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Introduction

This paper is concerned with the intervention scheduling of a railway track, based on the observation of two indicators, which measure the deterioration of the geometry track. The railway track is considered as deteriorated when any of these two indicators is beyond a given threshold. The goal of the paper is the study of the intervention scheduling, which must ensure that, given some observations provided by inspection, the railway track will remain serviceable until the next intervention with a high probability.

The deterioration of the track geometry is characterized by the development of di erent representative parameters like, for example, the levelling of the track. Figure 1 shows the defects that are measured by two of these parameters: the longitudinal (NL) and transversal (NT) levelling indicators.

Longitudinal levelling (NL)

Transversal levelling (NT) Based on expert judgements, a Gamma process has been used in (Meier-Hirmer et al.

2009) both to model the evolution of the NL indicator and to plan maintenance actions.

As noted by J.M. van Noortwijk in his survey (van Noortwijk 2009), this stochastic process is widely used in reliability studies (see also [START_REF] Abdel-Hameed | A gamma wear process[END_REF][START_REF] Grall | Continuous { time predictive { maintenance scheduling for a deteriorating system[END_REF][START_REF] Zuckerman | Optimal replacement policy for the case where the damage process is a one-sided L evy process[END_REF]). Various domains of applications exist, such as civil engineering 3 [START_REF] Buijs | Time-dependent reliability analysis of ood defences using gamma processes[END_REF][START_REF] Cinlar | Stochastic process for extrapolating concrete creep[END_REF], highway engineering [START_REF] Nicolai | A comparison of models for measurable deterioration: An application to coatings on stell structures[END_REF] or railway engineering [START_REF] Meier-Hirmer | Maintenance optimisation for system with a Gamma deterioration process and intervention delay: application to track maintenance[END_REF]. Gamma processes are also used in other domains, such as nance [START_REF] Joshi | Intensity Gamma : a new approach to pricing portfolio credit derivatives[END_REF] or risk analysis [START_REF] Dufresne | Risk theory with the gamma process[END_REF]. All these papers use univariate Gamma processes.

In the present case, as the two indicators NL and NT are dependent, the use of a bivariate model is required. For this purpose, di erent processes might be used, such as

Bessel [START_REF] Newby | A bivariate process model for maintenance and inspection planning[END_REF] or L evy processes [START_REF] Kallsen | Characterization of dependence of multidimensional L evy processes using L evy copulas[END_REF]. In this paper, the approach of F.A. with parameters ( i ; 1) for i 2 f1; 2; 3g and from b 1 > 0, b 2 > 0, one de nes:

X (1) t = Y (1) t + Y (3) t =b 1 ; and X (2) t = Y (2) t + Y (3) t
=b 2 for all t 0:

The process (X t ) t 0 = X

t ; X

(2) t t 0 is then a homogeneous process in time with independent increments and it is a L evy process. The marginal processes of (X t ) t 0 are univariate Gamma processes with respective parameters (a i ; b i ), where a i = i + 3 for i = 1; 2.

For any bivariate L evy process, the correlation coe cient Xt of X

(1)

t and X

(2)

t is known to be independent of t. For a bivariate Gamma process, one obtains:

= Xt = 3 p a 1 a 2 and 1 = a 1 p a 1 a 2 ; 2 = a 2 p a 1 a 2 ; 3 = p a 1 a 2 .
This entails

0 max = min (a 1 ; a 2 ) p a 1 a 2 : (1) 
See [START_REF] Devroye | Non-Uniform Random Variate Generation[END_REF]) section XI.3 for similar results on bivariate Gamma distributions.

This leads to two equivalent parameterizations of a bivariate Gamma process:

( 1 ; 2 ; 3 ; b 1 ; b 2 ) and (a 1 ; a 2 ; b 1 ; b 2 ; ).

November 29, 2010 10:17

Structure and Infrastructure Engineering swp0000

5

With the parameterization ( 1 ; 2 ; 3 ; b 1 ; b 2 ), the joint p.d.f. of X t is:

g t (x 1 ; x 2 ) = b 1 b 2 Z min(b1x1;b2x2) 0 f 1t;1 (b 1 x 1 x 3 ) f 2 t;1 (b 2 x 2 x 3 ) f 3t;1 (x 3 ) dx 3 ; = b 1 b 2 e b1x1 b2x2 ( 1 t) ( 2 t) ( 3 t) Z min(b1x1;b2x2) 0 (b 1 x 1 x 3 ) 1t 1 (b 2 x 2 x 3 ) 2t 1 x 3t 1 3 e x3 dx 3 (2) for x 1 0, x 2 0.
A L evy process is characterized both by its Laplace transform and by its L evy measure.

