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By means of extensive contact dynamics simulations, we analyzed the effect of particle size distribution (PSD)
on the strength and microstructure of sheared granular materials composed of frictional disks. The PSDs are built
by means of a normalized β function, which allows the systematic investigation of the effects of both, the size
span (from almost monodisperse to highly polydisperse) and the shape of the PSD (from linear to pronouncedly
curved). We show that the shear strength is independent of the size span, which substantiates previous results
obtained for uniform distributions by packing fraction. Notably, the shear strength is also independent of the
shape of the PSD, as shown previously for systems composed of frictionless disks. In contrast, the packing
fraction increases with the size span, but decreases with more pronounced PSD curvature. At the microscale, we
analyzed the connectivity and anisotropies of the contacts and forces networks. We show that the invariance of
the shear strength with the PSD is due to a compensation mechanism which involves both geometrical sources
of anisotropy. In particular, contact orientation anisotropy decreases with the size span and increases with PSD
curvature, while the branch length anisotropy behaves inversely.

DOI: 10.1103/PhysRevE.96.022902

I. INTRODUCTION

Whether by physical experimentation or numerical simula-
tion, current research on granular media focuses on materials
of increasing complexity. The shape of the particles [1–17],
presence of water in the pore space (from capillarity to satura-
tion) [18–21], solid cohesion between particles [22–30], heat
transfer [31–35], and fragmentation [36–40] are commonly
investigated. Nevertheless, a fundamental characteristic often
ignored in research is the system’s size polydispersity (i.e.,
being composed of grains of different sizes).

Polydispersity can result from different natural processes
by means of which grains are formed (e.g., fragmentation
or mineral precipitation). In addition, in different industries,
polydispersity constitutes a target in processes in which
grains are produced, transformed, or used. For example, the
particle size distribution (PSD) of rock aggregates in concrete
is carefully proportioned, with the aim of optimizing the
concrete’s workability and final strength [41,42]. In physics,
polydispersity has a strong influence on important properties
such as space filling, order-disorder transitions, and fractal
structure [43–48].

The role of polydispersity in the microstructure of granular
materials has been a subject of interest to the granular physics
community, specially focusing on the effects of polydispersity
on packing fraction [44,47–51]. Recently, by considering
PSDs described by a cumulative β function, Voivret and
colleagues [44] showed that the densest packing is obtained
when the PSD is a uniform distribution by packing fraction.
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Then, by considering PSDs described by a power law, Estrada
[48] showed that the densest packing is obtained for PSDs with
an exponent close to 0.5, which aligns with the experimental
work of Fuller and Thompson at the beginning of the twentieth
century [52,53].

Besides packing fraction, several researchers have recently
investigated the role of polydispersity on shear strength
properties. By means of contact dynamics simulations, it was
shown that steady-state shear strength is independent of the
PSD size span [48,51,54]. To our knowledge, the effects of the
shape of the PSD have not yet been the subject of systematic
investigation [55], except for the case of frictionless disks with
power law PSDs [48].

Thus a better understanding of the complex behavior of
granular materials requires characterising the effects that both
size span and shape of the PSD have on the mechanical
behavior. From a numerical point of view, a major difficulty is
the large number of particles required to compose a statistically
representative sample and the consequent computational cost.
Furthermore, in order to correctly solve the interaction between
the larger and the smaller grains, time discretization must be
particularly fine.

The aim of this paper is to present a systematic study of the
effects of the size span and the shape of the PSD on the shear
strength and microstructure of granular samples composed
of rigid frictional disks. The simulations were conducted by
means of the contact dynamics method [56–58], which is
able to cope with stiff frictional contact laws. This method is
particularly well suited to the study of dense granular samples
with a large number of particles, because the simulations can
be performed using large time steps, compared to molecular
dynamics simulation approach.

We implemented Voivret’s procedure [44] for the system-
atic numerical generation of collections of particles with a
variety of gradings, and analyzed the influence on the shear
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strength of not only the size span but also the shape of the
grading curve.

