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Using Evidential Occupancy Grid for Vehicle Trajectory Planning Under

Uncertainty with Tentacles
Hafida Mouhagir1,2, Véronique Cherfaoui1 , Reine Talj 1, François Aioun2, Franck Guillemard2

Abstract—The uncertainty in environment perception is one
of the challenges that we face in trajectory planning. For
autonomous vehicle to be efficient, they need to be able to deal
with this kind of uncertainty. In this work, we combine two
existing frameworks: the Belief Functions to build evidential
occupancy grid and clothoid tentacles for trajectory planning.
First, we use evidential grids to represent the environment and
the uncertainties which arise from ignorance and errors during
the perception process. Secondly, we generate a set of clothoid
tentacles in the egocentered reference frame related to the
ego-vehicle, those tentacles represent possible local trajectories.
Thirdly, we modify the evidential grid in order to take into
consideration some traffic rules such as safety distance between
vehicles. Then to choose the best tentacle to execute, we use
reward system of a Markov Decision Process-like model to
evaluate generated tentacles regarding several criteria including
uncertainty represented by the evidential grid. Real and simu-
lated data were used to validate the planning algorithm with
evidential grids.

I. INTRODUCTION

Autonomous driving requires decision making in dynamic
and uncertain environments. The uncertainties come from:
imperfect knowledge of the vehicle model noisy sensor data,
occlusions in the perception system, and poor predictability
due to the inability of measuring other driver’s intentions.

To solve environment predictability, Partially Observable
Markov Decision Process (POMDP) [8] is a method which
allows to find an optimal action given the uncertainty of the
perception system and/or future behavior. It provides near
optimum solutions for decision making with a variable number
of traffic participants and with unknown maneuver intentions.
This approach expects that the ego-vehicle will continuously
gather information about its surrounding and incorporates
them in the decision making.

Brechtel et al. [3] use Continuous POMDP in decision
making to address both problems of noisy sensor measurement
and the environment occlusion in intersection scenarios. The
authors of [19] presented a QMDP-based approach (QMDP
is a hybrid between MDP and POMDP, this algorithm gen-
eralizes the MDP-optimal value function defined over states,
into a POMDP-style value functions over beliefs) for single-
lane behaviors. They show that considering uncertainty in the
behavior of the leading vehicle as well as limitations of the
perception improves robustness. However, they used a state
space that is tailored for single-lane driving.
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In this work, we focus on the grid-based approach to
model the environment, including the obstacle information.
The reason behind this choice instead of object level approach
for example is that we are looking to have a planning method
that works with as few sensors as possible.

The occupancy grids are constructed by interpreting the
sensor information into the grid cell values. When interpret-
ing the sensor data into occupancy information, uncertainty
inevitably arises from ignorance and errors. Ignorance is
due to the perception of new areas or to occlusions and
errors come from noisy measurements and imprecise pose
estimation. In the literature, the Bayesian framework is the
most popular method to tackle this problem by representing
the uncertainties by means of probability, then the update step
adopts the Bayesian Theorem to fuse new information. In [5],
the authors present a method to estimate the probability of
collision with uncertainty in position, shape and velocity of the
obstacles. They used Bayesian Occupancy Filter (BOF) witch
is a dynamic occupancy grid where an estimation of velocity
is stored as well as the probability of occupation. However,
occlusions and free space have the same low probability of
occupation. This problem can be solved using the theory of
belief function.

First introduced by [4] and formalized by [16], the frame-
work of belief function has a growing number of applications
in artificial intelligence, information fusion, classification, re-
liability and risk analysis, etc. In [13], the authors used this
framework to build evidential occupancy grid that provides the
ego-vehicle with additional information about its environment.
They detect moving objects by analyzing conflicting informa-
tion.

In this work, we use evidential grids elaborated thanks
to a lidar range scanner to model the uncertainties of the
environment. Once the information on the surrounding envi-
ronment is provided by the grid, the next step is to interpret
this information to plan a trajectory using clothoid tentacles.
This trajectory planning approach [7] considers the current
dynamical state of the vehicle and makes a smooth variations
in the vehicle dynamic variables.

The contribution presented in this paper is the combination
of two existing frameworks: The Belief Functions to build
occupancy grid and clothoid tentacles for trajectory planning.
We modify the evidential grids to take into account the safety
distances between the ego-vehicle and obstacles. To choose the
best tentacle to execute, we use reward system of a Markov
Decision Process-like model to evaluate generated tentacles
regarding several criteria including uncertainty represented by
the evidential grid. Real and simulated data were used to
validate the approach.



