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Summary  20 

• Light interception and radiation use efficiency (RUE) are essential components of 21 

plant performance. Their genetic dissections require novel high-throughput 22 

phenotyping methods.  23 

•  We have developed a suite of methods to evaluate (i) the spatial distribution of 24 

incident light as experienced by hundreds of plants in a greenhouse, by simulating 25 

sun beam trajectories through greenhouse structures every day of the year (ii) the 26 

amount of light intercepted by maize (Zea mays)  plants, via a functional-structural 27 

model using 3D reconstructions of each plant placed in a virtual scene reproducing 28 

the canopy in the greenhouse and (iii) RUE, as the ratio of plant biomass to 29 

intercepted light.  30 

• The spatial variation of direct and diffuse incident light in the greenhouse (up to 24%) 31 

was correctly predicted at the single-plant scale. Light interception largely varied 32 

between maize lines that differed on leaf angles (nearly stable between experiments) 33 

and area (highly variable between experiments). Estimated RUEs varied between 34 

maize lines but were similar in two experiments with contrasting incident light. They 35 

closely correlated with measured gas exchanges.  36 

• The methods proposed here identified reproducible traits that might be used in 37 

further field studies, thereby opening the way for large-scale genetic analyses of the 38 

components of plant performance. 39 

 40 

Key words: environmental characterization, high-throughput phenotyping, maize, light 41 

interception, radiation-use efficiency, architecture 42 

  43 
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Introduction 44 

Understanding the genetic controls of biomass production and yield is a major challenge in 45 

the context of climate change (Murchie et al., 2009; Zhu et al., 2010; Reynolds et al., 2012). 46 

Yield (Y) can be dissected as a function of incident light (PPFD), the fraction of light 47 

intercepted by the crop (ε), the efficiency of the conversion of light into biomass, also called 48 

radiation-use efficiency (RUE,(Monteith, 1977)) and the partitioning of biomass to yield 49 

(harvest index, HI): 50 

� = �� × ∑ ���	
 × �
 × ��

�

�� ,                                        (1) 51 

where n is the duration of crop growth (d), PPFDi, ɛi and RUEi are the incident light, the 52 

fraction of intercepted light and RUE on the i
th

 day. Y can be genetically improved by 53 

increasing any of the terms of Eq. 1. Whereas HI has been one of the main determinants for 54 

improving yields in wheat during the 20
th

 century (Calderini et al., 1995; Sayre et al., 1997), 55 

there is probably little avenue for further improvements in most crops (Austin et al., 1980; 56 

Foulkes et al., 2011; Reynolds et al., 2012). The remaining terms of Eq. 1, ε and RUE, are 57 

directly related to light capture and photosynthetic efficiency at canopy level (Zhu et al., 58 

2010; Reynolds et al., 2012). The genetic variability of leaf area development has a high 59 

effect on light interception at early stages of the plant cycle (Hay & Porter, 2006; Murchie et 60 

al., 2009). Changes in canopy architecture also affect interception via genotypes with erect 61 

leaves that decrease light saturation at the top of the canopy and allow better penetration 62 

of light, thereby reducing the proportion of leaf area experiencing low light (Long et al., 63 

2006; Zhu et al., 2010; Reynolds et al., 2012). Studies comparing the relationship between 64 

the genetic variabilities of leaf architecture and light interception at the intraspecific level 65 

have been limited to a small number of genotypes, with contrasting conclusions (Louarn et 66 

al., 2008; Hammer et al., 2009; Moreau et al., 2012). 67 

Estimations of RUE are usually based on consecutive and destructive sampling of 68 

aboveground biomass over time, which is not feasible for the large number of genotypes 69 

involved in genetic analyses (Sinclair & Muchow, 1999). Gas-exchange measurements are 70 

also difficult to tackle at high throughput and are usually limited to measurements at the 71 

single-leaf level (Albrizio & Steduto, 2005). A phenotyping platform allowing measurements 72 

of 3D plant architecture and estimates of plant biomass with a time definition of one day 73 
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offers new possibilities to estimate light interception and RUE of hundreds of genotypes, 74 

together with their responses to environmental conditions. However, no method is currently 75 

proposed because of technical difficulties.  76 

- The spatial variability of incident light can be up to 30% within a greenhouse (Stanhill et al., 77 

1973; Kozai & Kimura, 1977; Brien et al., 2013) or a growth chamber (Granier et al., 2006). 78 

Conditions also vary between experiments, in greenhouses because of climatic conditions 79 

and in growth chambers because of differences between chambers (Massonnet et al., 80 

2010). A genetic analysis of plant performance therefore requires a precise evaluation of 81 

the PPFD (diffuse and direct) available to each plant of the greenhouse or growth chamber 82 

during each experiment. 83 

- Light interception can be derived from 3D plant architecture, combined with estimates of 84 

the direction of sunbeams and with the proportion of direct vs. diffuse light (Sinoquet et 85 

al., 2001). Platform experiments present a difficulty compared with the field, namely that 86 

they often harbour composite canopies in which each plant is surrounded by plants of 87 

another genotype. Hence, it is necessary to distinguish the light interception by each plant 88 

to dissect the genetic variabilities of ɛ and RUE.  89 

The objective of this paper was to develop a non-invasive, automatized and accurate 90 

procedure to derive light interception and radiation-use efficiency in high-throughput 91 

phenotyping platforms. To our knowledge, we present here the first methods for estimating 92 

the local PPFD received by each individual plant and for estimating light interception and 93 