The procedure for the generation of the collection of
particles utilizes a normalized β function and allows for
building gradations similar to those that typically occur in
soils [59,60]. Several test samples were numerically built
varying the size span of the PSD (from almost monodisperse
to highly polydisperse) and the shape of the PSD (from linear
to strongly curved). All the collections were analyzed in the
steady state in terms of their shear strength, packing fraction,
connectivity, and fabric and force anisotropies as functions of
the two parameters that control the PSD.

We were able to reproduce previous findings [51,54]
showing that the shear strength remains constant across all
collections with uniform distributions by packing fraction,
irrespectively of their size span. We expand the previous
finding showing that the shear strength remains constant
for collections that have different shape of the particle size
distribution as already suggested by Estrada for frictionless
systems [48]. Thus our results generalize Voivret’s findings
showing that the shear strength is independent of both the
size span and the shape of the PSD. From the microstructural
point of view, the invariance of the shear strength is underlain
by a subtle compensation mechanism that involves both
geometrical anisotropies, i.e., contact orientation and branch
length anisotropies. This mechanism was already observed
previously for uniform PSDs by packing fraction [51,54] and
here it is generalized to another group of shapes of the PSD.

In Sec. II, we introduce the numerical approach, system
characteristics, and loading parameters. In Sec. III, we focus
on the dependence of the shear strength and packing fraction
on the PSD parameters. The microstructure is analyzed in Sec.
IV in terms of connectivity, and contact and force anisotropies.
Section V presents a summary of our main results and some
concluding remarks.

II. MODEL DESCRIPTION

A. Modeling particle size distribution

For a systematic investigation of the effect of the size
span and the shape of the PSD, careful procedures were
implemented in order to generate packings with progressively
varying texture. The size span s of the PSD was defined as

s = dmax − dmin

dmax + dmin
, (1)

where dmax and dmin are the maximum and minimum particle
diameters, respectively; s = 0 corresponds to a monodisperse
packing, whereas s = 1 corresponds to an infinitely polydis-
perse packing. The size span is related to the size ratio λ by the
following expression: λ = (1 + s)/(1 − s). The size span was
varied in the following range: s ∈ [0.2,0.4,0.6,0.8,0.9,0.95].

A normalized β function was used to model the shape of
the PSD. This function was expressed as

β(x) = 1

B(a,b)

∫ x

0
ta−1(1 − t)b−1dt, (2)

where, a > 0 and b > 0 are the parameters of the distribution
and B(a,b) = �(a)�(b)/�(a + b), where � is the Gamma
function. The PSD was then described by means of the
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FIG. 1. Theoretical (solid lines) and generated (symbols) particle
size distributions for different combinations of parameters s and b.
s = 0.2 (black), 0.6 (red), and 0.95 (green); and b = 1 (circles), 3
(squares), and 5 (triangles). The same distributions are shown in
linear (a) and log-linear (b) scale.

cumulate distribution function h(d), also termed the grading
curve, given by

h(d) = β[x = dr (d); a,b], (3)

where dr (d) = (d − dmin)/(dmax − dmin) is the reduced diame-
ter. As shown by Voivret and colleagues [44], this model allows
for controlling both the size span and the shape of the PSD,
including reference distributions such as the monodisperse, the
power law, and the S-shaped distributions.

In order to generate a set of particle diameters following a
given distribution, the following procedure was implemented.
First, the range dmax − dmin was divided into Nc classes, and
the packing fraction in each class was calculated from the
theoretical PSD. Then, the set of particles within each class was
generated by considering a uniform distribution by packing
fraction. In the simulations presented in this paper, a was fixed
at 1 and b varied from 1 (a uniform distribution by packing
fraction) to 5 (pronounced curvature and S-shaped gradation
curve at large values of s in the log-linear representation). In
order to ensure statistical representation, a minimum number
of particles per class was used. Thus the total number of
particles Np increased with the PSD curvature b. In practice,
Nc and Np were chosen in order to: (i) obtain a good fit
with the theoretical curve and (ii) obtain a reasonable sample
size, in terms of Np. Np increased from 10 000 for b = 1 to
∼75,000 for b = 5. Figure 1 shows the theoretical PSDs [i.e.,
Eq. (3)] as well as the PSDs of the generated samples for
several combinations of s and b.
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FIG. 2. Boundary conditions for isotropic compression (a) and
biaxial shear (b).