In Section II, we present the construction of the evidential
grids for trajectory planning. In Section III, the trajectory
planning algorithm and the reward system of the MDP like
model are explained. First results based on real and simulated
data are discussed in Section IV followed by a conclusion of
the paper including an outlook.

II. EVIDENTIAL OCCUPANCY GRID

The occupancy grids are used as an environment model, if
the grid cells are filled with obstacle information in the form
of evidence (mass or belief values for instance II-A), we call
this kind of grids “Evidential occupancy grids”.

A. Evidential framework
The theory of belief functions, also known as Demp-

ster–Shafer theory (DST), was proposed by Dempster [4], and
developed, among others, by Shafer [16] and Smets [18].

Let w be an unknown quantity with possible values in a
finite domain ⌦ , called the frame of discernment. A piece of
evidence about w may be represented by a mass function m
on ⌦ , defined as a function 2⌦ ! [0, 1] , such that m(;) = 0
and

P
A✓⌦ m(A) = 1 .

In the theory of Dempster-Shafer, a frame of discernment
⌦ is defined to model a specific problem. In the occupancy
grid framework, the frame of discernment is defined as: ⌦ =
{F, O}, referred as the states (free or occupied) of each cell.
The power set is defined as 2|⌦| = {;, F, O, ⌦}, with | ⌦ |
is the cardinality of the set.

For quantitatively supporting the cell states, a mass function
(also referred as Basic Belief Assignment BBA) is calculated
and provides four beliefs [m(;)m(F )m(O)m(⌦)] , where
m(A) represents respectively the quantity of evidence that the
space is Conflict , Free , Occupied , and Unknown .

Combination rules
There is a large panel of combination rules to fuse BBAs (or

beliefs or mass functions) coming from independent sources.
Usually, the BBAs should be defined in the same frame of
discernment. We describe the two most used ones in data
fusion:

• The conjunctive rule proposed by Smets, is used to
combine two BBAs provided by reliable and distinct
information sources [17]. The resulting BBA, denoted
m1\2 , is defined by:

m1\2(A) =
X

B\C=A

m1(B)m2(C) , 8A ✓ ⌦ (1)

The mass assigned to the empty set m1\2(;) quantifies
the degree of disagreement between the two combined
sources.

• The Dempster rule, based on the orthogonal sum, is a
normalized version of the conjunctive rule where the mass
of the empty set (mass on conflict) must be reallocated
over all focal elements in the case where m1\2(;) 6= 0
thanks to a normalization factor, denoted K [16]. This
rule, assuming pieces of evidence combined to be reliable
and distinct, is defined as follows:

m1�2(A) = Km1\2(A) , 8A ✓ ⌦ (2)

and m1 �m2(;) = 0 where K = (1�m1\2(;))�1

B. Evidential occupancy grid
In this section, we present the perception grids used in our

approach. The construction of these grids is based on data
coming from a range sensor that provides information about
the occupancy/free of the cells.

The first step as described in [12], consists on computing
the PerceptionGrid from successive Lidar scans. For every
sensor measurement, a ScanGrid is built with sensor model
that translates the sensor information into an ego-centered grid.
The BBA assignment respects the least commitment principle:
the cells containing a Lidar point are occupied, the cells
between the sensor and the occupied cells are free and the
other are unknown . The value of masses depends of the
resolution of the grids and sensor performances.

The successive ScanGrids are fused in a unique resulting
PerceptionGrid . To combine the new ScanGrid with the
current PerceptionGrid , two operations are carried out: first,
a transformation (rotation and translation) computed with the
vehicle displacement is applied to the ScanGrid, and then
all masses of the PerceptionGrid are discounted to give less
importance to the past (Fig. 1). The fusion rule is based on
the conjunctive rule that can provide conflicting mass given
information about moving cells.

After PerceptionGrid processing, each cell has a mass
function with four beliefs on the state of the cell
[m(;)m(F )m(O)m(⌦)] . Let consider a concrete case to il-
lustrate these concepts, [m(;)m(F )m(O)m(⌦)]=[0 0 0.7 0.3]
indicates an Occupied cell with 0.7 as a belief, the rest of the
mass is in Unknown . [m(;)m(F )m(O)m(⌦)]= [0 0.6 0 0.4]
shows we have belief 0.6 in Free state, the rest of mass is in
Unknown .