RUE at a throughput of thousands of plants. We have tested whether RUE derived from the 94 

methods presented here is stable between experiments and related to leaf gas-exchange 95 

measurements.  96 

 97 

  98 
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Material & Methods 99 

The PHENOARCH phenotyping platform 100 

The PHENOARCH platform (http://bioweb.supagro.inra.fr/phenoarch), hosted at the M3P, 101 

Montpellier Plant Phenotyping Platforms (https://www6.montpellier.inra.fr/lepse/M3P), is 102 

based on a PhenoWare™ system (PhenoWare™, Lyon, France) composed of a conveyor belt 103 

structure of 28 lanes carrying 60 carts with one pot each (i.e. 1680 pots), plus a conveyor 104 

belt system that feeds the imaging or the watering units. The imaging unit is composed of 105 

two cabins with 3D image acquisition involving top and side RGB cameras  (Grasshopper3, 106 

Point Grey Research, Richmond, BC, Canada) equipped with 12.5-75mm TV zoom lens 107 

(Pentax, Ricoh Imaging, France) and LED illumination (5050 - 6500K colour temperature). 108 

Five watering units are composed of weighing terminals (ST-Ex, Bizerba, Balingen, Germany) 109 

and high-precision pumps (520U, Watson Marlow, Wilmington, MA, USA). Circulation of 110 

plants through conveyors, image acquisition and irrigation management are controlled by an 111 

industrial open automation system based on PC Control technology (Beckhoff CX 2020, 112 

Beckhoff Automation, Verl, Germany) that allows localization in real time of every pot in the 113 

platform and individually programming pot displacements. Imaging and watering routines 114 

are sequentially performed every day. Plants are then moved back to the same positions and 115 

orientation, so plant position in respect to neighbours is conserved throughout the 116 

experiment. PHENOARCH has held experiments with different species including cereals 117 

(maize (Zea mays L.), wheat, rice, sorghum) (Sciara et al., 2015), grapevine (Coupel-Ledru et 118 

al., 2014) and apple trees (Lopez et al., 2015). The plant density can be adapted for each 119 

species, from 13 plants m
-2

 in the default setting with 1680 plants to double densities for 120 

smaller plants or half densities for small trees or adult maize plants. Experiments performed 121 

until mid-2014 used a Lemnatec technology (LemnaTec, Wüerselen, Germany) that was then 122 

replaced by the methods presented above. 123 

Micro-meteorological conditions are constantly monitored at six positions in the greenhouse 124 

at the top of the plant canopy. Air temperature and humidity are measured every minute 125 

(HMP45C, Vaisala Oy, Helsinki, Finland), together with PPFD (SKP215, Skye Instruments, 126 

Powys, UK). The temperature of the meristematic zone of eight plants distributed in the 127 

greenhouse is measured with a fine copper-constantan thermocouple (0.2 mm diameter) 128 

located between the sheaths of two leaves located at meristem height. Air vapour pressure 129 
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difference (VPD) is estimated at each time step as the difference in water vapour pressure 130 

between saturation at air temperature and the current vapour pressure in the air. All data of 131 

air/meristem temperature, PPFD and relative humidity are averaged and recorded every 15 132 

min (NI CompactRio, National Instruments, Austin, TX, USA) and stored in the PHIS database 133 

(http://web.supagro.inra.fr/phis).  134 

Spatial variability of incident light in the greenhouse 135 

Daily incident PPFD over each plant of the platform (PPFD(xy)) was estimated by combining a 136 

2D map of light transmission and the outside PPFD (PPFDext) measured every 15 min with a 137 

sensor placed on the greenhouse roof (SKS 1110, Skye Instruments, Powys, UK). Maps of the 138 

fraction of transmitted direct (Tdir) and diffuse (Tdif) light were calculated every hour of each 139 

day of the year by using 169 hemispherical images of the greenhouse using a digital camera 140 

(Nikon Coolpix 4500, Nikon, Melville, NY, USA) fitted with a fisheye lens with a 183° field of 141 

view (Nikon FC-E8 Fisheye Converter, Nikon). Images were taken every m
2
 in the 142 

greenhouse, at 0.4, 1 and 1.5 m high, i.e. at heights representing the top of canopies of 143 

different species and phenological stages. Only data at 1m height are presented here. The 144 

camera and lens were placed vertically (checked with a spirit level) and the geographical 145 

North was referenced. Hemispherical images were analysed using the Ilastik 1.1.8 software 146 

(Sommer et al., 2011) (Supporting Information Fig. S1, Table S1). Calculation of sun paths, 147 

transmitted direct and diffuse radiation was then performed using standard astronomical 148 

formulae using R scripts (R_Core_Team, 2015) available as an open application (Supporting 149 