B. Packing construction and biaxial test

The simulations were conducted by means of the contact
dynamics (CD) method [56–58], which assumes rigid particles
interacting through mutual exclusion and Coulomb friction.
The CD method is based on the implicit time integration of the
equations of motion and a nonsmooth formulation of mutual
exclusion and dry friction between particles. This method
requires no elastic repulsive potential and no smoothing of
the Coulomb friction law for the determination of forces.
The nonsmooth contact laws relate the impulsions exerted
at each contact with the changes of relative velocity during
the time step. The formulation of these contact laws involves
two coefficients of restitution (normal and tangential) that
control the amount of energy dissipated during collisions; in
all the simulations presented in this paper the coefficients of
restitution were set to zero. An iterative algorithm of solution
is used by means of which the impulsions and changes of
momentum of each grain over the time step are determined.
For specific implementation of the CD method, see Ref. [11].
A multipurpose software (i.e., LMGC90) developed at the
University of Montpellier was used.

First, for each combination (s,b), a dense packing was
built by means of a layer-by-layer deposition strategy [44].
Then, the packings were densified by isotropic compression
inside a rectangular frame of dimensions l0 × h0, in which
the left and bottom walls were fixed and the right and top
walls were subjected to the same compressive stress σ0;
see Fig. 2(a). During the isotropic compression phase, the
interparticle friction was set to 0.4. The gravity and the friction
coefficient between the particles and the walls were set to zero.
This phase was stopped as soon as a persistent contact network
was observed and fluctuations of the number of contacts per
particle remained below 0.1% with respect to the mean value.
Fragmentation mechanisms were not considered.

Figure 3 shows particle-scale views of the packings
obtained for different values of s and b at the end of the
isotropic compression phase. Small crystalized regions can be
observed for small values of s and large values of b, which
happens because most of the particles have the same diameter.
In contrast, disorder increases with s even for large values
of b.

The isotropically compressed samples were then subjected
to biaxial shear by downward displacement of the top wall,
at a constant velocity vy and under constant confining stress
σ0 acting on the lateral walls; see Fig. 2(b). The interparticle
and particle-wall friction coefficients were maintained as 0.4
and 0, respectively. The strain rate ε̇ was low, in order to

FIG. 3. Particle-scale view at the end of the isotropic compression
phase for different combinations (s,b). Floating particles (i.e.,
particles with one or no contacts) are shown in white.

ensure quasistatic conditions. Quasistaticity conditions were
controlled by means of the inertia parameter I , given by [61]

I = ε̇

√
m

p
, (4)

where m is the mean particle mass and p is the mean stress.
A sheared system can be considered to be at the quasistatic
limit if I � 1. In all simulations presented in this paper, I was
below 10−3. The samples were sheared until a steady state was
reached, and the shear strength and the packing fraction were
constant. In total, 60 simulations were performed: 30 isotropic
compressions and 30 biaxial shear tests.

III. MACROSCOPIC BEHAVIOR

A. Definition of macroscopic parameters

The shear strength of a frictional granular material can be
characterized by means of the internal friction angle ϕ, which
can be calculated from an estimate of the stress tensor σ . In
numerical simulations, σ can be evaluated from the contact
forces and the geometrical packing configuration. For each
particle i, one first calculates the internal moment tensor M i

as [56]

Mi
αβ =

∑
c∈i

f c
α rc

β, (5)

where f c
α is the α component of the force exerted at contact

c, rc
β is the β component of the position vector of the same

contact, and the summation runs over all contacts c in particle
i. Then, it can be shown that the internal moment of a collection
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FIG. 4. Stress ratio q/p (a) and volumetric strain εp (b) as
functions of the deviatoric strain εq for different combinations of the
size span s and the shape b of the PSD (see schematic representation
in the inset).

of particles in a volume V (area in 2D) is the sum of the
internal moments of individual particles, and the stress tensor
σ is simply the density of the internal moment [56]:

σ = 1

V

∑
i∈V

M i = 1

V

∑
c∈V

f c
α 	c

β, (6)

where 	c
β is the β component of the branch vector joining the

centers of the contacting particles, and the summation runs
over all particles i, or contacts c, in volume V .