Figure 1: Example of an occupancy grid with its corresponding
scene. The yellow triangle represents the position of the Lidar

sensor, the green color in the occupancy grid shows the free space, the
red shows the occupied space, while the blue represents conflicting
cells (before normalization) and the black represents unexplored cells.
The color intensity reflects the certainty degree.

Once the perception grid is created, we add both the
map information with road limits witch make it possible to
distinguish between free navigable or non navigable space and
dynamic obstacles velocity obtained using car-to-car commu-
nication. With this new integrated information a new grid is
obtained.



C. Evidential planning grid
The evidential occupancy grids provide information about

the occupation of the environment, this information are used to
plan a trajectory to avoid collisions. However, the autonomous
vehicles must be capable of avoiding collision, lane keeping
and carrying out an overtaking maneuver while keeping safety
distances. Therefore, we propose to modify the grid by adding
information about the edges of the road and by expanding the
dynamic obstacles to include safety distances. The resulting
grid is what we call PlanGrid for planning grid.

In Fig. 2- b), an example of enhancement of the map
with road limit is given. The position of the vehicle and the
information of the map was used to add a simple mask to
the evidential grid which integrates the edges of the road
by modifying the BBA of the cells out of the road surface.
More elaborated methods of road segmentation exist. In the
literature, the authors of [2] propose a learning method for
road scene segmentation from a single image; the authors of
[20] use Lidar as a sensor and prior maps and accurate pose
estimation.

(a) (b) (c)

Figure 2: The PlanGrid (b) represents PerceptionGrid (a)

with the road’s edges information. The PlanGrid (c) presents a
longitudinal obstacle widening.

In order to respect safety distances, the last step for build-
ing the PlanGrid is the longitudinal expansion of dynamic
obstacles in the occupancy grid (Fig. 2- c and Fig. 3). We
propose to extend our previous work on the safety distance in
binary grids [14] considering both : the uncertainties modeled
by mass function and the safety distance S

safe

calculated with
formula proposed by [1]:
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safe
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where v
f

, v
p

are respectively the velocity of the following
and preceding vehicles, a

max

is an acceleration potential and �
is the reaction delay. We take into consideration the difference
of reaction time between a human being and a machine with
�
human

= 2 s [10] and contrary to human reaction time,
there is no work that investigates the average reaction time
of automated vehicles, to the best of our knowledge. We will
assume �

machine

= 0.3 s from experience with autonomous
vehicles, see [6].

Figure 3: The obstacle shadow after expansion.

The expansion is made by adding circles with varying
radius. S

safe1 (Fig. 3) represents the safety distance to keep
before overtaking, this distance is taken into account during
the trajectory planning part (see III). S

safe2 (Fig. 3) is the
second safety distance to keep between the two vehicles in
the end of the overtaking maneuver.

The occupancy grid is modified in order to take into account
the presence of a moving obstacle (Fig. 2- c ). After applying
the mask to the PerceptionGrid , we look for obstacles in the
road. An obstacle is considered present if a certain number of
occupied cells is detected. Then, a longitudinal extending of
the obstacle is done by changing the masses attributed to the
front cells within a safety distance. The spatial propagation
modeling of an obstacle according to its velocity is inspired
by the discounting operation method. The proposed method
increases m(O) of the cells in front of the obstacle. A factor
↵ is specified, and the operation is defined as following:

↵m(O) = (1−↵)·m(O) + ↵ (4)
↵m(B) = (1−↵)·m(B) 8B ✓ ⌦, B 6= O

With m(O) is the mass on Occupied state. The decay factor
↵ decreases in the same way as the radius of the circles used
for expansion.

III. THE TRAJECTORY PLANNING AND THE REWARD
SYSTEM

A. Clothoid tentacles for trajectory planning
At a local on-road level, the trajectory planning goal is

the computation of an obstacle free route while following a
desired global reference trajectory defined on a global map.
The generated trajectory must satisfy the vehicle’s kinematic
limits based on vehicle dynamics and constrained by the
navigation comfort, respect lane boundaries and traffic rules,
while avoiding, at the same time, static and dynamic obstacles.

One used technique for a local on-road trajectory planning
is based on a search space which contains a specific geometric
curve (e.g. clothoids or splines) with several lateral shifts of
this curve [11],[9]. Each generated curve is then evaluated with
regard to certain criteria.

In this work, we use the clothoid tentacles method. This
method is based on generating a set of clothoids tentacles as
possible trajectories on an egocentric occupancy grid around
the vehicle [7]. The main advantage of the clothoid approach
is taking into consideration the current dynamical state of the
vehicle and making smooth variation in the vehicle dynamic
variables.