Information Methods S1). The refraction in the glass of the greenhouse changed the angle of 150 

sun beams by 0 to 36° for incident angles up to 60°. It returned to its original value in air so 151 

refraction resulted in a translation of sunbeams by 0 to 2 cm, and was therefore considered 152 

as negligible. The amount of transmitted direct radiation was computed every hour as a 153 

function of solar position, calculated from the daily time-course of sun path, in relation to 154 

the gap fraction at each position along the sun path (i.e. fraction of the image without 155 

greenhouse structure or lamps, Fig. 1). The amount of transmitted diffuse PPFD was 156 

calculated using a standard overcast sky (SOC) diffuse model (Moon & Spencer, 1942), in 157 

which diffuse radiation flux varies with zenith angle and then depends on the gap fraction of 158 

the greenhouse. Transmissions of direct and diffuse light were further corrected by the 159 
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transmittance coefficient of light through glass, measured using a spectroradiometer 160 

(HR4000, Ocean Optics, Dunedin, FL, USA). 161 

The amount of PPFD reaching each of the XY positions within the greenhouse (PPFD(x,y)) on a 162 

given day (i) was calculated as: 163 

���	��,��
 = ∑ ��,� × ���	���,� × ��
���,��� + �1 − ��,�� × ���	���,� × ��
!��,��
�
��"              (2) 164 

Where fd is the fraction of direct light and (1- fd) is the fraction of diffuse light from incoming 165 

external global radiation corresponding to the j
th

 hour and d the duration of daylight, 166 

calculated according equations detailed in (Spitters et al., 1986).  167 

Image analysis and reconstruction of plant architecture 168 

RGB colour images (2056 x 2454) from thirteen views (twelve side views from 30° rotational 169 

difference and one top view) were captured daily for each plant during the night. Images 170 

were captured while the plant was slowly rotating using a brushless motor. Top and side 171 

cameras were calibrated using reference objects in order to convert pixels into mm
2
. Plant 172 

pixels from each image were segmented from those of the background with HSV 173 

thresholding using OpenCV libraries (Open Source Computer Vision Library: 174 

http://opencv.org). A 3D representation of each plant of the platform was obtained using a 175 

silhouette-carving algorithm. Plant skeletons were extracted from binarised 2D RGB images 176 

using the thinning algorithm of  (Zhang & Suen, 1984), implemented in ImageJ (Rasband, 177 

1997-2014). Skeletons were further processed with the ‘Analyse Skeleton’ ImageJ plugin 178 

(Arganda-Carreras et al., 2010) to obtain crossings and the endpoints of the different 179 

branches of the skeleton. These points were used to navigate through the skeleton image 180 

and segment it into 50-pixels-long elementary lines. The angle of each elementary segment 181 

with the vertical was computed as the absolute value of the arctangent between z- and x- 182 

coordinates of segments endpoints. All data, namely raw and processed images together 183 

with metadata were stored in the PHIS database (http://web.supagro.inra.fr/phis/). 184 

Light interception and radiation-use efficiency 185 

Daily light interception was estimated for each plant of the platform by using the functional-186 

structural RATP (radiation absorption, transpiration and photosynthesis) plant model 187 

(Sinoquet et al., 2001) available under OpenAlea platform 188 

(http://openalea.gforge.inria.fr/dokuwiki/doku.php) (Pradal et al., 2008; Pradal et al., 2015). 189 

https://www.researchgate.net/publication/279970834_OpenAlea_Scientific_Workflows_Combining_Data_Analysis_and_Simulation?el=1_x_8&enrichId=rgreq-9eff7002-33e8-4097-8273-4192ca65a285&enrichSource=Y292ZXJQYWdlOzMwMzA3MzE2NTtBUzozNjMwMDkxOTgzMTM0NzZAMTQ2MzU1OTU0NTY1MQ==
https://www.researchgate.net/publication/41970089_3D_Reconstruction_of_Histological_Sections_Application_to_Mammary_Gland_Tissue?el=1_x_8&enrichId=rgreq-9eff7002-33e8-4097-8273-4192ca65a285&enrichSource=Y292ZXJQYWdlOzMwMzA3MzE2NTtBUzozNjMwMDkxOTgzMTM0NzZAMTQ2MzU1OTU0NTY1MQ==


8 

 

Briefly, the canopy was split into cubic voxels of 0.2 m, characterized each by the density of 190 

leaf area and the leaf angle distribution calculated from the 3D virtual representations of the 191 

neighbouring plants. Density of leaf area was calculated as the cumulative area of all leaf 192 

segments in the voxel, regardless of the plant they originated from. The calculated mean leaf 193 

angle in a voxel was calculated as the mean of angles of all leaf segments in the considered 194 

voxel.  195 

For each voxel, intercepted PPFD was calculated every day from a sample of 46 beam angles, 196 

with a cumulative value equal to the incident PPFD at the corresponding x y position in the 197 

greenhouse (PPFD(xy)). For each direction, beam extinction was computed by applying Beer’s 198 

law within the sequence of intersected cells by each beam. The daily PPFD intercepted by 199 

each plant was obtained by cumulating the PPFD interception for each voxel weighed by the 200 

relative contribution of the considered plant to the voxel area. Radiation-use efficiency was 201 

then estimated as the slope of plant biomass production to cumulative intercepted PPFD. 202 

