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Abstract

A number of problems can be formulated as predic-
tion on graph-structured data. In this work, we gener-
alize the convolution operator from regular grids to ar-
bitrary graphs while avoiding the spectral domain, which
allows us to handle graphs of varying size and connec-
tivity. To move beyond a simple diffusion, filter weights
are conditioned on the specific edge labels in the neigh-
borhood of a vertex. Together with the proper choice of
graph coarsening, we explore constructing deep neural net-
works for graph classification. In particular, we demon-
strate the generality of our formulation in point cloud clas-
sification, where we set the new state of the art, and on
a graph classification dataset, where we outperform other
deep learning approaches. The source code is available at
https://github.com/mys007/ecc.

1. Introduction
Convolutional Neural Networks (CNNs) have gained

massive popularity in tasks where the underlying data repre-
sentation has a grid structure, such as in speech processing
and natural language understanding (1D, temporal convolu-
tions), in image classification and segmentation (2D, spatial
convolutions), or in video parsing (3D, volumetric convolu-
tions) [22].

On the other hand, in many other tasks the data natu-
rally lie on irregular or generally non-Euclidean domains,
which can be structured as graphs in many cases. These in-
clude problems in 3D modeling, computational chemistry
and biology, geospatial analysis, social networks, or natural
language semantics and knowledge bases, to name a few.
Assuming that the locality, stationarity, and composionality
principles of representation hold to at least some level in the
data, it is meaningful to consider a hierarchical CNN-like
architecture for processing it.

However, a generalization of CNNs from grids to gen-
eral graphs is not straightforward and has recently become
a topic of increased interest. We identify that the current
formulations of graph convolution do not exploit edge la-

bels, which results in an overly homogeneous view of lo-
cal graph neighborhoods, with an effect similar to enforc-
ing rotational invariance of filters in regular convolutions
on images. Hence, in this work we propose a convolution
operation which can make use of this information channel
and show that it leads to an improved graph classification
performance.

This novel formulation also opens up a broader range of
applications; we concentrate here on point clouds specifi-
cally. Point clouds have been mostly ignored by deep learn-
ing so far, their voxelization being the only trend to the best
of our knowledge [26, 19]. To offer a competitive alterna-
tive with a different set of advantages and disadvantages,
we construct graphs in Euclidean space from point clouds
in this work and demonstrate state of the art performance
on Sydney dataset of LiDAR scans [9].

Our contributions are as follows:

• We formulate a convolution-like operation on graph
signals performed in the spatial domain where filter
weights are conditioned on edge labels (discrete or
continuous) and dynamically generated for each spe-
cific input sample. Our networks work on graphs with
arbitrary varying structure throughout a dataset.

• We are the first to apply graph convolutions to point
cloud classification. Our method outperforms volu-
metric approaches and attains the new state of the art
performance on Sydney dataset, with the benefit of
preserving sparsity and presumably fine details.

• We reach a competitive level of performance on graph
classification benchmark NCI1 [39], outperforming
other approaches based on deep learning there.

2. Related Work
The first formulation of a convolutional network analogy

for irregular domains modeled with graphs has been intro-
duced by Bruna et al. [6], who looked into both the spatial
and the spectral domain of representation for performing lo-
calized filtering.
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Figure 1. Illustration of edge-conditioned convolution on a directed subgraph. The feature Xl(1) on vertex 1 in the l-th network layer is
computed as a weighted sum of features Xl−1(.) on the set of its predecessor vertices, assuming self-loops. The particular weight matrices
are dynamically generated by filter-generating network F l based on the corresponding edge labels L(.), visualized as colors.

Spectral Methods. A mathematically sound definition of
convolution operator makes use of the spectral analysis the-
ory, where it corresponds to multiplication of the signal
on vertices transformed into the spectral domain by graph
Fourier transform. The spatial locality of filters is then
given by smoothness of the spectral filters, in case of [6]
modeled as B-splines. The transform involves very expen-
sive multiplications with the eigenvector matrix. However,
by a parameterization of filters as Chebyshev polynomials
of eigenvalues and their approximate evaluation, computa-
tionally efficient and localized filtering has been recently
achieved by Defferrard et al. [11]. Nevertheless, the fil-
ters are still learned in the context of the spectrum of graph
Laplacian, which therefore has to be the same for all graphs
in a dataset. This means that the graph structure is fixed
and only the signal defined on the vertices may differ. This
precludes applications on problems where the graph struc-
ture varies in the dataset, such as meshes, point clouds, or
diverse biochemical datasets.

To cover these important cases, we formulate our filter-
ing approach in the spatial domain, where the limited com-
plexity of evaluation and the localization property is pro-
vided by construction. The main challenge here is dealing
with weight sharing among local neighborhoods [6], as the
number of vertices adjacent to a particular vertex varies and
their ordering is often not well definable.

Spatial Methods. Bruna et al. [6] assumed fixed graph
structure and did not share any weights among neighbor-
hoods. Several works have independently dealt with this

problem. Duvenaud et al. [14] sum the signal over neigh-
boring vertices followed by a weight matrix multiplication,
effectively sharing the same weights among all edges. At-
wood and Towsley [2] share weights based on the number
of hops between two vertices. Kipf and Welling [21] fur-
ther approximate the spectral method of [11] and weaken
the dependency on the Laplacian, but ultimately arrive at
center-surround weighting of neighborhoods. None of these
methods captures finer structure of the neighborhood and
thus does not generalize the standard convolution on grids.
In contrast, our method can make use of possible edge la-
bels and is shown to generalize regular convolution (Sec-
tion 3.2).