For a fixed velocity, all tentacles begin at the center of
gravity of the vehicle and take the shape of clothoid (Fig.
4).

We assume that all tentacles generated for a given speed V
x

have the same length:

L
tentacle

(m) =

(
t0 Vx

� L0 V
x

> 1(m/s)

2(m) V
x

 1(m/s)
(5)

where t0 = 7s and L0 = 5m.
The initial curvature ⇢0 of the tentacles is calculated from

the current vehicle steering angle �0 .

⇢0 =
tan �0
L

where L is the vehicle’s wheelbase.
Tentacles of the extremity correspond respectively to the

positive and negative maximal value of the reached steering
angle which the vehicle can make at the current velocity
without losing stability. The length of tentacles increases with
the increase of the velocity.

We assume that all tentacles generated for a given velocity
have the same length.

After generating all tentacles in the egocentred occupancy
grid related to the vehicle, the next step is to choose the best
tentacle to execute using different criteria.

Figure 4: Clothoid tentacles generated at the center of gravity of
the vehicle. Red tentacles are non navigable and the yellow ones are
navigable.

B. Reward system for choosing the best tentacle
After generating a set of tentacles, only one must be chosen

to be executed. First, a classification is made on the tentacles.
They are classified as navigable or non navigable using the
information of the occupancy grid. If a tentacle passes by an
obstacle on a radius of S

safe1 in front of the ego-vehicle,
this tentacle will be classified as non-navigable, otherwise
it’s navigable. If a tentacle passes by unknown cells, it’s still
considered navigable.

After classifying the tentacles, we evaluate the navigable
tentacles using several criteria: the tentacle’s occupation, its
distance from the global reference trajectory and the overtak-
ing criterion.

To model the problem of planning with all the
criteria to be taken into consideration, we used a
Markov Decision Process (MDP ) like model [15]. A
MDP is a discrete-time state-transition system. The agent
(ego-vehicle) observes the state (environment around each ten-
tacle) and performs an action (tentacle execution) accordingly.

The system then makes a transition to the next state and the
agent receives some reward.

It can be described formally with 5 components
(S,A, T,R, �): S is the set of states represented here by circles
around the tentacles , A(s) : S ! A is the set of actions
(each tentacles represents an action), T : S ⇥ S ⇥A ! [0, 1]
defines the transition probabilities of the system from one state
to another when taking an action, R : S ⇥ A ! R is the
reward given to each state dependung on different criteria and
� ⇢ [0, 1) is the discount rate used to calculate the long-term
attenuation.
Reference trajectory criterion

The reference trajectory is the path that the ego-vehicle
must follow all the time. However, the ego-vehicle can deviate
temporarily from the reference trajectory to avoid obstacles
or to carry out an overtaking. We use the lateral distance
between each tentacle and the reference trajectory to evaluate
the tentacles regarding this criterion. Details are presented in
[15].
Overtaking criterion

In the case of the presence of an obstacle in front of the
vehicle, the tentacles of the left receive a small additional
reward since the overtaking is done by the left.
Occupancy criterion

Each tentacle is evaluated in regard of its occupation. Grid
information is used to assign appropriate rewards for each
tentacle.

A tentacle discretization is made by using circles (their
diameter represent the width of the vehicle with a margin of
security) (Fig. 5). This discretization helps us to judge the
tentacle’s occupancy and serves to have a support zone around
the tentacle which will allow the ego-vehicle to circulate in a
secure manner. Rewards are given to each circle based on its
occupancy.

Figure 5: Each tentacle is discretized using circles

For trajectory and overtaking criteria, we used the same
reward as presented in [14]. Then the tentacle reward is:

R(tentacle) =
nsX

k=0

�k

t

R(s
k|trajectory) +

nsX

k=0

�k

o

R(s
k|occupancy)

+R(overtaking) (6)

where �
t

and �
o

(Equ. 6) are discount factors that can be
used to change the behavior of our approach, and that represent
distance attenuation of each kind of reward. n

s

is the number
of state per tentacle, s

k

is the state number k in the tentacle.



For occupancy criterion, we used in our previous works
binary grid with the value ’0’ for free cells and ’1’ for
occupied cells. With evidential grids, instead of having the
value ’0’ or ’1’ in the grid cells, we dispose of mass about each
cell occupancy. Explanations on how we integrate occupancy
reward will be provided in the next section.