The shear strength can be calculated as sin ϕ = q/p, where
q = (σ1 − σ2)/2 and p = (σ1 + σ2)/2 are the deviatoric and
mean stresses, respectively, and σ1 and σ2 are the principal
stresses. In the biaxial test shown in Fig. 2(b), the major
principal stress is oriented along the vertical direction.

The vertical and horizontal strains are given by ε1 = 
h/h0

and ε2 = 
l/l0, respectively, where h and l are the height and
width of the box, respectively, and 
h = h0 − h and 
l =
l0 − l are the corresponding cumulative displacements. The
deviatoric strain is given by εq = ε1 − ε2, and the volumetric
strain is given by εp = ε1 + ε2.

The packing fraction is the ratio ρ = Vp/V , where Vp is
the volume occupied by the particles. The volumetric strain
is related to the packing fraction by εp = 
ρ/ρ, with 
ρ =
ρ − ρ0, where ρ0 is the initial packing fraction.

FIG. 5. Sine of the internal friction angle in the steady state sin ϕ∗

as a function of s for all values of b. Error bars represent the standard
deviation in the steady state.

B. Strength and dilatancy

Figure 4(a) shows the stress ratio q/p as a function of the
deviatoric strain εq for various combinations (s,b). A classical
response is observed, characterized by a stress peak followed
by softening and then by a stress plateau. This stress plateau
corresponds to the steady state, in which the shear strength
fluctuates around a mean value. The rapid increase of q/p

at the beginning of the test reflects both the rigidity of the
particles and the high initial packing fraction. The volumetric
strain εp is shown in Fig. 4(b) as a function of εq for various
combinations (s,b). It is noted that all samples exhibit dilatancy
in the initial stage of the test. For εq � 0.35, a strain plateau is
reached. This strain plateau corresponds to the steady state,
characterized by isochoric deformation. Since the samples
were sheared at the quasistatic limit and gravity was zero,
strain was homogeneously distributed through the sample (i.e.,
no strain localization was observed). All quantities reported
below correspond to the mean values in the steady state, and
they are thus independent of the initial configuration of the
samples.

Figure 5 shows the sine of the internal friction angle in the
steady state sin ϕ∗ as a function of s for all values of b. It is
noted that the shear strength is independent of the size span
of the PSD s, as shown previously for uniform distributions
by volume fraction [51,54]. Notably, the shear strength is also
independent of the shape of the PSD, controlled by b.

Figure 6 shows the packing fraction in the steady state
ρ∗ as a function of s for all values os b. It is noted that ρ∗
increases with s, but decreases with b. In other words, the
systems become denser as the PSD widens, but becomes less
dense with increased PSD curvature.

IV. GRANULAR MICROSTRUCTURE

The system’s microstructure can be understood as the
quantitative description of the organization of particles,
contacts, and forces in space. This organization, which is
controlled by steric exclusions and force balance conditions,
can be described in terms of various statistical descriptors
pertaining to the particles’ force-bearing network. This section
presents these descriptors as functions of the two parameters
controlling the PSD. In addition, the link between some of
these descriptors and the system’s shear strength is highlighted.
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FIG. 6. Packing fraction in the steady state ρ∗ as a function of s

for all values of b (solid lines), and as a function of b for all values
of s (inset, dashed lines). Error bars represent the standard deviation
in the steady state.

A. Particle connectivity

Figure 7 shows a snapshot of the system contact network in
the steady state, for s = 0.9 and two extreme values of b (i.e.,
b = 1 and 5). Particles connectivity is also shown by means of

(a)

(b)

FIG. 7. Contact network (black lines) and particle connectivity
(color scale) for (s,b) = (0.9,1) (a) and (s,b) = (0.9,5) (b). Color
intensity is proportional to the grains’ number of contacts. The
floating particles (i.e., particles with zero or one contact) are shown
in white.

FIG. 8. (a) Proportion P0−1 of floating particles and (b) Coordi-
nation number z, as a functions of s for all values of b. The insets
show P0−1 and z as a function of b for all values of s. The error bars
represent the standard deviation in the steady state.

a color scale. On the one hand, it can be seen that the largest
particles have more contacts than the smaller ones, and the
floating particles (i.e., particles with zero or one contact) are
predominantly small. Note that, the occurrence of particles
with zero contacts is possible due to the fact that gravity is not
considered in the simulation. On the other hand, it can be seen
that the system with b = 1 has larger pores than the system
with b = 5, in which the small particles seem to fill the pores
better.