The approach of Niepert et al. [28] introduces a heuristic
for linearizing selected graph neighborhoods so that a con-
ventional 1D CNN can be used. We share their goal of cap-
turing structure in neighborhoods but approach it in a differ-
ent way. Finally, Graph neural networks [34, 24] propagate
features across a graph until (near) convergence and exploit
edge labels as one of the sources of information as we do.
However, their system is quite different from the current
multilayer feed-forward architectures, making the reuse of
today’s common building blocks not straightforward.

CNNs on Point Clouds and Meshes. There has been lit-
tle work on deep learning on point clouds or meshes. Masci
et al. [25] define convolution over patch descriptors around
every vertex of a 3D mesh using geodesic distances, formu-
lated in a deep learning architecture. The only way of pro-
cessing point clouds using deep learning has been to first

2



voxelize them before feeding them to a 3D CNN, be it for
classification [26] or segmentation [19] purposes. Instead,
we regard point cloud as graphs in Euclidean space in this
work.

3. Method
We propose a method for performing convolutions over

local graph neighborhoods exploiting edge labels (Sec-
tion 3.1) and show it to generalize regular convolutions
(Section 3.2). Afterwards, we present deep networks with
our convolution operator (Section 3.3) in the case of point
clouds (Section 3.4) and general graphs (Section 3.5).

3.1. Edge-Conditioned Convolution

Let us consider a directed or undirected graph G =
(V,E), where V is a finite set of vertices with |V | = n
and E ⊆ V × V is a set of edges with |E| = m. Let
l ∈ {0, .., lmax} be the layer index in a feed-forward neural
network. We assume the graph is both vertex- and edge-
labeled, i.e. there exists function X l : V 7→ Rdl assign-
ing labels (also called signals or features) to each vertex
and L : E 7→ Rs assigning labels (also called attributes)
to each edge. These functions can be regarded as matrices
X l ∈ Rn×dl and L ∈ Rm×s, X0 then being the input sig-
nal. A neighborhoodN(i) = {j; (j, i) ∈ E}∪{i} of vertex
i is defined to contain all adjacent vertices (predecessors in
directed graphs) including i itself (self-loop).

Our approach computes the filtered signal X l(i) ∈ Rdl
at vertex i as a weighted sum of signals X l−1(j) ∈ Rdl−1

in its neighborhood, j ∈ N(i). While such a commutative
aggregation solves the problem of undefined vertex order-
ing and varying neighborhood sizes, it also smooths out any
structural information. To retain it, we propose to condition
each filtering weight on the respective edge label. To this
end, we borrow the idea from Dynamic filter networks [5]
and define a filter-generating network F l : Rs 7→ Rdl×dl−1

which given edge label L(j, i) outputs edge-specific weight
matrix Θl

ji ∈ Rdl×dl−1 , see Figure 1.
The convolution operation, coined Edge-Conditioned

Convolution (ECC), is formalized as follows:

X l(i) =
1

|N(i)|
∑

j∈N(i)

F l(L(j, i);wl)X l−1(j) + bl

=
1

|N(i)|
∑

j∈N(i)

Θl
jiX

l−1(j) + bl
(1)

where bl ∈ Rdl is a learnable bias and F l is parameter-
ized by learnable network weights wl. For clarity, wl and bl

are model parameters updated only during training and Θl
ji

are dynamically generated parameters for an edge label in a
particular input graph. The filter-generating network F l can

be implemented with any differentiable architecture; we use
multi-layer perceptrons in our applications.

Complexity. Computing X l for all vertices requires at
most1 m evaluations of F l and m + n or 2m + n matrix-
vector multiplications for directed, resp. undirected graphs.
Both operations can be carried out efficiently on the GPU in
batch-mode.

3.2. Relationship to Existing Formulations

Our formulation of convolution on graph neighborhoods
retains the key properties of the standard convolution on
regular grids that are useful in the context of CNNs: weight
sharing and locality.

The weights in ECC are tied by edge label, which is in
contrast to tying them by hop distance from a vertex [2],
according to a neighborhood linearization heuristic [28], by
being the central vertex or not [21], indiscriminately [14],
or not at all [6].

In fact, our definition reduces to that of Duvenaud et
al. [14] (up to scaling) in the case of uninformative edge
labels:

∑
j∈N(i) Θl

jiX
l−1(j) = Θl

∑
j∈N(i)X

l−1(j) if
Θl
ji = Θl ∀(j, i) ∈ E.
More importantly, the standard discrete convolution on

grids is a special case of ECC, which we demonstrate in
1D for clarity. Consider an ordered set of vertices V form-
ing a path graph (chain). To obtain convolution with a cen-
tered kernel of size s, we form E so that each vertex is con-
nected to its s spatially nearest neighbors including self by
a directed edge labeled with one-hot encoding of the neigh-
bor’s discrete offset δ, see Figure 2. Taking F l as a single-
layer perceptron without bias, we have F l(L(j, i);wl) =
wl(δ), where wl(δ) denotes the respective reshaped col-
umn of the parameter matrix wl ∈ R(dl×dl−1)×s. With a
slight abuse of notation, we arrive at the equivalence to the
standard convolution: X l(i) =

∑
j∈N(i) Θl

jiX
l−1(j) =∑

δ w
l(δ)X l−1(i− δ), ignoring the normalization factor of

1/|N(i)| playing a role only at grid boundaries.
This shows that ECC can retain the same number of pa-

rameteres and computational complexity of the regular con-
volution in the case of grids. Note that such equivalence is
not possible with none of [2, 21, 14] due to their way of
weight tying.