C. Reward definition based on evidential grid
We dispose of an evidential grid in which we draw states

as circles around each tentacle. The superposition of the states
on the grid gives matrix storing belief mass values (Fig. 5).

In order to define a reward regarding the occupancy of
the state, we propose to process cells information using four
different rules. We consider that each cell is a source of
information about the occupancy of the state. All cells are
defined in the same frame of discernment. For each rule,
we attribute a different reward (Equations 6 to 9, where
a1, a2, a3, a4 are weighting parameters):

• Conjunctive rule: the first rule consists on combining
all masses of the state matrix with conjunctive rule, the
resulting mass function is m\() = \m

i

() 8 cell
i

2
matrix.

Reward
occupation

= a1m\(F) + a2m\(O)

+a3m\(⌦) + a4m\(/O) (7)

The conjunctive rule is used if all sources of information are
telling the truth. By applying this rule, we obtain a consensus
between all sources of information.

• Dempster’s rule: the second rule combines all masses of
the state matrix with Dempster’s rule, the resulting mass
function is m�() = �m

i

() 8 cell
i

2 matrix.
Reward

occupation

= a1m�(F )+a2m�(O)+a3m�(⌦)
(8)

The normalization process in Dempster’s rule has the
effect of distributing the belief of conflict to the other
propositions, according to their respective mass.

• Mean of the masses: The third combination is a
mean of all masses for each state matrix m

mean

() =
mean(m

i

()) 8 cell
i

2 matrix.
Reward

occupation

= a1mmean

(F ) + a2mmean

(O)

+a3mmean

(⌦) (9)

• Cells number: with this rule, we count the number of
occupied , free and uncertain cells of the state matrix
by making a decision about their state. For that, we
attribute the element A 2 2⌦ if m(A) > 0.5 .

Reward
occupation

= a1Nb(F )+a2Nb(O)+a3Nb(⌦) (10)

IV. EXPERIMENTAL AND SIMULATION RESULTS

A. System set-up and real example
There are three sources in our perception system: vehicle

pose, exteroceptive acquisition data and a map. First, a glob-
ally referenced pose is needed to localize the vehicle in the
environment in terms of position and orientation compared
with reference trajectory. The pose is provided by a GPS
system coupled with an inertial measurement unit. Secondly,

we use a Lidar as a perception sensor. This sensor can
distinguish between free and occupied space and model it
in 2D (x, y coordinates) with respect to the vehicle body
frame. We assume that we have the velocity of obstacles.
In the validation tests, we used two vehicles one with the
Lidar sensor and the second one served as an obstacle to
overtake with the velocity information. Finally, the map data
with information about the road surface are used.

The Lidar data was acquired at 10Hz frequency. The ego-
motion between two acquisitions is estimated using CAN
data. For the purpose of demonstration, the scan grids of (20
* 40) meters are built with uniform cells of size (0.1 * 0.1)
meters. We used the evidential grids generated by a C++ code
[13] with data acquired on the experimental platform PACPUS
in Heudiasyc Laboratory. Fig. 6 shows the road’s map where
the test is performed.

Figure 6: The road’s map where the test is performed

One typical scene is chosen to compare the different combi-
nation approaches. The resulting PlanGrid is shown in Fig. 7.
The ego-vehicle velocity was set at 20m/s , and the preceding
vehicle’s velocity was 14m/s .

(a) (b) (c)

Figure 7: (a) represents a picture of the scene. (b) represents
corresponding evidential occupancy grid. (c) represents the expansion
of the mobile obstacle with road’s edges adding.

Several values of the parameters of the combination rules
were tested to find the right values to adopt.



Rule a1 : 1 ! 100 a2 : �100 ! �1 a3 : �20 ! 10 a4

Conj. 10 -10 –1 –10

Demp. 50 -20 -1 –

Mean 10 -50 -1 –

Cell-N. 20 -50 –2 –

Table I: Parameters of different combination rules

B. Results with real data
During our tests, we collected perception data as evidential

grids. These grids have been processed with Matlab as an
input to our planning algorithm. We tested the different rules
of combination in an overtaking situation using the PlanGrid
of Fig. 7. The criterion used to compare them is the safety
distance at the end of the overtaking maneuver and the
calculation time.

And in order to compare with the binary grids, we transform
the PerceptionGrid (Fig. 7-b ) into a binary grid using
pignistic transformation. A cell is considered to be occupied
if betP (O) > betP (F ) , and free otherwise; with betP (O) =
m(O) + 1

2m(⌦) and betP (F ) = m(F ) + 1
2m(⌦).

