In practice, the optimal weighting matrix S -1 should be estimated. As θ 0 is unknown, a consistent GMM estimator is required in order to estimate S -1 .

Let S N = 1 N N n=1 f (W n , θ 0 )f (W n , θ 0 ) T be
an empirical version of S. An easy way to proceed is to adopt a two-step procedure (see [START_REF] Hansen | Large sample properties of generalized method of moments estimators[END_REF]):

1. Set P N = I, where I is the identity matrix, and compute

θ(1) N = arg min θ∈Θ ĝN (θ) T ĝN (θ). (17) 
2. Construct an estimator of S based on the initial GMM estimator θ(1)

N ŜN = 1 N N n=1 f (W n , θ(1) N )f (W n , θ(1) N ) T . ( 18 
)
For GMM based on the moments, ŜN can be shown to be almost surely non singular. Also, under the condition that λ i 's, i = 2, . . . , o are multiples of λ 1 , ŜN can be shown to be almost surely non singular for GMM based on the Laplace transform. Then the optimal two-step GMM estimator of θ 0 is given by

θN = arg min θ∈Θ ĝN (θ) T Ŝ-1 N ĝN (θ). (19) 
Furthermore, for both approaches, it can be shown that ŜN a.s.

---→ N →∞ S.

Let VN = D T 0 Ŝ-1 N D 0 -1
denote the estimator of the asymptotic variance V . Theorems 3.2, 3.5 imply that an approximate 100 × (1 -)% confidence interval for θ 0 (i), i = 1, . . . , p is given by

θN (i) ± q /2 VN (i, i)/N ] (20)
where q /2 is the (1 -/2) quantile of the standard normal distribution. 

Θ = R * + × (-1, +∞) × R * + × R × R + ∪ {(a, α, b, β, c) ∈ R * + × (-1, +∞) × R * + × R × {0} such that α > 2β -1}. ( 21 
)
Based on Section 3, we have the following results for this parametric form using both approaches of GMM for an EGP. Firstly, we address the issue of identification (see (H 2 )) which is the most technical point to verify. Secondly, we provide conditions under which GMM estimator using this parametric form is consistent and asymptotically normal.

GMM based on the moments

Theorem 4.1. Consider f (w, θ) as defined in ( 13). If at least 5 increments are observed (d ≥ 5), then (H 2 ) is satisfied, namely the model is identifiable.

From Theorem 3.1, it follows Corollary 4.2. Let us consider f (w, θ) as defined in (13) with d ≥ 5 and θ 0 ∈ Θ ⊂ Θ where Θ is a compact set. Assume that assumption (H 1 ) holds, then

θN P rob --→ θ 0 .
Now, we define

Θ N = R * + × (-1, +∞) × R * + × R × R + ∪ {(a, α, b, β, c) ∈ R * + × (-1, +∞) × R * + × R × {0} such that α > 4β -1}. (22) 
Corollary 4.3. Consider f (w, θ) as defined in (13) with d ≥ 5 and a compact set Θ N ⊂ Θ N . If θ 0 is an interior point in Θ N and (H 1 ) and (H 7 ) are satisfied for P = S -1 , then Corollary 4.6. Consider f (w, θ) as defined in (15) with d ≥ 4,o ≥ 3 and a compact set Θ ⊂ Θ. If θ 0 is an interior point in Θ and if we assume that (H 1 ) and (H 7 ) hold for P = S -1 , then

√ N θN -θ 0 D -→ N (0, (D T 0 S -1 D 0 ) -1 ).
√ N θN -θ 0 D -→ N (0, (D T 0 S -1 D 0 ) -1
).

NUMERICAL EXPERIMENTS

Here, we test GMM based on the moments (GM M M M ) and Laplace transform (GM M Lap ) on simulated data. We first generate N sample paths on [0, T ] using a simulation technique from [START_REF] Masry | Approximate simulation techniques and distribution of an extended gamma process[END_REF].

By taking P = I, an initial GMM estimator is obtained (see step 1, Subsection 3.4). Then, using this estimator, we construct ŜN and compute θN using ( 18) and ( 19) respectively. In order to study the behavior of the estimator, we consider r sets of N sample paths. For each set, we compute θN and then we report the mean, the standard deviation and the quantiles based on these r estimations of θN . Moreover, by the asymptotic normality of GMM estimators, we give the coverage probabilities (CP) of hyper-ellipsoid confidence region. Firstly, we evaluate the squared distance from θN to θ 0 given by N ( θNθ 0 ) V -1 ( θNθ 0 ) T . Secondly, we compare it to the chi-squared value χ 2 0.95,p and compute

CP = #{N ( θN -θ 0 ) V -1 ( θN -θ 0 ) T ≤ χ 2 0.95,p } r . (23) 
If the squared distance from θN to θ 0 is less than the chi-squared value then the true value θ 0 lies inside the region. The CP should be close to the nominal value which is here 95%.