3.3. Deep Networks with ECC

While ECC is in principle applicable to both vertex clas-
sification and graph classification tasks, in this paper we
restrict ourselves only to the latter one, i.e. predicting a
class for the whole input graph. Hence, we follow the com-
mon architectural pattern for feed-forward networks of in-

1If edge labels are represented by s discrete values in a particular graph
and s < m, F l can be evaluated only s-times.
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Figure 2. Construction of a directed graph with one-hot edge la-
beling where the proposed edge-conditioned convolution is equiv-
alent to the regular 1D convolution with a centered filter of size
s = 3.

terlaced convolutions and poolings topped by global pool-
ing and fully-connected layers, see Figure 3 for an illustra-
tion. This way, information from the local neighborhoods
gets combined over successive layers to gain context (en-
large receptive field). While edge labels are fixed for a par-
ticular graph, their (learned) interpretation by the means of
filter generating networks may change from layer to layer
(weights of F l are not shared among layers). Therefore, the
restriction of ECC to 1-hop neighborhoods N(i) is not a
constraint, akin to using small 3×3 filters in normal CNNs
in exchange for deeper networks, which is known to be ben-
eficial [17].

We use batch normalization [20] after each convolution,
which was necessary for the learning to converge. Inter-
estingly, we had no success with other feature normaliza-
tion techniques such as data-dependent initialization [27] or
layer normalization [3].

Pooling. While (non-strided) convolutional layers and all
point-wise layers do not change the underlying graph and
only evolve the signal on vertices, pooling layers are de-
fined to output aggregated signal on the vertices of a new,
coarsened graph. Therefore, a pyramid of hmax progres-
sively coarser graphs has to be constructed for each in-
put graph. Let us extend here our notation with an addi-
tional superscript h ∈ {0, .., hmax} to distinguish among
different graphs G(h) = (V (h), E(h)) in the pyramid when
necessary. Each G(h) has also its associated labels L(h)

and signal X(h),l. A coarsening typically consists of three
steps: subsampling or merging vertices, creating the new
edge structure E(h) and labeling L(h) (so-called reduction),
and mapping the vertices in the original graph to those in
the coarsened one with M (h) : V (h−1) 7→ V (h). We use
a different algorithm depending on whether we work with
general graphs or graphs in Euclidean space, therefore we
postpone discussing the details to the applications. Finally,
the pooling layer with index lh aggregatesX(h−1),lh−1 into
a lower dimensional X(h),lh based on M (h). See Figure 3
for an example of using the introduced notation.

During coarsening, a small graph may be reduced to sev-
eral disconnected vertices in its lower resolutions without

problems as self-edges are always present. Since the archi-
tecture is designed to process graphs with variable n,m, we
deal with varying vertex count n(hmax) in the lowest graph
resolution by global average/max pooling.

3.4. Application in Point Clouds

Point clouds are an important 3D data modality arising
from many acquisition techniques, such as laser scanning
(LiDAR) or multi-view reconstruction. Due to their natural
irregularity and sparsity, so far the only way of processing
point clouds using deep learning has been to first voxelize
them before feeding them to a 3D CNN, be it for classifi-
cation [26] or segmentation [19] purposes. Such a dense
representation is very hardware friendly and simple to han-
dle with the current deep learning frameworks.

On the other hand, there are several disadvantages too.
First, voxel representation tends to be much more expensive
in terms of memory than usually sparse point clouds (we
are not aware of any GPU implementation of convolutions
on sparse tensors). Second, the necessity to fit them into a
fixed size 3D grid brings about discretization artifacts and
the loss of metric scale and possibly of details. With this
work, we would like to offer a competitive alternative to the
mainstream by performing deep learning on point clouds
directly. As far as we know, we are the first to demonstrate
such a result.

Graph Construction. Given a point cloud P with its
point features XP (such as laser return intensity or color)
we build a directed graph G = (V,E) and set up its labels
X0 and L as follows. First, we create vertex i ∈ V for
every point p ∈ P and assign the respective signal to it by
X0(i) = XP (p) (or 0 if there are no featuresXP (p)). Then
we connect each vertex i to all vertices j in its spatial neigh-
borhood by a directed edge (j, i). In our experiments with
neighborhoods, fixed metric radius ρ worked better than a
fixed number of neighbors. The offset δ = pj − pi between
the points corresponding to vertices j, i is represented in
Cartesian and spherical coordinates as 6D edge label vector
L(j, i) = (δx, δy, δz, ||δ||, arccos δz/||δ||, arctan δy/δx).