It is easy to compute their expressions for the bivariate Gamma process constructed above.

For x = (x 1 ; x 2 ) with x 1 0 and x 2 0, the Laplace transform of X(t) is equal to :

E e x X(t) = E e x1=b1Y (1) t (x1=b1+x2=b2)Y (3) t x2=b2Y (2) t = 1 1 + x 1 =b 1 1t 1 1 + x 1 =b 1 + x 2 =b 2 3t 1 1 + x 2 =b 2 2t = b 1 b 1 + x 1 (a1 p a1a2)t b 1 b 2 b 1 b 2 + x 1 b 2 + x 2 b 1 p a1a2t b 2 b 2 + x 2 (a2 p a1a2)t

:

Since the L evy measure X is caracterized by

E e x Xt = exp 0 B @t Z Z [0;+1) 2 e x y 1 X (dy) 1 C A for all x = (x 1 ; x 2 ) with x 1 0 and x 2 0, it is easy to obtain d X (y 1 ; y 2 ) = a 1 p a 1 a 2 y 1 e b1y1 dy 1 d 0 (y 2 ) + a 2 p a 1 a 2 y 2 e b2y2 d 0 (y 1 ) dy 2 + p a 1 a 2 y 1 e b1y1 dy 1 d b1y1=b2 (y 2 ) :
The tail integral function U X (x 1 ; x 2 ) = (]x 1 ; +1[ ]x 2 ; +1[) will also be used in the following. It is equal to:

U (x 1 ; x 2 ) = p a 1 a 2 Z +1 sup(b1x1;b2x2)
e y y dy:

(3) 

6

A more general Gamma process may be constructed as a bivariate L evy process with univariate Gamma processes as marginal processes. For such a process, if

a 1 , b 1 , a 2 , b 2
are the parameters of the marginal Gamma processes, the linear correlation coe cient may be proved to satisfy:

0 Z Z [0;+1) 2 min r a 1 a 2 E(u 1 ); r a 2 a 1 E(u 2 ) du 1 du 2 where E(u) = R +1 u e y
y dy. If a 1 6 = a 2 , this upper bound is strictly greater than the upper bound (1) for the process constructed by trivariate reduction. Then the construction by trivariate reduction cannot provide all levels of dependence for Gamma processes since it does not cover the entire range of possible linear correlation coe cients. Nevertheless it is su cient for our applicative purpose here and in all the following a bivariate Gamma process stands for a process constructed by trivariate reduction.

Parameter estimation

The data used for the parameter estimation are values of the process increments for non overlapping time intervals on a single trajectory, and also on di erent independent trajectories. The data can then be represented as realizations of t j ; X

(1) j ; X

(2) j 1 j n where t j = t j s j stands for a time increment and

X (i) j = X (i) tj X (i)
sj for the associated i-th marginal increment (i = 1; 2). For di erent j, the random vectors X

(1) j ; X

(2) j are independent, but not identically distributed. The random variable X (i)

j (i = 1;
2) is Gamma distributed with parameters (a i t j ; b i ). The joint p.d.f. of the random vector

X (1) j ; X (2) j
is equal to g tj (:; :), with t j substituted to t in (2). In the same way as for the parameter estimation of an univariate Gamma process, both empirical and maximum likelihood methods are possible in the bivariate case.

Empirical estimators

Using E X (i) j

= ai bi t j and Var X (i) j

= ai b 2 i t j for i = 1; 2 and for all j, empirical estimators (â 1 ; b1 ; â2 ; b2 ) of (a 1 ; b 1 ; a 2 ; b 2 ) are given in [START_REF] Cinlar | Stochastic process for extrapolating concrete creep[END_REF] (4)

Using

Cov X

(1)

j ; X (2) j = p a 1 a 2 b 1 b 2 t j ;
a similar estimator ^ may be given for , with:

^ p â1 â2 b1 b2 = P n j=1 X (1) j â1 b1
t j X

(2) j â2 b2

t j P n j=1 t j 1 P n j=1 tj P n j=1 ( t j ) 2 :
(5)

These estimators satisfy:

E âi bi = a i b i ; E âi b2 i ! = a i b 2 i ; E ^ p â1 â2 b1 b2 = p a 1 a 2 b 1 b 2 :
If the time increments t j are equal, these estimators co• ncide with the usual empirical estimators in the case of i.i.d. random variables.