As a first step, the methods are compared for estimating two unknown parameters. Let d = 10, T = 10, N = 400, r = 500 and let us consider an EGP X with A(t, θ) = t α and b(t, θ) = t β . The results are presented in Tables 1 and2. As we can observe, GM M M M and GM M Lap provide similar results.

The CP , for all two approaches, is approximately equal to 95%. Also, the computing time of θ(2) N using GM M M M or GM M Lap is around 1s. Thus, both methods can be used to estimate two parameters. We next present the estimation results for four unknowns. Let us consider A(t, θ) = at α , b(t, θ) = bt β and generate 500 sets of 500 samples paths. Then we compute the four estimates using both GMM approaches. From Table 3, it is clear that GM M Lap shows better performance against GM M M M . The time needed for computing the estimators using GM M M M is around 1s, while it is around 7s for GM M Lap . In addition, in Table 4, we see that the CP for GM M Lap becomes closer to 95% by increasing N while for GM M M M it tends to be less than the nominal value. GMM based on the moments seems less accurate than GMM based on the Laplace transform when we increase the number of parameters to be estimated.

CONCLUSION

In this work, we have dealt with parametric estimation techniques to estimate the shape and scale functions of an EGP. Two approaches dedicated for an EGP have been proposed: GMM based on the moments and GMM based on the Laplace transform. General asymptotic results for GMM for an EGP were presented and the results were illustrated for one parametric form of the shape and scale functions. Note that the results of Section 3 could be used for studying other parametric forms (we have studied another parametric form, where A(t, θ) = a(1 -exp(-αt)) and b(t, θ) = b(1 -exp(-βt)), but is not presented here due to the reduced size of the paper).

As for the numerical assessment, GMM based on the Laplace transform is more performing than GMM based on the moments and particularly when we need to estimate more than two parameters.

In regard to inspections, the proposed methods are applicable when the interval time is common to all trajectories. This is not always the case in an industrial context. In this purpose, we have tested an approximate likelihood method. From [START_REF] Masry | Approximate simulation techniques and distribution of an extended gamma process[END_REF], an EGP can be approximated by another EGP with a piecewise constant scale function. This provides an approximation of the pdf of an increment and the likelihood function can be computed using this approximation. However, the computational time seems to be very long and we do not have any theoretical results. It could be interesting to study other parameter estimation techniques which take into consideration this problem.

  4 A PARAMETRIC FORM FOR THE SCALE AND SHAPE FUNCTIONS Let θ = (a, α, b, β, c), a(t, θ) = at α and b(t, θ) = b(t + c) β . The parameter space is given by

4. 2

 2 GMM based on the Laplace transform Theorem 4.4. Consider f (w, θ) as defined in (15). If d ≥ 4 and o ≥ 3, then (H 2 ) is satisfied. Corollary 4.5. Let us consider f (w, θ) as defined in (15) with d ≥ 4, o ≥ 3 and θ 0 ∈ Θ ⊂ Θ where Θ is a compact set. Under assumption (H 1 ) it follows that θN P rob --→ θ 0 .

Table 1 :

 1 Mean, standard deviation and quantiles for A(t, θ) = t α , b(t, θ) = t β , d = 10, T = 10, N = 400, r = 500.

		α	β
	True value	2	0.5
		Mean (std)	Mean (std)
	GM M M M 1.9954 (0.0363) 0.4942 (0.0457)
	GM M Lap	1.9994 (0.0320) 0.4991 (0.0413)
		[Q .025 , Q .975 ]	[Q .025 , Q .975 ]
	GM M M M [1.9235, 2.0655] [0.4027, 0.5839]
	GM M Lap	[1.9398, 2.0610] [0.4228, 0.5793]

Table 2 :

 2 Coverage probability of hyper-ellipsoid confidence region for A(t, θ) = t α , b(t, θ) = t β , d = 10, T = 10, N = 400,

	r = 500.	
		CP
	GM M M M 94.8%
	GM M Lap	94.4%

Table 3 :

 3 Mean, standard deviation and quantiles for A(t, θ) = at α , b(t, θ) = bt β , d = 10, T = 10, N = 500, r = 500.

	True Method	Mean (std)	[Q .025 , Q .975 ]
	value		
	â 1	GM M M M 1.0402 (0.0635) [0.9138, 1.1725]
		GM M Lap	1.0053 (0.0501) [0.9159, 1.1081]
	α 2	GM M M M 1.9897 (0.0282) [1.9369, 2.0478]
		GM M Lap	2.0030 (0.0247) [1.9534, 2.0513]
	b 1	GM M M M 1.0398 (0.0538) [0.9387, 1.1457]
		GM M Lap	1.0083 (0.0440) [0.9301, 1.1025]
	β 0.5	GM M	

M M 0.4873 (0.0299) [0.4286, 0.5487] GM M Lap 0.5023 (0.0270) [0.4490, 0.5582]

Table 4 :

 4 Coverage probability of hyper-ellipsoid confidence region for A(t, θ) = at α , b(t, θ) = bt β , d = 10, T = 10, r = 500.

		CP (N=500) CP (N=800)
	GM M M M 84.8%	87.6%
	GM M Lap	89.8%	93.4%