Leaf gas exchange measurements 203 

A portable open gas exchange system (LI-COR 6400XT, LI-COR Inc., Lincoln, NE, USA) was 204 

used to measure leaf gas exchange in youngest fully expanded leaf blades in a set of eight 205 

maize lines. The net CO2 assimilation rate (AN), stomatal conductance (gs) of those leaves 206 

were measured inside the greenhouse from 10:00 to 14:00 (solar time) at 1500 μmol photon 207 

m
-2

 s
-1 

of PPFD, a leaf temperature of 28ºC, a leaf-to-air vapour pressure deficit of about 1.2-208 

1.5 kPa and an ambient CO2 of 400 μmol mol
−1

.  209 

Plant growth 210 

The leaf area and the fresh plant weight of individual plants were estimated from images 211 

taken in 13 directions. Briefly, pixels extracted from RGB images were converted into fresh 212 

plant weight  and leaf area using linear models derived from regression of data from 213 

multiple side view images and destructive measurements performed at different 214 

phenological stages, from 5 to 14 appeared leaves (i.e. from 15 to 50 days at 20°C after 215 

emergence). The resulting conversion was accurate and unbiased (Supporting Information 216 

Fig. S2). The time courses of leaf area or fresh plant weight were then fitted individually to 217 

the three-parameter Gompertz function, 218 

# = $ × %&�
�'()*�

        (3) 219 
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using appropriate R scripts (R_Core_Team, 2015). Time courses were expressed as a function 220 

of equivalent days at 20°C (Parent et al., 2010). At the end of the experiment, shoots of all 221 

plants were harvested and total plant biomass was measured. 222 

Genetic material and growth conditions 223 

The techniques presented above were tested in two experiments carried out in autumn (Exp. 224 

1) and winter-spring (Exp. 2), with markedly different incident PPFD. Two panels were 225 

studied involving 60 and 200 maize (Zea mays L.) lines for Exp. 1 and Exp. 2, respectively. A 226 

common set of 23 maize inbred lines with tropical origin was grown in both experiments, 227 

chosen for maximising the genetic and phenotypic variabilities. Plants were grown in 228 

polyvinyl chloride (PVC) 9 L pots (0.19 m diameter, 0.4 m high) filled with a 30:70 (v/v) 229 

mixture of a clay and organic compost. Three seeds per pot were sown at 0.025m depth and 230 

thinned to one per pot when leaf three emerged. In each of the experiments two levels of 231 

soil water content were experienced; (i) retention capacity (WW, soil water potential of -232 

0.05 MPa) and (ii) mild water deficit (WD, soil water potential of -0.5 MPa) by compensating 233 

transpired water three times per day via individual measurements of each plant. The weight 234 

of water in each pot was calculated at the beginning of the experiment from the weight of 235 

soil and measured soil water content. It was then maintained at a constant value by 236 

considering that the weight loss between two time-points was due to transpiration plus soil 237 

evaporation, after correction for the change in plant fresh weight every day (Eq. 3). Each line 238 

was replicated 5 and 7 times for the WW and WD treatments, respectively in Exp. 1, whereas 239 

each line was replicate 4 times in Exp. 2. Greenhouse temperature was maintained at 25 ± 240 

3°C during the day and 20°C during the night. Supplemental light was provided either during 241 

day time when external solar radiation dropped below 300 W m
-2

 or to extend photoperiod 242 

using 400 W HPS Plantastar lamps (OSRAM, Munich, Germany) with 0.4 lamps m
-2

. The 243 

resulting photoperiod was 12/12h day/night. The amount of light supplied by lamps was 244 

taken into account in the calculations of local PPFD.  245 

Statistical analyses 246 

Two-way analyses of variance (ANOVA) were performed using the lm procedure 247 

(R_Core_Team, 2015) to calculate the effects of experiment and genotype. Broad-sense 248 

heritability (h
2
) was calculated as: 249 

                 h
2
 = σ

2
G / (σ

2
G + σ

2
e /r)     (4) 250 

https://www.researchgate.net/publication/50385647_Modelling_temperature-compensated_physiological_rates_based_on_the_co-ordination_of_responses_to_temperature_of_developmental_processes?el=1_x_8&enrichId=rgreq-9eff7002-33e8-4097-8273-4192ca65a285&enrichSource=Y292ZXJQYWdlOzMwMzA3MzE2NTtBUzozNjMwMDkxOTgzMTM0NzZAMTQ2MzU1OTU0NTY1MQ==
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Where σ
2

G is the genotypic variance, σ
2

e is the residual variance, and r is the number of plant 251 

replicates per genotype. All statistical tests and graphs were performed using R 3.1.3 252 

(R_Core_Team, 2015). 253 

Results  254 

Estimating the spatial variability of local available light for each plant of the platform 255 