The simplest statistical quantities describing the topology of
the contact network are the proportion P0−1 of floating particles
and the coordination number z (i.e., the average number of
contacts per particle). Figure 8(a) shows P0−1 in the steady
state as a function of s for all values of b. On the one hand, it
can be seen that P0−1 increases quickly with s. Surprisingly,
for the PSD with b = 1 and s = 0.95, P0−1 reaches values
as high as 0.8. This means that in systems with a uniform
PSD by packing fraction with a large size span, which is the
PSD that produces the highest packing fraction, only 20% of
the particles participate in the contact network. On the other
hand, P0−1 declines towards values between 0.2 and 0.3 as b

increases, independently of s. The decrease of P0−1 with the
curvature of the PSD suggests that the smallest particles are
increasingly involved in force transmission. Figure 8(b) shows
z in the steady state as a function of s for all values of b. It
is noted that z increases with both s and b, from 3.1 to 3.2
for b = 1 and from 3.15 to 3.45 for b = 5. In correlation with
the variations in P0−1, this increase suggests that, in systems
where PSDs have high values of b, the particles participating
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FIG. 9. Particle connectivity, defined as the proportion Pc of
particles with exactly c contacts, as a function of s for all values
of b. The error bars represent the standard deviation in the steady
state.

in the force network are more connected, even if this network
consist of a low proportion of particles.

In order to investigate the contact network further, its
connectivity can be characterized by the fraction Pc of particles
with exactly c contacts. Figure 9 shows Pc in the steady state
as a function of s for all values of b. In the first instance, it is
noted that P2 is nearly independent of s, but decreases with b.
Secondly, it is also noted that both P3 and P4 decrease with s.
However, P3 decreases with b, while P4 increases with b. This
is strongly correlated with the ordering mechanism explained
in Sec. II and shown in Fig. 3. Finally, it is noted that both P5

and P6 increase with s and b. This happens because the relative
size of the particles increases with the size span of the PSD,
allowing the large particles to be in contact with many small
particles. In addition, this effect is enhanced by the curvature
of the PSD.

The particles’ coordination z is linked to Pc by means of
the following relationship: z = ∑c=∞

c=2 cPc. Thus the increase
in z with s can be explained by the increases in 5P5 and 6P6

with s. Similarly, the increases in z with b can be explained
by the increases in 4P4, 5P5, and 6P6 with b. The variations
of 2P2 and 3P3 with s and b have a lesser effect on z, because
of the low value of c.

Thus it is notable that the shear strength is independent of
the system’s connectivity. In other words, a packing with a
weakly connected network composed of a large proportion of
particles develops the same shear strength that a packing with
a well-connected network composed of a low proportion of
particles.

(a)

(b)

FIG. 10. Snapshots of the force network for (a) (s,b) = (0.2,2)
and (b) (s,b) = (0.9,5). Floating particles are shown in white and
normal forces are represented by the thickness of the segments joining
the particle centers. The red circles in the contact points represent
friction mobilization, their diameter being proportional to the friction
mobilization index (see text for definition).

B. Anisotropic structures

Figure 10 shows a typical map of normal forces fn and
friction mobilization. The thickness of the lines joining the
particle centers is proportional to the magnitude of the normal
force. The diameter of the circles drawn at the contact points is
proportional to the friction mobilization index Im = |ft |/(μfn)
[62], where ft is the tangential force. It is noted that the force
network is anisotropic. It can also be noted, on average, that the
stronger forces are oriented along the vertical direction (i.e.,
that of the major principal stress), whereas small forces are
mainly oriented along the horizontal direction [63]. In addition,
visual inspection suggests that this bimodal character of the
force network is enhanced by polydispersity and that friction
mobilization is concentrated in the contacts with the smallest
particles.