Maximum likelihood estimators

The parameter estimation of a univariate Gamma process is usually done by maximizing the likelihood function (see e.g. [START_REF] Meier-Hirmer | Maintenance optimisation for system with a Gamma deterioration process and intervention delay: application to track maintenance[END_REF]). With this method, estimators a i and b i (i = 1; 2) of the marginal parameters are computed by solving the equations:

a i b i = P n j=1 X (i) j P n j=1 t j and 0 @ n X j=1 t j 1 A ln a i P n j=1 t j P n j=1 X (i) j ! + n X j=1 t j ln X (i) j ( a i t j ) = 0;
where

(x) = d (x) dx (x) , (x) = Z 1 0 e u u x 1 du
for all x > 0 ( is the Digamma function).

In order to estimate all the parameters of the bivariate process ( 1 ; 2 ; 3 ; b 1 ; b 2 ) (which are here preferred to (a 1 ; b 1 ; a 2 ; b 2 ; )), the likelihood function associated with the data t j ; X

(1) j ; X

(2) j 1 j n can be written as

L( 1 ; 2 ; 3 ; b 1 ; b 2 ) = Q n j=1 g tj ( X (1) 
j ; X

(2) j ) where g tj is provided by (2). However, because of the expression of the function g t (:; :), it seems complicated to optimize this likelihood function directly. An EM algorithm (see [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF]) is then used, considering Y

(3) j = Y

(3) tj

Y

(3) sj 1 j n as hidden data. This procedure is still too complicated for estimating the ve parameters and does not work numerically. So, the procedure is restricted to the three parameters ( 1 ; 2 ; 3 ). For the parameters b 1 ; b 2 , the values b 1 ; b 2 computed using the maximum likelihood method for each univariate marginal process are taken.

For sake of simplicity, the realizations of

t j ; X (1) j ; X (2) j ; Y (3) j 1 j n are denoted by t j ; x (1) j ; x (2) j ; y 
(3) j 1 j n in the following, the associated n-dimensional random vectors by X (1) ; X

(2) ; Y

(3) and the associated n-dimensional data vectors by x (1) ; x (2) ; y (3) .

The joint p.d.f. of the random vector X

(1)

t ; X (2) t ; Y (3) t is equal to: b 1 b 2 f 1t;1 (b 1 x 1 y 3 ) f 2 t;1 (b 2 x 2 y 3 ) f 3t;1 (y 3 ) = b 1 b 2 ( 1 t) ( 2 t) ( 3 t) e (b1x1+b2x2) (b 1 x 1 y 3 ) 1t 1 (b 2 x 2 y 3 ) 2t 1 y 3t 1 3 e y3 ;
with 0 y 3 min (b 1 x 1 ; b 2 x 2 ), x 1 > 0 and x 2 > 0.

Then, the log-likelihood function Q x (1) ; x (2) ; y (3) associated with the complete data

x (1) ; x (2) ; y (3) is derived:

Q x (1) ; x (2) ; y (3) = n (ln (b 1 ) + ln (b 2 )) n X j=1 (ln ( 1 t j ) + ln ( 2 t j ) + ln ( 3 t j )) b 1 n X j=1 x (1) j b 2 n X j=1 x (2) j + n X j=1 ( 1 t j 1) ln b 1 x (1) j y (3) j + ( 2 t j 1) ln b 2 x
(2) j y

(3) j + ( 3 t j 1) ln y

(3) j + y

(3) j

:
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E Q X (1) ; X (2) ; Y (3) j X (1) = x (1) ; X (2) = x (2) = n (ln (b 1 ) + ln (b 2 )) b 1 n X j=1 x (1) j b 2 n X j=1 x (2) j + n X j=1 ( 1 t j 1) E ln b 1 x
(1) j

Y

(3) j j X

(1)

j = x (1) j ; X (2) j = x (2) j + ( 2 t j 1) E ln b 2 x
(2) j

Y

(3) j j X

(1)

j = x (1) j ; X (2) j = x (2) j + ( 3 t j 1) E ln Y (3) j j X
(1)

j = x (1) j ; X (2) j = x (2) j +E Y (3) j j X (1) j = x (1) j ; X (2) j = x (2) j n X j=1 (ln ( 1 t j ) + ln ( 2 t j ) + ln ( 3 t j )) : (6)
Finally, the conditional probability density function of