Graph Coarsening. For a single input point cloud P , a
pyramid of downsampled point clouds P (h) is obtained by
the VoxelGrid algorithm [31], which overlays a grid of res-
olution r(h) over the point cloud and replaces all points
within a voxel with their centroid (and thus maintains sub-
voxel accuracy). Each of the resulting point clouds P (h) is
then independently converted into a graphG(h) and labeling
L(h) with neighborhood radius ρ(h) as described above. The
pooling map M (h) is defined so that each point in P (h−1)

is assigned to its spatially nearest point in the subsampled
point cloud P (h).
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Figure 3. Illustration of a deep network with three edge-conditioned convolutions (first, fourth, and eight network layer) and one pooling
(seventh layer). The last convolution is executed on a structurally different graph G(1), which is related to the input graph G(0) by
coarsening and signal aggregation in the max pooling step according to mapping M (1). See Section 3.3 for more details.

Data Augmentation. In order to reduce overfitting on
small datasets, we perform online data augmentation. In
particular, we randomly rotate point clouds about their up-
axis, jitter their scale, perform mirroring, or delete random
points.

3.5. Application in General Graphs

Many problems can be modeled directly as graphs. In
such cases the graph dataset is already given and only the
appropriate graph coarsening scheme needs to be chosen.
This is by no means trivial and there exists a large body of
literature on this problem [32]. Without any concept of spa-
tial localization of vertices, we resort to established graph
coarsening algorithms and utilize the multiresolution frame-
work of Shuman et al. [36, 29], which works by repeated
downsampling and graph reduction of the input graph. The
downsampling step is based on splitting the graph into two
components by the sign of the largest eigenvector of the
Laplacian. This is followed by Kron reduction [13], which
also defines the new edge labeling, enhanced with spectral
sparsification of edges [37]. Note that the algorithm regards
graphs as unweighted for the purpose of coarsening.

This method is attractive for us because of two reasons.
Each downsampling step removes approximately half of the
vertices, guaranteeing a certain level of pooling strength,
and the sparsification step is randomized. The latter prop-
erty is exploited as a useful data augmentation technique
since several different graph pyramids can be generated
from a single input graph. This is in spirit similar to the
effect of fractional max-pooling [16]. We do not perform

any other data augmentation.

4. Experiments
The proposed method is evaluated in point cloud clas-

sification (real-world data in Section 4.1 and synthetic in
4.2) and on a standard graph classification benchmark (Sec-
tion 4.3). In addition, we validate our method and study its
properties on MNIST (Section 4.4).

4.1. Sydney Urban Objects

This point cloud dataset [9] consists of 588 objects in 14
categories (vehicles, pedestrians, signs, and trees) manually
extracted from 360◦ LiDAR scans, see Figure 4. It demon-
strates non-ideal sensing conditions with occlusions (holes)
and a large variability in viewpoint (single viewpoint). This
makes object classification a challenging task.

Following the protocol employed by the dataset authors,
we report the mean F1 score weighted by class frequency, as
the dataset is imbalanced. This score is further aggregated
over four standard training/testing splits.

Network Configuration. Our ECC-network has 7
parametric layers and 4 levels of graph resolution. Its con-
figuration can be described as C(16)-C(32)-MP(0.25,0.5)-
C(32)-C(32)-MP(0.75,1.5)-C(64)-MP(1.5,1.5)-GAP-
FC(64)-D(0.2)-FC(14), where C(c) denotes ECC with c
output channels followed by affine batch normalization and
ReLU activation, MP(r,ρ) stands for max-pooling down
to grid resolution of r meters and neighborhood radius of
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Model Mean F1

Triangle+SVM [9] 67.1
GFH+SVM [7] 71.0

VoxNet [26] 73.0
ORION [1] 77.8

ECC 2ρ 74.4
ECC 1.5ρ 76.9

ECC 78.4

Table 1. Mean F1 score weighted by class frequency on Sydney
Urban Objects dataset [9]. Only the best-performing models of
each baseline are listed.

ρ meters, GAP is global average pooling, FC(c) is fully-
connected layer with c output channels, and D(p) is dropout
with probability p. The filter-generating networks F l have
configuration FC(16)-FC(32)-FC(dldl−1) with orthogonal
weight initialization [33] and ReLUs in between. Input
graphs are created with r0 = 0.1 and ρ0 = 0.2 meters to
break overly dense point clusters. Networks are trained
with SGD and cross-entropy loss for 250 epochs with batch
size 32 and learning rate 0.1 step-wise decreasing after 200
and 245 epochs. Vertex signal X0 is scalar laser return
intensity (0-255), representing depth.

Results. Table 1 compares our result (ECC, 78.4) against
two methods based on volumetric CNNs evaluated on vox-
elized occupancy grids of size 32x32x32 (VoxNet [26] 73.0
and ORION [1] 77.8), which we outperform by a small mar-
gin and set the new state of the art result on this dataset.

In the same table, we also study the dependence on con-
volution radii ρ: increasing them 1.5× or 2× in all convo-
lutional layers leads to a drop in performance, which would
correspond to a preference of using smaller filters in reg-
ular CNNs. The average neighborhood size is roughly 10
vertices for our best-performing network. We hypothesize
that larger radii smooth out the information in the central
vertex. To investigate this, we increased the importance of
the self-loop by adding an identity skip-connection (see Ap-
pendix E) and retrained the networks. We achieved 77.0,
79.5 (the new state of the art), and 77.4 mean F1 for ECC,
ECC 1.5ρ, and ECC 2ρ, respectively. Stronger identity con-
nection allowed for successful integration of a larger con-
text, up to some limit, which indeed suggests that informa-
tion should be aggregated neither too much nor too little.