1. Harmonic decomposition of stress

In this section, we briefly recall the stress-force-fabric
relationship that allows the material shear strength to be linked
to the anisotropic nature of the contact orientations, branch
lengths, and force networks [7,16,64]. In two dimensions, the
unit vector n between two contacting particles can be described
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FIG. 11. Polar representation of the functions P (θ ) (a), 〈	n〉(θ )
(b), 〈fn〉(θ ) (c), and 〈ft 〉(θ ) (d), for (s,b) = (0.2,1) (black circles)
and (s,b) = (0.9,1) (red squares). The corresponding harmonic
approximations are drawn as solid lines.

by an orientation angle θ . The probability density P (θ ) of
contact orientations provides useful statistical information
about the anisotropy of the contacts network. Along with P (θ ),
the anisotropy of the packing can be further characterized
by the angular averages of the branch lengths and force
magnitudes at the contacts: 〈	〉(θ ), 〈fn〉(θ ), and 〈ft 〉(θ ). These
functions describe the general state of anisotropy. In general, as
a result of granular disorder, steric exclusions, and mechanical
equilibrium, these functions cannot take an arbitrary form.
It is usually observed that they can be approximated by the
lower-order terms of a Fourier series [7,16,64], as follows:

⎧⎪⎪⎨
⎪⎪⎩

P (θ ) = 1
2π

{1 + ac cos 2(θ − θc)}
〈	〉(θ ) = 〈	〉{1 + a	 cos 2(θ − θ	)}
〈fn〉(θ ) = 〈fn〉{1 + an cos 2(θ − θn)}
〈ft 〉(θ ) = 〈fn〉at sin 2(θ − θt )

, (7)

where ac is the contact orientation anisotropy, a	 is the branch
length anisotropy, an is the normal force anisotropy, and at

is the friction force anisotropy. The angles θc, θ	, θn, and θt

are the corresponding privilege directions. The sine function
for the expansion of the tangential component 〈ft 〉(θ ) is
imposed by the requirement that the mean tangential force,
given by 〈ft 〉 = ∫

P (θ )〈ft 〉(θ )dθ , is zero due to the balance
of force moments on the particles.

Figure 11 shows a polar representation of the above func-
tions for (s,b) = (0.2,1) and (s,b) = (0.9,1). An anisotropic
behavior can be observed for all distributions. The peak
values occur along the principal stress direction θσ = π/2 for
P (θ ), 〈	〉(θ ), and 〈fn〉(θ ), whereas the larger values occur at
θt = π/4 for 〈ft 〉(θ ). In addition, it can be seen that the angular
distributions are indeed well fitted by Eq. (7). In practice, the

s

b = 1
b = 2
b = 3
b = 4
b = 5

ac

a
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

FIG. 12. Contact orientation ac (line) and branch length a	

(dashed line) anisotropies as functions of s for all values of b. Error
bars represent the standard deviation in the steady state.

values of all anisotropy parameters can be calculated from
generalized fabric tensors as detailed in Refs. [7,16].

The anisotropies ac, a	, an, and at are interesting not
only as descriptors of the granular microstructure and force
transmission properties, but in that these anisotropies can be
linked directly to the internal friction angle through a simple
relationship [7,16,64]:

sin ϕ∗ 	 1
2 (ac + a	 + an + at ), (8)

where the cross products between the anisotropy parameters
have been neglected.

2. Anisotropies of the contacts and forces networks

Figure 12 shows the steady-state contact orientation and
branch length anisotropies, ac and a	, respectively, as functions
of s for all values of b. The same quantities are shown as
functions of b for all values of s in Fig. 13. It can be seen that
both ac and a	 are independent of s and b for small values
of s (i.e., for s ≤ 0.6). For s > 0.6, the effect of the shape of
the PSD on the evolution of these geometrical anisotropies
becomes noticeable. In particular, for low values of b, ac

decreases and a	 increases with s. This means that, in systems
with PSDs characterized by a low curvature, the increase
in the size span of the PSD causes the system to become
less anisotropic with regard to contact orientations but at the
same time more anisotropic with regard to branch lengths.
The former is explained by the increase in connectivity,
and the later suggests that strong force chains tend to be
“captured” by large particles. In addition, it can be seen that the
decrease in contact orientation anisotropy is almost completely
compensated by the increase in branch length anisotropy. In
the end, geometrical anisotropy is globally independent of s,
even for large values of b.