Y (3) t given X (1) t = x 1 ; X (2) t = x 2
is equal to:

f 1t;1 (b 1 x 1 y 3 ) f 2t;1 (b 2 x 2 y 3 ) f 3 t;1 (y 3 ) R min(b1x1;b2x2) 0 f 1t;1 (b 1 x 1 x 3 ) f 2t;1 (b 2 x 2 x 3 ) f 3 t;1 (x 3 ) dx 3 = (b 1 x 1 y 3 ) 1t 1 (b 2 x 2 y 3 ) 2 t 1 y 3 t 1 3 e y3 R min(b1x1;b2x2) 0 (b 1 x 1 x 3 ) 1t 1 (b 2 x 2 x 3 ) 2t 1 x 3t 1 3 e x3 dx 3 ;
where 0 y 3 min (b 1 x 1 ; b 2 x 2 ), x 1 > 0 and x 2 > 0.

Step k of the EM algorithm consists of computing new parameter values

( (k+1) 1 ; (k+1) 2 ; (k+1) 3
) given the current values (

(k) 1 ; (k) 2 ; (k)
3 ) in two stages: stage 1: compute the conditional expectations in (6) using the current set

( (k) 1 ; (k) 2 ; (k)
3 ) of parameters, with:

f 1 j; k) 1 ; (k) 2 ; (k) 3 = E ln b 1 x (1) j Y (3) j j X (1) = x (1) j ; X (2) = x (2) j ; f 2 j; k) 1 ; (k) 2 ; (k) 3 = E ln b 2 x (2) j Y (3) j j X (1) = x (1) j ; X (2) = x (2) j ; f 3 j; k) 1 ; (k) 2 ; (k) 3 = E ln Y (3) j j X (1) = x (1) j ; X (2) = x (2) j ; h k) 1 ; (k) 2 ; (k) 3 = n X j=1 E Y (3) j j X (1) = x (1) j ; X (2) = x
(2) j : stage 2: take for (

(k+1) 1 ; (k+1) 2 ; (k+1) 3
) the values of ( 1 ; 2 ; 3 ) that maximize (6), 2). We notice that the parameters a (k) i stabilize more quickly than the parameter (k) . In other ways, the parameters

(k) i + (k)
3 for i = 1, 2 are quickly stable (about 5 iterations), but values of (k) i are much longer to stabilize (between 20 and 30 iterations). The conclusion of this section is that the estimation of the parameters (a i ; b i ) by empirical and maximum likelihood methods both give satisfactory results, with a slight preference to maximum likelihood estimation. Empirical estimators of have a good order of magnitude, but are sometimes not precise enough. Estimators of obtained by EM are always reasonable. The estimation of the three parameters ( 1 ; 2 ; 3 ) (column EM1) seems to give slightly better results than those obtained for 3 alone (column EM2). The results obtained by the EM algorithm for parameters a i (column EM1) are good, with a quality quite similar to those obtained by univariate maximum likelihood estimation. Finally, the EM algorithm does not seem very sensitive to initial values, at least if the initial value of 3 is not too small.

Intervention planning

A bivariate Gamma process

X t = X (1) t ; X (2) t 
is now used to model the development of two deterioration indicators of a system. We assume that there exist thresholds s i (i = 1; 2) for each indicator, above which the system is considered to be deteriorated.

The system is not continuously monitored but only inspected at time intervals, with a perfect observation of the deterioration level. When one (or both) indicator(s) is (are) observed to be beyond its threshold, an intervention is undertaken. When both indicators are observed to be below their thresholds, no action is undertaken and a new inspection is planned. The time to next inspection ( ) must ensure with a high probability that neither X

(1) t nor X

(2) t go beyond their thresholds s i before the next inspection.

Let (x 1 ; x 2 ) 2 [0; s 1 [ [0; s 2 [ be the observed deterioration level at some inspection time, say at time t = 0 with no restriction. Also, let " 2]0; 1[ be some con dence level.