We have modelled the fraction of direct and diffuse light reaching each plant every hour of 256 

each day of the year based on 169 hemispherical images taken at different x-y positions of 257 

the greenhouse (1 image m
-2

), which capture the obstacles to light (e.g. beams of the 258 

greenhouse, lamps or cabins, Fig. 1). For each image, the daily time-course of sun path was 259 

simulated based on the latitude, day of year and time of day, as presented in Fig. 1a-d for 260 

summer and winter solstices and spring and autumn equinoxes. Sun paths occupied more 261 

central positions in the image and were longer during summer compared to winter because 262 

of the changes of solar position with the vertical. They crossed the structures of the 263 

greenhouse for a fraction of the day and reached plants (path superimposed on the sky) 264 

otherwise. The proportion of transmitted direct PPFD was estimated from the gap fraction 265 

over the sun path (frequency for a light beam to cross the structure in the absence of 266 

obstacle), weighed for light intensity and displacement rate along the sun path at each time-267 

step (Supporting Information, Methods S1). Light transmission through the greenhouse glass 268 

was also estimated, resulting in a transmittance coefficient (kg) of 0.76. 269 

Daily transmission of direct light was calculated every day for each of the 1680 positions in 270 

the greenhouse, resulting in large spatial and temporal variations. The duration of peaks of 271 

transmission was shorter in winter than in summer solstices, whereas the maximum value 272 

was close to 60% in all cases (Fig. 1e-h). The time course of transmission also changed with 273 

position in the greenhouse (Fig. 1e-l), with a spatial variability that was greater in winter, 274 

with up to 30% differences between locations, compared to 14% in summer. The x-y position 275 

with maximum transmission itself changed with time of year. Integrated over one day, these 276 

data resulted in a map of direct transmission for each day of the year (Fig. 2i-l, Supporting 277 

Information Video S1). The transmission of diffuse radiation was also calculated for each 278 

position of the greenhouse from the same hemispherical images, resulting in a spatial 279 

variation of 11.9% (Fig. 2b). Whereas transmission of direct light maps was calculated each 280 
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day of the year (Fig. 2a), the transmission of diffuse light only depends of the greenhouse 281 

structure so the map presented in Fig 2b is independent of days of the year. The total 282 

amount of direct plus diffuse PPFD reaching each location in the greenhouse was finally 283 

estimated using Eq. 2 (Fig. 2).  284 

The method presented above can be extended to any other greenhouse provided that 285 

images are available (Supplementary Information Methods S1). It was tested by comparing 286 

the simulated PPFD at six locations in the greenhouse with PPFD measured at the same 287 

locations. Measured PPFD cumulated over one week showed an appreciable spatial 288 

variability (24%, from 173 to 220 mol m
-2

), which was adequately accounted for by the 289 

simulated PPFD at the same positions (Fig. 3a). The daily time courses of observed vs 290 

simulated PPFD averaged over the six positions in the greenhouse were also compared on 291 

two days with high and low PPFD values, respectively. Fig. 3b shows that observed and 292 

simulated time courses closely matched, so the cumulative PPFD values estimated with the 293 

methods presented above was not biased.  294 

Estimating leaf angles over time 295 

The side plant image containing maximum information for the quantification of leaf angles 296 

was chosen for each plant and day as that containing most leaves (Fig. 4a). To that end, we 297 

have used the binarised top view of the plant on which we performed a reduced major axis 298 

regression, allowing us to choose the side image with the best angle (Fig. 4b). This image was 299 

then segmented and skeletonized (Fig. 4cd). The endpoints of the different branches of plant 300 

skeletons (red circles) were used to navigate through the skeleton and to dissect it into 50-301 

pixels-long elementary segments (Fig. 4f). The orientation of each elementary segment was 302 

then computed, thereby allowing calculation of angles for each segment. The mean leaf 303 

angle was then computed either for a whole plant or in each voxel, as shown in Fig. 4e for 304 

the plant presented in Fig 4a-e. An example of this procedure is shown in Figure 4g where 305 

mean leaf angles clearly differed between three maize lines showing either sub-horizontal 306 

angles (close to 0) or more erect architectures. Angles corresponding to each line remained 307 

essentially stable with phenological stages as illustrated in Figure 4h. 308 

Calculating daily light interception by each plant of the greenhouse 309 

The composite canopy in the greenhouse (i.e. with neighbouring plants belonging to 310 

different lines) was reconstructed from individual 3D point cloud representations of each 311 
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plant, and split into in a grid of voxels for calculating light interception using the RATP model. 312 

For each plant, actual plant leaf area and plant leaf angle distribution were uniformly 313 

distributed among the 3D point cloud. Figure 5 represents a schematic diagram of how the 314 

RATP modelling inputs were generated:  315 

- First, reconstructed 3D plants were positioned according to their actual coordinates in the 316 

greenhouse to obtain a 3D point cloud representing the canopy (Fig 5a).  317 

- Second, a 3D grid with cubic voxels of 0.20 m side was fit to the canopy bounding box and 318 

filled using positions, leaf angles and leaf areas associated to each point of the 3D canopy 319 

(Fig. 5a). Each voxel may thus include leaves of several neighbouring plants, with a range of 320 

angular distribution. Fig. 5b represents the whole greenhouse discretized in this way, 321 

where represented volumes are proportional to the leaf area in the corresponding voxel 322 

and the colour represents the dominant leaf angle.  323 

- Fourth, intercepted PPFD was calculated every day in each voxel from local PPFD(xy)i 324 

obtained with light maps. The calculation began with upper voxels, so the light reaching 325 

voxels at lower positions depended on both local PPFD and on transmission through upper 326 

voxels. The amount of PPFD intercepted by each voxel was then partitioned between 327 

neighbouring plants as a proportion of leaf area of each plant in the considered voxel.  328 