4.2. ModelNet

ModelNet [40] is a large scale collection of object
meshes. We evaluate classification performance on its sub-
sets ModelNet10 (3991/908 train/test examples in 10 cat-
egories) and ModelNet40 (9843/2468 train/test examples
in 40 categories). Synthetic point clouds are created from

Figure 4. Illustrative samples of the majority of classes in Sydney
Urban Objects dataset, reproduced from [9].

meshes by uniformly sampling 1000 points on mesh faces
according to face area (a simulation of acquisition from
multiple viewpoints) and rescaled into a unit sphere.

Network Configuration. Our ECC-network for Model-
Net10 has 7 parametric layers and 3 levels of graph reso-
lution with configuration C(16)-C(32)-MP(2.5/32,7.5/32)-
C(32)-C(32)-MP(7.5/32,22.5/32)-C(64)-GMP-FC(64)-
D(0.2)-FC(10), GMP being global max pooling. Other
definitions and filter-generating networks F l are as in
Section 4.1. Input graphs are created with r0 = 1/32 and
ρ0 = 2/32 units, mimicking the typical grid resolution of
323 in voxel-based methods. The network is trained with
SGD and cross-entropy loss for 175 epochs with batch
size 64 and learning rate 0.1 step-wise decreasing after
every 50 epochs. There is no vertex signal, i.e. X0 are
zero. For ModelNet40, the network is wider (C(24), C(48),
C(48), C(48), C(96), FC(64), FC(40)) and is trained for 100
epochs with learning rate decreasing after each 30 epochs.

Results. Table 2 compares our result to several recent
works, based either on volumetric [40, 26, 1, 30] or ren-
dered image representation [38]. Test sets were expanded
to include 12 orientations (ECC). We also evaluate voting
over orientations (ECC 12 votes), which slightly improves
the results likely due to the rotational variance of VoxelGrid
algorithm. While not fully reaching the state of the art, we
believe our method remains very competitive (90.8%, resp.
87.4% mean instance accuracy). For a fairer comparison, a
leading volumetric method should be retrained on voxelized
synthetic point clouds.

4.3. Graph Classification

We evaluate on a graph classification benchmark fre-
quently used in the community, consisting of five datasets:
NCI1, NCI109, MUTAG, ENZYMES, and D&D. Their
properties can be found in Table 3, indicating the variabil-
ity in dataset sizes, in graph sizes, and in the availability of
labels. Following [35], we perform 10-fold cross-validation
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Model ModelNet10 ModelNet40

3DShapeNets [40] 83.5 77.3
MVCNN [38] — 90.1
VoxNet [26] 92 83
ORION [1] 93.8 —

SubvolumeSup [30] — 86.0 (89.2)

ECC 89.3 (90.0) 82.4 (87.0)
ECC (12 votes) 90.0 (90.8) 83.2 (87.4)

Table 2. Mean class accuracy (resp. mean instance accuracy) on
ModelNets [40]. Only the best models of each baseline are listed.

with 9 folds for training and 1 for testing and report the av-
erage prediction accuracy.

NCI1 and NCI109 [39] consist of graph representations
of chemical compounds screened for activity against non-
small cell lung cancer and ovarian cancer cell lines, respec-
tively. MUTAG [10] is a dataset of nitro compounds labeled
according to whether or not they have a mutagenic effect
on a bacterium. ENZYMES [4] contains representations
of tertiary structure of 6 classes of enzymes. D&D [12] is
a database of protein structures (vertices are amino acids,
edges indicate spatial closeness) classified as enzymes and
non-enzymes.

Network Configuration. Our ECC-network for NCI1
has 8 parametric layers and 3 levels of graph resolution. Its
configuration can be described as C(48)-C(48)-C(48)-MP-
C(48)-C(64)-MP-C(64)-GAP-FC(64)-D(0.1)-FC(2), where
C(c) denotes ECC with c output channels followed by affine
batch normalization, ReLU activation and dropout (prob-
ability 0.05), MP stands for max-pooling onto a coarser
graph, GAP is global average pooling, FC(c) is fully-
connected layer with c output channels, and D(p) is dropout
with probability p. The filter-generating networks F l have
configuration FC(64)-FC(dldl−1) with orthogonal weight
initialization [33] and ReLU in between. Labels are en-
coded as one-hot vectors (d0 = 37 and s = 4 due to an
extra label for self-connections). Networks are trained with
SGD and cross-entropy loss for 50 epochs with batch size
64 and learning rate 0.1 step-wise decreasing after 25, 35,
and 45 epochs. The dataset is expanded five times by ran-
domized sparsification (Section 3.5). Small deviations from
this description for the other four datasets are mentioned in
the supplementary.

Baselines. We compare our method (ECC) to the state
of the art Weisfeiler-Lehman graph kernel et al. [35] and
to four approaches using deep learning as at least one of
their components [2, 28, 41, 8]. Randomized sparsifica-
tion used during training time can also be exploited at test
time, when the network prediction scores (ECC-5-scores)

NCI1 NCI109 MUTAG ENZYMES D&D

# graphs 4110 4127 188 600 1178
mean |V | 29.87 29.68 17.93 32.63 284.32
mean |E| 32.3 32.13 19.79 62.14 715.66
# classes 2 2 2 6 2

# vertex labels 37 38 7 3 82
# edge labels 3 3 11 — —

Table 3. Characteristics of the graph benchmark datasets, ex-
tended from [8]. Both edge and vertex labels are categorical.