Figure 14 shows the normal and tangential force
anisotropies, an and at , respectively, in the steady state
as functions of s for all values of b. Interestingly, both
anisotropies are independent of s and b. By integrating Eq.
(7d) in the range [0,π/2], it can be shown that the mean
mobilization index, defined as 〈Iμ〉 = 〈|ft |〉/(μ〈fn〉), is linked
to the tangential anisotropy as follows: 〈Iμ〉 = 2at/μ. From
Fig. 14, it can be deduced that 〈Im〉 = 0.2. In other words,
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FIG. 13. Contact anisotropies ac (a) and branch length
anisotropies a	 (b) as functions of b for all values of s. Error bars
represent the standard deviation in the steady state.

even if the location of force chains and friction mobilization
is strongly correlated with the size of the grains, as shown
in Fig. 10, the above results show that the average force and
mobilization values are independent of the PSD.

Thus, based on Eq. (8), it can be seen that the invariance
of the macroscopic friction angle in the steady state with
the size span and the shape of the PSD results from the opposite
variation of ac and a	 with s and b, as well as from the
invariance of force anisotropies with the same parameters.
Another interesting result here is that the microstructural
descriptors of highly polydisperse packings (i.e., s � 0.9) with

FIG. 14. Normal an (line) and tangential at (dashed line) forces
anisotropies as functions of s for all values of b. Error bars represent
the standard deviation in the steady state.

a pronounced curvature of the PSD are identical to those of
nearly monodisperse packing (i.e., s � 0.4) with a linear PSD.

V. CONCLUSION

In this paper, an investigation of the combined effects of
the size span and the shape of the particle size distribution
(PSD) in the rheology of two-dimensional sheared packings is
presented. The PSDs were built from a normalized β function,
according to Voivret’s procedure [44], which allowed the size
span of the PSD to be varied from nearly monodisperse to
highly polydisperse and the shape of the PSD from linear to
pronouncedly curved, both in a systematic way. The numerical
samples were first isotropically compressed and then sheared
in a biaxial configuration until a steady state was reached.

The results of the study confirm previous findings [51,54]
indicating that the shear strength is independent of the size
span in the case of collections with uniform distributions by
packing fraction. In addition, the results show that for a given
size span, the shear strength is independent of the shape of
the particle size distribution. Thus the methodology allows
to generalize Voivret’s findings and conclude that the shear
strength is independent of both the size span and the shape of
the PSD for those shapes that can be described by Eq. (3). The
results of the study also show that the solid fraction increases
in a nonlinear manner with the size span and decreases with the
curvature of the PSD. The shear strength is thus independent
of the steady-state solid fraction.

The detailed analysis of the microstructure in terms of the
anisotropy of the contact and force networks shows that the
independence of shear strength from both size span and shape
of the PSD is due to a compensation of anisotropies with
geometric origin, as well as due to the invariance of force
anisotropies with the PSD. In particular, for PSDs with a low
curvature, the decrease of contact orientation anisotropy is
counterweighted by the increase in branch length anisotropy.
This can be explained by the increase in the proportion
of large particles. On the one hand, these particles exhibit
large coordination numbers, making the contact network more
isotropic. On the other hand, these particles tend to “capture”
the force chains, increasing the branch lengths along the
principal stress direction. This is not observed in systems with
PSDs with a more pronounced curvature, since the proportion
of large particles is small and the structure is similar to that of
PSDs with low size span, as if the PSD had been “scalped.”

The invariance of the shear strength with the PSD is thus
something that has been verified by means of numerical
simulations with discrete element methods. However, it must
be noted that this is different from what is normally observed
in experiments, particularly with soils and rock aggregates
[65–68]. Our hypothesis is that real granular materials combine
several types of polydispersity. In fact, in these materials,
several properties such as grain shape and fragmentation sus-
ceptibility vary with particle size. In addition, grain-to-grain
interaction laws are also size dependent, as cohesive forces
become increasingly important compared to gravitational
forces as the particle size decreases [69]. The introduction
of these other types of polydispersity should help close the
gap between numerical simulations and experiments, which
would allow numerical simulation to be more widely applied.
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