- Finally, the daily PPFD intercepted by each plant was computed by cumulating PPFD 329 

intercepted by this plant by each voxel.  330 

An example of reconstructed architecture of ten neighbouring plants and of calculated 331 

intercepted PPFD is presented in Fig. 6 at three times of the plant cycle (20, 35 and 50 d after 332 

sowing). Leaves increasingly interacted with each other on days 35 onwards (Fig. 6a-c). 333 

Calculated intercepted light (Fig 6d-f) increased with time, with an increasing variability 334 

between plants. The model captured (i) the effect of architectural characteristics of each 335 

plant on days 20 and 35 (see the comparison between plants 6, 7 and 10 with low angles 336 

with horizontal, vs. plant 2 with higher angle), (ii) the competition between plants on day 50, 337 

in which tall plants such as plant 2 had a much higher light interception compared with 338 

smaller, dominated plants such as plant 3. Hence, light interception on days 20 and 35 might 339 

be considered as similar to those of plants in a canopy with a single genotype, while that on 340 

day 50 largely depended on the spatial distribution of different genotypes in the 341 

greenhouse. 342 
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The suite of methods presented here allowed unifying experiments carried out in different 343 

seasons, with a common ranking of genotypes for radiation-use efficiency. 344 

We have tested the interest of the method in an experiment with 200 maize lines and by 345 

comparing a set of 23 maize lines in two experiments. The latter were performed at 346 

contrasting incident PPFDs in order to compare values of RUE. Overall, plants accumulated 347 

more biomass in winter/spring compared to autumn (75%, Fig. 7a), with a correlation 348 

between genotype performance in autumn and spring, although the ranking of genotypes 349 

slightly changed between experiments (genotype x environment interaction, Fig. 7a inset). 350 

Light interception also clearly differed between experiments, largely due to a difference in 351 

leaf area (55% difference, not shown). In contrast, the relation between intercepted light 352 

and biomass was common to both experiments (Fig. 7e). Indeed, the difference in biomass 353 

between experiments was entirely accounted for by the difference in intercepted light (12.5 354 

and 23 mol plant
-1

 in autumn and winter/spring, respectively, Fig. 7b), attributable to higher 355 

leaf area development and higher amount of incident light. Hence, the mean RUE of the 356 

canopy (slope of the regression between biomass and intercepted PPFD) was common to 357 

both experiments. Furthermore, RUEs measured on individual lines closely correlated 358 

between the two experiments (Fig. 7f inset), with neither significant effects of experiment 359 

nor genotype x experiment interaction. The genotypic difference in RUE was significant, 360 

ranging from 7.0 to 11.1 g FW mol 
-1

. Hence, the methods presented here allowed dissecting 361 

the differences between two experiments with large differences in biomass into (i) genotypic 362 

traits that did not differ between experiments but had a high genetic variability, namely leaf 363 

angle and radiation-use efficiency, (ii) environmental differences, essentially incident light, 364 

that affected both biomass and leaf area, thereby generating the large differences that were 365 

observed between experiments, (iii) plant traits that differed between experiments due to 366 

environmental variables, in particular leaf growth.  367 

We have extended our analysis in Exp. 2b to 1600 plants of 200 genotypes, subjected or not 368 

to a mild water deficit (Fig. 8). Overall, both biomass and light interception were affected by 369 

water deficit, with a high genetic variability in both cases. Estimated RUE had a large genetic 370 

variability (from 6.0 to 12 g FW mol 
-1

) and was affected by water deficit by 12% in average. 371 

Hence, the change in biomass with water deficit was related to both intercepted light due to 372 
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a lower leaf area and to decreased RUE. In both watering scenarios biomass and RUE 373 

displayed high heretabilities (0.7< h² <0.8). 374 

Finally, we have checked whether the observed differences in RUE between genotypes were 375 

related to gas-exchange measurements. This was performed in the 8 genotypes with highest 376 

contrasts in RUE in Exp. 1 under two contrasting water conditions. Tight correlations were 377 

observed between whole-plant RUE values and single-leaf net photosynthesis (r
2
 = 0.54, P = 378 

0.001) and stomatal conductance (r
2
 = 0.61, P <0.001) (Fig. 9), suggesting that RUE estimated 379 

at high throughput with the suite of methods presented here could be a surrogate for gas-380 

exchange measurements and vice versa.   381 

  382 
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Discussion 383 

A characterization of the light received by each plant based on a model rather than by 384 

increasing sensor number  385 

Consistent with intuitive observations of shaded zones in a greenhouse, our study shows 386 

that steep gradients of light availability occur over distances smaller than 1m, resulting in 387 

differences in incident PPFD by up to 10% between neighbouring plants. Hence, we confirm 388 

the large spatial variability of light in greenhouses (Stanhill et al., 1973; Kozai & Kimura, 389 

1977), but also provide a method for mapping it with high spatial resolution. If characterized 390 

directly with sensors, this mapping would need at least one sensor per m
2
, i.e. hundreds of 391 

sensors technically difficult to maintain and calibrate. The method presented here avoids 392 

this problem by accurately simulating the incident light received by each plant at any time of 393 

the year. It has the advantage of having a spatial definition of tens of centimetres and of 394 

estimating the respective amounts of direct and diffuse PPFD received by plants, which can 395 

bias the calculation of intercepted light because of the high proportion of diffuse light in 396 

greenhouses (Sinclair et al., 1992; Sinclair & Muchow, 1999). Finally, this method is rapid 397 