Model NCI1 NCI109 MUTAG ENZYMES D&D

DCNN [2] 62.61 62.86 66.98 18.10 —
PSCN [28] 78.59 — 92.63 — 77.12

Deep WL [41] 80.31 80.32 87.44 53.43 —
structure2vec [8] 83.72 82.16 88.28 61.10 82.22

WL [35] 84.55 84.49 83.78 59.05 79.78

ECC (no edge labels) 76.82 75.03 76.11 45.67 72.54
ECC 83.80 81.87 89.44 50.00 73.65

ECC (5 votes) 83.63 82.04 88.33 53.50 73.68
ECC (5 scores) 83.80 82.14 88.33 52.67 74.10

Table 4. Mean accuracy (10 folds) on graph classification datasets.
Only the best-performing models of each baseline are listed.

or votes (ECC-5-votes) are averaged over 5 runs. To judge
the influence of edge labels, we run our method with uni-
form labels and F l being a single layer FC(dldl−1) without
bias2 (ECC no edge labels).

Results. Table 4 conveys that while there is no clear win-
ning algorithm, our method performs at the level of state
of the art for edge-labeled datasets (NCI1, NCI109, MU-
TAG). The results demonstrate the importance of exploiting
edge labels for convolution-based methods, as the perfor-
mance of DCNN [2] and ECC without edge labels is dis-
tinctly worse, justifying the motivation behind this paper.
Averaging over random sparsifications at test time improves
accuracy by a small amount. Our results on datasets with-
out edge labels (ENZYMES, D&D) are somewhat below
the state of the art but still at a reasonable level, though im-
provement in this case was not the aim of this work. This
indicates that further research is needed into the adaptation
of CNNs to general graphs. A more detailed discussion for
each dataset is available in the supplementary.

4.4. MNIST

To further validate our method, we applied it to the
MNIST classification problem [23], a dataset of 70k
greyscale images of handwritten digits represented on a 2D
grid of size 28×28. We regard each image I as point cloud

2Also possible for unlabeled ENZYMES and D&D, since our method
uses labels from Kron reduction for all coarsened graphs by default.
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P with points pi = (x, y, 0) and signal X0(i) = I(x, y)
representing each pixel, x, y ∈ {0, .., 27}. Edge labeling
and graph coarsening is performed as explained in Sec-
tion 3.4. We are mainly interested in two questions: Is ECC
able to reach the standard performance on this classic base-
line? What kind of representation does it learn?

Network Configuration. Our ECC-network has 5 para-
metric layers with configuration C(16)-MP(2,3.4)-C(32)-
MP(4,6.8)-C(64)-MP(8,30)-C(128)-D(0.5)-FC(10); the no-
tation and filter-generating network being as in Section 4.1.
The last convolution has a stride of 30 and thus maps all
4× 4 points to only a single point. Input graphs are created
with r0 = 1 and ρ0 = 2.9. This model exactly corresponds
to a regular CNN with three convolutions with filters of size
5×5, 3×3, and 3×3 interlaced with max-poolings of size
2×2, finished with two fully connected layers. Networks
are trained with SGD and cross-entropy loss for 20 epochs
with batch size 64 and learning rate 0.01 step-wise decreas-
ing after 10 and 15 epochs.

Results. Table 5 proves that our ECC network can achieve
the level of quality comparable to the good standard in the
community (99.14). This is exactly the same accuracy as
reported by Defferrard et al. [11] and better than what is
offered by other spectral-based approaches (98.2 [6], 94.96
[15]). Note that we are not aiming at becoming the state of
the art on MNIST by this work.

Next, we investigate the effect of regular grid and ir-
regular mesh. To this end, we discard all black points
(X0(i) = 0) from the point clouds, corresponding to 80.9%
of data, and retrain the network (ECC sparse input). Ex-
actly the same test performance is obtained (99.14), indi-
cating that our method is very stable with respect to graph
structure changing from sample to sample.

Furthermore, we check the quality of the learned filter
generating networks F l. We compare with ECC configured
to mimic regular convolution using single-layer filter net-
works and one-hot encoding of offsets (ECC one-hot), as
described in Section 3.2. This configuration reaches 99.37
accuracy, or 0.23 more than ECC, implying that F l are not
perfect but still perform very well in learning the proper
partitioning of edge labels.

Last, we explore the generated filters visually for the
case of the sparse input ECC. As filters Θ1 ∈ R16×1 are
a continuous function of an edge label, we can visualize the
change of values in each dimension in 16 images by sam-
pling labels over grids of two resolutions. The coarser one
in Figure 5 has integer steps corresponding to the offsets
δx, δy ∈ {−2, .., 2}. It shows filters exhibiting the struc-
tured patterns typically found in the first layer of CNNs.
The finer resolution in Figure 5 (sub-pixel steps of 0.1) re-
veals that the filters are in fact smooth and do not contain

Model Train accuracy Test accuracy

ECC 99.12 99.14
ECC (sparse input) 99.36 99.14

ECC (one-hot) 99.53 99.37

Table 5. Accuracy on MNIST dataset [23].

Figure 5. Convolutional filters learned on MNIST in the first layer
for sparse input ECC, sampled in two different resolutions. See
Section 4.4 for details.

any discontinuities apart from the angular artifact due to the
2π periodicity of azimuth. Interestingly, the artifact is not
distinct in all filters, suggesting the network may learn to
overcome it if necessary.