Figure 8: The chosen tentacle among a set of 41 tentacles with
four different combinations rules. Mean rule: red, Cell-N rule: black,
Conjunctive rule: green and Dempster rule: blue. In white, the chosen
trajectory with binary grid.

Rule Conjunctive Dempster Mean Cell-number B.Grid

Time (s) 3, 3T 4, 7T 1, 3T T 0.7T

Table II: Time computing for different combination rules and for
the binary Grid. The T represents the duration of an iteration.

The result shows that the use of evidential grid enables us
to process information about the unknown differently from
the occupied space. In Fig. 8, we observe that the binary
grid choice is more conservative than the evidential grids. For
example with the meand rule combination, the algorithm has
chosen the red tentacle which passes through the borders of
the obstacle ; On these borders, the mass on the occupied is
less important than the mass on a real obstacle. And since the
algorithm is attracted by the reference trajectory, its choice
is a compromise between safety distance and the return to
the reference trajectory. However, the used combination rules
require a significant computation time (Table. II).

C. Simulation Results
To validate the algorithm on more challenging scenarios, we

use SCANeR™Studio simulator to get data for simulation. The
data was processed in Matlab . From this simulator data, we
created a global map with a reference trajectory. We positioned
one static obstacle and one dynamic obstacle with a constant
velocity of 10 m/s (Fig. 9). The ego-vehicle is the blue car
(Fig.9). The distance between the static and dynamic obstacle
is chosen to include the safety distance that the ego-vehicle
need to respect after overtaking manoeuver with a margin of
security. We consider that the driver of the yellow car is a
human with �

human

= 2 s and a
max

= �5m/s2 . Using Eq.
3, S

safe2 = 12.5m .

Figure 9: Scenario test from SCANeR™Studio simulator. The blue
vehicle is the ego-vehicle with 15m/s velocity, the yellow vehicle
is a dynamic obstacle with 10m/s velocity and the pick up is the
static obstacle.

In order to show the interest of using evidential grids instead
of binary grids, we played this scenario with both types of
grids.

To construct the binary grid, road borders were considered
to be occupied as well as the two dynamic and static obstacles.
With obstacle expansion using binary grids, no tentacles are
navigable. The ego-vehicle brakes and stops.

To simulate an evidential grid, we affect 4 masses for
each grid cell. If the cell with the coordinate (i, j) is on the
navigable space, m[i, j] = [m(;)m(F )m(O)m(⌦)], where
m(F ) = rand(0.5, 1) (random number between 0.5 and
1), m(O) = 0 , m(⌦) = 1 � m(F ) and m(;) = 0 . If
the cell is on the occupied space; m(O) = rand(0.5, 1),
m(F ) = 0, m(⌦) = 1 � m(O) and m(;) = 0 . The right
and left borders of the road and behind obstacles in the
evidential grid represent a lot of uncertainties. In order to
represent this uncertainty, if the cell is in the road borders or
behind obstacles; m(⌦) = rand(0.5, 1), m(F ) = 1 �m(⌦),
m(O) = 0 and m(;) = 0 . In every time step, we update the
grid.

With obstacle expansion using evidential grids, the al-
gorithm can find navigable tentacles thanks to the spatial
propagation modeling of an obstacle using discount masses.

Simulation results in Fig. 10 show that the use of the
evidential grids makes it possible to differentiate between
occupied and uncertain space. Thus, the overtaking maneuver
is carried out despite the uncertain situation. The binary grid



Figure 10: The chosen trajectory with four different combinations
rules. Mean rule, Cell-N: green, Conjunctive rule: red and Dempster
rule: blue.

does not allow to find a solution while respecting the safety
distance (the ego vehicle brakes and stops) whereas with the
evidential grids, we improve robustness to uncertainty of some
road’s situation.

V. CONCLUSION AND PERSPECTIVES

In this work, the goal is to manage uncertainties of the
environment for trajectory planning using evidential grids.
Therefore, the potential use of the evidential grids was tested in
different ways during the reward process to select the best ten-
tacle. Real and simulation data were used and processed with
Matlab to evaluate the performances of these approaches. The
first results show that the use of evidential grids improves our
planning algorithm robustness to uncertainty of some road’s
situation. As perspective, we look for more experiments in
order to choose the best combination rule and show the po-
tential of this approach specially in urban autonomous driving.
However, the used combination rules require a significant
computation time which makes its use in real time challenging.
The next experiments will allow us to make the compromise
between efficiency and computation time.
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