(the time for taking the 169 images was 4 hours, and the computing time was less than 2 398 

hours). It can be used in any greenhouse regardless of the presence of a phenotyping 399 

platform, and is valid as long as the structures of the greenhouse are not changed, and as 400 

obstacles to light do not change with time of the year (e.g. a deciduous tree near the 401 

greenhouse). 402 

A striking result of our study was the relatively low fraction of total daily transmitted light 403 

(ca. 30%) compared with other studies that state light transmissions ranging between 0.46 404 

and 0.84% (Niinemets & Keenan, 2012). This discrepancy is probably due to the fact that 405 

most of studies measuring light transmission in greenhouses report values based on midday 406 

measurements with sun beams close to the vertical, thereby overestimating transmission 407 

(Niinemets & Keenan, 2012) .  408 

Dissecting biomass accumulation allows identification of components with high 409 

repeatability and genetic variation.  410 

We have shown that coupling a 3D reconstruction method to a structure-function model 411 

together with a fine characterisation of environmental conditions allows estimation of light 412 

https://www.researchgate.net/publication/240786338_Variation_in_Crop_Radiation-Use_Efficiency_with_Increased_Diffuse_Radiation?el=1_x_8&enrichId=rgreq-9eff7002-33e8-4097-8273-4192ca65a285&enrichSource=Y292ZXJQYWdlOzMwMzA3MzE2NTtBUzozNjMwMDkxOTgzMTM0NzZAMTQ2MzU1OTU0NTY1MQ==
https://www.researchgate.net/publication/241065636_Radiation_Use_Efficiency?el=1_x_8&enrichId=rgreq-9eff7002-33e8-4097-8273-4192ca65a285&enrichSource=Y292ZXJQYWdlOzMwMzA3MzE2NTtBUzozNjMwMDkxOTgzMTM0NzZAMTQ2MzU1OTU0NTY1MQ==
https://www.researchgate.net/publication/229438876_Measures_of_Light_in_Studies_on_Light-Driven_Plant_Plasticity_in_Artificial_Environments?el=1_x_8&enrichId=rgreq-9eff7002-33e8-4097-8273-4192ca65a285&enrichSource=Y292ZXJQYWdlOzMwMzA3MzE2NTtBUzozNjMwMDkxOTgzMTM0NzZAMTQ2MzU1OTU0NTY1MQ==
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interception and RUE of thousands of plants with good heritabilities. The suite of methods 413 

presented here allowed dissection of biomass into (i) traits that are repeatable between 414 

experiments such as RUE or leaf angles, which have a large genetic variability (Mickelson et 415 

al., 2002; Tian et al., 2011; Ku et al., 2012) and can therefore be considered as intrinsic to 416 

each genotypes, (ii) traits that are highly dependent on environmental conditions such as the 417 

change with time of intercepted light.  418 

In the results presented in this work, RUE values ranged from 7.0 to 11 g FW mol 
-1

. If 419 

expressed in a dry weight basis (considering an average water content of 90%) and per unit 420 

of light energy (MJ), our estimates range from 3 to 5 g DW MJ
-1

. These RUE values, although 421 

relatively high compared with field measurements, are often reported in plants grown in 422 

controlled environments (Hammer & Vanderlip, 1989). This high estimates of RUE can be 423 

related to the high proportion of diffuse radiation inherent to greenhouses or chamber 424 

structures (Sinclair et al., 1992; Sinclair & Muchow, 1999). In addition, the lower daily 425 

incident radiation in the greenhouse compared with the field may induce high values of RUE 426 

through a greater photosynthetic efficiency and compensation mechanisms (Baille et al., 427 

2006). RUE values observed in this work are in accordance with other studies in maize if 428 

expressed in a dry weight basis (Otegui et al., 1995; Lindquist et al., 2005; Louarn et al., 429 

2008; Rattalino Edreira & Otegui, 2012). Proper measurements of plant dry biomass would 430 

be needed to compare with available field data. Furthermore, partitioning of biomass to 431 

roots and maintenance costs associated to respiration can be an important source of 432 

variation in RUE. Such measurements are not easily compatible with the throughput of 1680 433 

plants presented in this study, so only the resulting RUEs can be estimated at this 434 

throughput. 435 

 436 

Although genetic improvement of RUE has been suggested as a way to increase yield 437 

potential in major crops (Zhu et al., 2010; Reynolds et al., 2011), few studies have explored 438 

its genetic variability probably given to the technical difficulties to study this trait (Acreche et 439 

al., 2009; Narayanan et al., 2013; Koester et al., 2016). Other works have shown the 440 

potential of 3D reconstruction methods coupled to light distribution algorithms (radiosity or 441 

ray tracing) to asses photosynthesis in plant canopies (Prieto et al., 2012; Song et al., 2013; 442 