5. Conclusion
We have introduced edge-conditioned convolution

(ECC), an operation on graph signal performed in the spa-
tial domain where filter weights are conditioned on edge
labels and dynamically generated for each specific input
sample. We have shown that our formulation generalizes
the standard convolution on graphs if edge labels are cho-
sen properly and experimentally validated this assertion on
MNIST. We applied our approach to point cloud classifi-
cation in a novel way, setting a new state of the art per-
formance on Sydney dataset. Furthermore, we have out-
performed other deep learning-based approaches on graph
classification dataset NCI1. The source code is available at
https://github.com/mys007/ecc.

In feature work we would like to treat meshes as graphs
rather than point clouds. Moreover, we plan to address the
currently higher level of GPU memory consumption in case
of large graphs with continuous edge labels, for example by
randomized clustering, which could also serve as additional
regularization through data augmentation.
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Appendix

A. Overview
In the first part, the appendix provides further discussion

of the graph classification results (Section B) and investi-
gates robustness of point cloud classification to noise (Sec-
tion C). In the second part, we explore several extensions
of our ECC formulation, specifically with different edge la-
beling for point clouds (Section D), with identity connec-
tions (Section E), with degree labels (Section F), and with a
learned normalization factor (Section G).

B. Details on Graph Classification Benchmark
In this section we describe the differences in our network

architecture to the one introduced for NCI1 in the main pa-
per and discuss evaluation results for each dataset in detail.

NCI1. ECC (83.80%) performs distinctly better than con-
volution methods that are not able to use edge labels
(DCNN [2] 62.61%, PSCN [28] 78.59%). Methods not
approaching the problem as convolutions on graphs but
rather combining deep learning with other techniques are
stronger (Deep WL [41] 80.31%, structure2vec [8] 83.72%)
but are still outperformed by ECC. While the Weisfeiler-
Lehman graph kernel remains the strongest method (WL
[35] 84.55%), it is fair to conclude that ECC, structure2vec,
and WL perform at the same level.

NCI109. We use the same ECC-network configuration
and training details as described in Section 4.3 for NCI1,
since both datasets are similar. ECC (82.14%) performs dis-
tinctly better than DCNN [2] (62.86%), which is not able
to use edge labels, and is on par with non-convolutional
approaches (Deep WL [41] 80.32%, structure2vec [8]
82.16%, WL [35] 84.49%).

MUTAG. As MUTAG is a tiny dataset of small graphs,
we trained a downsized ECC-network to combat overfit-
ting. Using the notation from Section 4.3, its configuration
is C(16)-C(32)-C(48)-MP-C(64)-MP-GAP-FC(64)-D(0.2)-
FC(2), all other details are as with NCI1. While by num-
bers ECC (89.44%) outperforms all other approaches ex-
cept of PSCN [28] (92.63%), we note that all four leading

methods (Deep WL [41] 87.44%, structure2vec [8] 88.28%,
ECC, PSCN) can be seen to perform equally well due to
fluctuations caused by the dataset size. We account the
tiny decrease in performance with test-time randomization
(88.33%) to the same reason.

ENZYMES. Due to higher complexity of this task we use
a wider ECC-network configured as C(64)-C(64)-C(96)-
MP-C(96)-C(128)-MP-C(128)-C(160)-MP-C(160)-GAP-
FC(192)-D(0.2)-FC(6) using the notation and other details
in Section 4.3. As this dataset is not edge-labeled, we do
not expect to obtain the best performance. Indeed, our
method (53.50%) performs at the level of Deep WL [41]
(53.43%) and is overperformed by WL [35] (59.05%) and
structure2vec [8] (61.10%). Note that the gap to the other
convolution-based method DCNN [2] (18.10%) is huge and
there is an improvement of more than 4 percentage points
due to edge labels in coarser graph resolutions from Kron
reduction.

D&D. Due to large graphs in this dataset we de-
signed a ECC-network with more pooling configured as
C(48)-C(48)-C(48)-MP-C(48)-MP-C(64)-MP-C(64)-MP-
C(64)-MP-C(64)-MP-GAP-FC(64)-D(0.2)-FC(2) using the
notation and other details in Section 4.3. As this dataset
is not edge-labeled, we do not expect to obtain the best
performance. Our method (74.10%) is overperformed
by the others who evaluated on this dataset (PSCN [28]
77.12%, WL [35] 79.78%, structure2vec [8] 82.22%),
though the margin is not very large.

C. Robustness to Noise
Real-world point clouds contain several kinds of arti-

facts, such as holes due to occlusions and Gaussian noise
due to measurement uncertainty. Figure 6 shows that ECC
is highly robust to point removal and can be made robust to
additive Gaussian noise by a proper training data augmen-
tation.

D. Edge Labels for Point Clouds
In Section 3.4 we defined edge labels L(j, i) as the off-

set δ = pj − pi in Cartesian and spherical coordinates,
L(j, i) = (δx, δy, δz, ||δ||, arccos δz/||δ||, arctan δy/δx).
Here, we explore the importance of individual elements in
the proposed edge labeling and further evaluate labels in-
variant to rotation about objects’ vertical axis z (IRz). Ta-
ble 6 conveys that models with isotropic (60.7) or no labels
(38.9) perform poorly as expected, while either of the coor-
dinate systems is important. IRz labeling performs compa-
rably or even slightly better than our proposed one. How-
ever, we believe this is a property of the specific dataset and
may not necessarily generalize, an example being MNIST,
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Figure 6. Robustness to point removal and Gaussian noise.