Using the bivariate Gamma process, the time to the next maintenance action B is chosen as the maximal value which ensures that the process stays below the thresholds with a probability greater than 1 " : B = max 0 such that P (x1;x2) X (1) < s 1 ; X (2) < s 2 1 " :

where P (x1;x2) stands for the conditional probability given X

(1) 0 ; X

(2) 0 = (x 1 ; x 2 ). dependence is ignored, the policy is not as safe as it should be. Also, the optimal time to the next preventive maintenance action is increasing with dependence ( B increases with ), which implies that the error made when considering separate models ( U ) is all the important that the components are less dependent. This also implies that the safest attitude, in case of an unknown correlation, is to consider both components as independent and chose = ? , where ? = max 0 such that P x1 X (1) < s 1 P x2 X (2) < s 2 1 " : Figure 4 shows that taking into account the single information x 1 = 0:4 as presently done at the SNCF may lead to too late maintenance actions. As an example, if x 2 = 0:4, one has B = 134:7 (and (2) = 152:9). The preventive maintenance action based only on NL is consequently scheduled 15 days too late. If x 2 = 0:5, one obtains B = 95:9 ( (2) = 97:5) and the maintenance action is undertaken 54 days too late. If x 2 = 0:6, one obtains B = 47:1 ( (2) = 47:2) and this is 103 days too late.

Application to track maintenance

Concluding this section, one can nally observe that if x 1 is not too close to x 2 , the value U = min (1) ; (2) seams reasonable for maintenance scheduling (see Figure 4), contrary to the currently used (1) , which may entail large delays in its planning (more than 100 days in our example). If x 1 is close to x 2 , the values of U and B have the same order of magnitude, with U > B however, so that the preventive maintenance action is again planned too lately (15 days in the example).

A bivariate Gamma process has been used to model the development of two deterioration indicators. Di erent estimation methods have been proposed for the parameters and tested on simulated data. Based on these tests, the best estimators seem provided by univariate likelihood maximization for the marginal parameters and by an EM algorithm for the correlation coe cient.

Preventive maintenance scheduling has then been studied for a system that deteriorates according to a bivariate Gamma process. In particular, it has been shown that, given an observed bivariate deterioration level, the optimal time to maintenance is increasing with dependence. It has been proven that the optimal time to maintenance is always shorter when taking into account the dependence between the two deterioration indicators than when considering them separately (or only considering one of them).

Finally, a bivariate Gamma process has been used to study a real track maintenance problem. The application shows that when both observed deterioration indicators are close to each other, the bivariate process gives safer results for maintenance scheduling than both univariate processes considered separately or one single univariate process, with the same order of magnitude in each case however. When the observed deterioration indicators are clearly di erent, considering one single univariate process as it is done in current track maintenance, may lead to clearly inadaquate results. The preventive maintenance action is scheduled too late and the track passes to a deteriorated state with a high probability. This application to real data of railway track deterioration hence shows the interest of a bivariate model for a correct de nition of a maintenance strategy.

Figure 1 .

 1 Figure 1. Levelling defects

Figures 2

 2 Figures 2(a), 2(b) and 2(c) show the evolution of a (k) i and (k) along the di erent steps of the EM algorithm (case EM1 in Table2). We notice that the parameters a

Figure 2 .

 2 Figure 2. Evolution of the parameters during the execution of the EM algorithm.

Figure 3 .

 3 Figure 3. B with respect to and U , for the four cases of Table 4

AFigure 4 .

 4 Figure 4. (1) , (2) and B with respect to x 2 with x 1 = 0:4

  Buijs, J.W. Hall, J.M. van Noortwijk and P.B. Sayers in[START_REF] Buijs | Time-dependent reliability analysis of ood defences using gamma processes[END_REF]) is used: a speci c L evy process called bivariate Gamma process is considered. This process is constructed from three independent univariate Gamma processes by trivariate reduction, and has univariate Gamma processes as marginal processes.

	for all x 2 [0; 1), and Laplace transform	
				t
		E e s(Yt Y0) =	+ s
	for all s 0.		
	Recall that E (Y t Y 0 ) = t , Var(Y t Y 0 ) = t 2 for all t 0 (see (van Noortwijk 2009)
	for more details).	
	Following (Buijs et al. 2005), a bivariate Gamma process (X t ) t 0 = X t ; X (1) t (2)	t 0	is
	constructed by trivariate reduction: starting from three independent univariate Gamma
	(i) t processes Y	t 0	
				Section 4 is devoted to the study
	of maintenance scheduling and to the comparison of the results based on the bivariate
	and on the univariate models. Finally, a bivariate Gamma process is tted to real data of
	railway track deterioration in Section 5 and it is shown that the maintenance scheduling
	based on the two available deterioration indicators is clearly safer than those based on a
	single one, or on both taken separately.	
	2. The bivariate Gamma process	
	Recall that an univariate (homogeneous) Gamma process (Y t ) t 0 with parameters > 0
	and > 0 is a process with homogeneous independent increments such that Y t Y 0 is
	Gamma distributed ( t; ) with probability density function (p.d.f.)
		f t; (x) =	t ( t)	x t 1 e x

It is the rst time that both NL and NT indicators are used conjointly to predict the optimal dates of interventions. The objective is to analyze the correlation between the two processes and to determine in what circumstances this bivariate process allows for a better prediction of the intervention times than the current univariate one, based only on the NL indicator.