Label L(j, i) Mean F1

(δx, δy, δz, ||δ||, arccos δz/||δ||, arctan δy/δx) 78.4
(δx, δy, δz) 76.1

(||δ||, arccos δz/||δ||, arctan δy/δx) 77.3

(||δxy||, δz, ||δ||, arccos δz/||δ||) 75.8
(||δxy||, δz) 78.2

(||δ||, arccos δz/||δ||) 78.7

(||δ||) 60.7
(0) 38.9

Table 6. ECC on Sydney with varied edge label definition.

where IRz is equivalent to full isotropy and decreases accu-
racy to 89.9%.

E. Identity Connections

The formulation of ECC in Equation 1 does not treat
self-loop edges in a special way. However, the success of
residual networks [18] is a strong motivation to consider
adding identity skip-connections to our model and encour-
aging ECC in residual learning. We thus formulate ECC-
resnet as follows:

NCI1 NCI109 MUTAG ENZYMES D&D Sydney ModelNet10

ECC-resnet 83.24 81.97 85.56 51.83 70.48 77.0 88.5 (89.3)
ECC 83.80 81.87 89.44 50.00 73.65 78.4 89.3 (90.0)

Table 7. The effect of adding identity connections (improve-
ments in italics). Performance metrics vary and are specific to
each dataset, as introduced in the main paper.

X l(i) =
1

|N(i)|
∑

j∈N(i)

Θl
jiX

l−1(j) + bl + id(X l−1(i))

(2)
where id() is an identity mapping if dl = dl−1 and a

linear mapping otherwise.
The results listed in Table 7 show that with two ex-

ceptions (NCI109 and ENZYMES) ECC does not benefit
from identity connections in the specific network configu-
rations. The trend may be different for other configurations,
e.g. ECC 1.5ρ improved from 76.9 to 79.5 mean F1 score
on Sydney due to identity connections as mentioned in Sec-
tion 4.1.

F. Vertex Degrees in Edge Labels
In the task of graph classification, we used categorical

labels (if present) encoded as one-hot vectors for edges in
the input graph and scalars computed by Kron reduction for
edges in all coarsened graphs.

Here we investigate making the edge labels more infor-
mative by including the degrees of the pair of vertices form-
ing an edge. The degree information is implicitly used by
spectral convolution methods, as the degree information is
contained in the graph Laplacian, and also appears in the
explicit propagation rules [21, 2].

Our model can be easily extended to make use of this
information by simply appending it to the existing edge
label vectors. We consider four variants of providing ad-
ditional degree labels Ldeg(j) and Ldeg(i) about a di-
rected edge (j, i): Ldeg(i) = 1/

√
deg(i), Ldeg(i) =

1/deg(i), Ldeg(i) =
√

deg(i), and Ldeg(i) = deg(i),
where deg(i) = |N(i)| is the degree of vertex i ∈ V . We
use these additional labels in all graph resolutions.

Table 8 reveals that degree information can improve the
results considerably, especially for datasets without given
edge labels (by up to 5 percentage points for ENZYMES
and up to 2.14 percentage points for D&D). However, no
variant of Ldeg(i) can guarantee consistent improvement
over all datasets.

G. Vertex Degrees in Normalization
The formulation of ECC in Equation 1 performs normal-

ization by the neighborhood size. Here we explore learn-
ing an additional multiplicative factor, conditioned on the
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NCI1 NCI109 MUTAG ENZYMES D&D

Ldeg(i) = 1/
√

deg(i) 82.99 81.94 87.78 53.67 73.65
Ldeg(i) = 1/deg(i) 83.60 82.40 88.89 52.67 71.77
Ldeg(i) =

√
deg(i) 83.58 82.28 86.67 55.00 75.79

Ldeg(i) = deg(i) 83.16 83.03 86.67 52.83 73.74

ECC without Ldeg(i) 83.80 81.87 89.44 50.00 73.65

Table 8. The effect in mean classification accuracy of adding
vertex degrees to edge labels (improvements in italics).

NCI1 NCI109 MUTAG ENZYMES D&D Sydney ModelNet10

ECC-Z 83.48 82.57 86.67 52.50 72.03 75.5 89.9 (90.6)
ECC 83.80 81.87 89.44 50.00 73.65 78.4 89.3 (90.0)

Table 9. The effect of adding a learned normalization factor (im-
provements in italics). Performance metrics vary and are specific
to each dataset, as introduced in the main paper.

neighborhood size 1/|N(i)|. To this end, we again make
use of Dynamic filter networks [5] and design a factor-
generating network Zl : R 7→ R which given vertex de-
gree deg(i) = |N(i)| outputs a vertex-specific normaliza-
tion factor. We formulate ECC-Z as follows:

X l(i) =
Zl(|N(i)|;wl)
|N(i)|

∑
j∈N(i)

Θl
jiX

l−1(j) + bl (3)

In our experiments, the factor-generating networks Zl

have configuration FC(32)-FC(1) with orthogonal weight
initialization [33] and ReLUs in between.

The results in Table 9 show that while being helpful on
some datasets (NCI109, ENZYMES, ModelNet10), ECC-
Z harms the performance on the other ones. Embedding
vertex information in labels instead seems to achieve higher
performance (Section F).
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