The paper is organized in the following way: bivariate Gamma processes are introduced in Section 2. Empirical and maximum likelihood estimators for their parameters are provided in Section 3. An EM algorithm is proposed to carry out the maximum likelihood estimation. Both methods are tested on simulated data.

  and (van
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	Noortwijk and Pandey 2004), with:						
	âi bi	=	P n j=1 X j (i) P n j=1 t j	and	âi b2 i	=	P n j=1 j=1 t j P n	X j (i) 1 P n j=1	tj	âi bi P n j=1 ( t j ) 2 : 2 t j

which here becomes:

( 1 t j 1) f 1 j;

(k) 1 ;

(k) 2 ;

(k) 3

+ ( 2 t j 1) f 2 j;

(k) 1 ;

(k) 2 ;

(k) 3

+ ( 3 t j 1) f 3 j;

(k) 1 ;

(k) 2 ;

(k) 3 n X j=1

(ln ( 1 t j ) + ln ( 2 t j ) + ln ( 3 t j )) + h (k)

1 ;

(k) 2 ;

(k) 3

:

The maximization procedure in stage 2 is done by solving the following equation with respect to i : @g 1 ; 2 ; 3 ;

(k) 2 ;

(k) 3

This EM algorithm provides estimates for 1 ; 2 ; 3 using the univariate ML estimates ( b 1 ; b 2 ) and consequently delivers estimates for a 1 ; a 2 and .

In the same way, it is possible to estimate only 3 by an EM algorithm using the univariate ML estimates ( a 1 ; b 1 ; a 2 ; b 2 ). In that case,

is the solution of the equation:

Tests on simulated data

We now test the previous methods on simulated data. 500 time increments (t j ) 1 j 500 are randomly chosen with similar magnitude as the data of track deterioration (the proposed methods will be used on these data in Section 5). Then, 500 values of a bivariate Gamma 1, 2 and3, each corresponding to independent series of data. In these tables, one can nd: the true values in column 2, the empirical estimators in column 3, the univariate maximum likelihood estimators of a 1 ; b 1 ; a 2 ; b 2 in column 4, the EM estimator of the three parameters a 1 ; a 2 ; in column 5, using the parameters b 1 ; b 2 previously estimated by the univariate maximum likelihood method (from column 4), and the second EM estimator of the parameter in column 6, using the estimated parameters a 1 ; b 1 ; a 2 ; b 2 from column 4.

The initial values for the EM algorithm are di erent for the three tables. For Table 1, the EM algorithm has been initiated with We have

where g t is the p.d.f. of X t (see Eq. ( 2)). This quantity is continuous and strictly decreasing in t. If we set Eq. ( 8) equal to 1 ", the time B may hence be numerically computed as the unique solution to this equation in t.

Without a bivariate model, a natural time to next maintenance action for the system is:

with

where P xi stands for the conditional probability given

where F ait;bi (x) is the cumulative distribution function of the distribution (a i t; b i ), the time (i) is computed by solving the equation F ai (i) ;bi (s i x i ) = 1 "; for i = 1; 2, and

Clearly we have :

The goal now is to study the di erence between U and B , and more generally, to understand the in uence of the dependence between both components of X t on B . We rst provide numerical examples. x 1 and x 2 , Table 4 gives the corresponding values for max (as provided by ( 1)) and the resulting (1) , (2) , U and B ( max ). and the resulting max , (1) , (2) , U and B ( max ).

The value of B is plotted with respect to in the Figures 3 for the di erent cases of Table 4, and the corresponding value of U is indicated.

In these gures, one can observe that both B = U and B < U are possible. One can also observe some monotony property of B with respect of the dependence between

X

(1) t and X

(2)

t . More speci cally, we have the following result: In conclusion to this section, one can see that using a bivariate model instead of two separate univariate models generally shortens the time to the next maintenance action ( B U ). If both processes are correlated, the frequency of inspections must then be increased in order to achieve the same safety level as in the uncorrelated case. So, if