Pound et al., 2014; Burgess et al., 2015). These methods rely on highly-realistic surface-443 

https://www.researchgate.net/publication/41654869_Improving_Photosynthetic_Efficiency_for_Greater_Yield?el=1_x_8&enrichId=rgreq-9eff7002-33e8-4097-8273-4192ca65a285&enrichSource=Y292ZXJQYWdlOzMwMzA3MzE2NTtBUzozNjMwMDkxOTgzMTM0NzZAMTQ2MzU1OTU0NTY1MQ==
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https://www.researchgate.net/publication/283791757_Has_photosynthetic_capacity_increased_with_80_years_of_soybean_breeding_An_examination_of_historical_soybean_cultivars?el=1_x_8&enrichId=rgreq-9eff7002-33e8-4097-8273-4192ca65a285&enrichSource=Y292ZXJQYWdlOzMwMzA3MzE2NTtBUzozNjMwMDkxOTgzMTM0NzZAMTQ2MzU1OTU0NTY1MQ==
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https://www.researchgate.net/publication/47449907_Raising_yield_potential_of_wheat_I_Overview_of_a_consortium_approach_and_breeding_strategies_J_Exp_Bot?el=1_x_8&enrichId=rgreq-9eff7002-33e8-4097-8273-4192ca65a285&enrichSource=Y292ZXJQYWdlOzMwMzA3MzE2NTtBUzozNjMwMDkxOTgzMTM0NzZAMTQ2MzU1OTU0NTY1MQ==
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based plant reconstructions which require high number of images (ca. 35-65 per plant in 444 

complex canopies) or plant digitisations that are difficult to automatize in the context of 445 

high-throughput phenotyping. Conversely, our method, uses 3D point clouds that require 446 

less reconstruction steps (i.e. binarisation and projection), is easy to automatize with 447 

standard image analysis library (openCV), and can be obtained with a limited set of images 448 

(from 3 to 12). Although precision in reconstruction is lower compared with the techniques 449 

described above, our method can accommodate a certain level of error in the 3D 450 

reconstructed plant provided that leaf area estimates are precise enough. Indeed, accurate 451 

estimates of the total plant leaf area are easy to obtain from a set of binarised 2D images 452 

(Supporting Information Fig. S2). (Golzarian et al., 2011; Hartmann et al., 2011). Another 453 

advantage of RATP is that uses a statistical approach that avoids difficulties relating to 454 

relative positions of leaves belonging to neighbouring plants. Indeed, the respective 455 

positions of leaves may change from one day to another. This is the main reason why we 456 

have adopted a probabilistic approach with the RATP model, rather than an explicit 457 

description of beam intersecting virtual leaves.  458 

The facts that RUE was highly heritable, repeatable between experiments with different 459 

incident light (but similar soil water or nutrient status), and correlated with gas-exchange 460 

measurements suggests that our measurement of RUE can have a great value for exploring 461 

the genetic variability of a surrogate of canopy photosynthesis at high-throughput in large 462 

collections of genotypes, which is a topic of growing interest (Slattery & Ort, 2015; Koester 463 

et al., 2016). This method may also allow exploring the change in RUE with environmental 464 

conditions by subjecting collections of genotypes to a range of water  or nitrogen status, 465 

known to largely affect RUE (Teixeira et al., 2014), of CO2 concentration (Hui et al., 2001; 466 

Sakai et al., 2006), or of temperature (Louarn et al., 2008). Finally, using the genotypic values 467 

of RUE estimated here in a crop model will allow examining its consequences on yield of a 468 

large number of genotypes in a variety of climatic scenarios (Boote et al., 2013; Parent & 469 

Tardieu, 2014).   470 

However, we are aware of several methodological difficulties associated with the approach 471 

presented here. The first of them is that RUE is the result of a calculation that takes light 472 

interception into account. Hence, any error in the estimation of intercepted light results in 473 

an error in RUE. The method has been tested successfully in plants with relatively simple 474 
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architecture such as maize, but serious errors in the calculation of light interception can 475 

occur in plants with complex architecture such as rapeseed, with a high level of occlusion 476 

(i.e. in which many leaves are hidden by other leaves). The choice of voxel size can be 477 

associated with inaccurate results (Combes et al., 2008) and needs to be adjusted depending 478 

on the species and the target variable of study. Indeed, it results from an optimization 479 

between (i) an adequate representation of gaps in an open canopy and (ii) conforming to 480 

Beer-Lambert assumptions within the voxel.  481 

 482 

Other difficulties are associated with methodological choices. If the primary objective is to 483 

analyse the genetic control of leaf growth and plant architecture, one tends to use images 484 

taken during the night to minimize the change with time of leaf angles or shape due to 485 

epinasty (Greenham et al., 2015) or leaf rolling (Hay et al., 2000; Sirault et al., 2015), 486 

especially under water deficit. However, this choice can bias the calculation of light 487 

interception. Conversely, the use of day-time measurements results in more accurate 488 

estimation of light interception but decrease the heritability of measurements of leaf area or 489 

angles due to leaf movements or rolling during the day. In the same way, a full 490 

characterization of light interception would require that plants are organized in micro-491 

canopies of about 10 plants sharing a common genotype. However, this considerably 492 

decreases the number of genotypes studied per experiment, thereby impeding genome-493 

wide association studies that require at least 250-300 genotypes (Beavis, 1998; Malosetti et 494 

al., 2013). We show here that working with single plants surrounded by plants of different 495 

genotypes can provide good results until plants of different genotypes shade each other (Fig. 496 

7), but some traits such as the vertical distribution of light interception in the canopy cannot 497 

be analysed with this design, although it can have an appreciable effect on light interception 498 

(Moreau et al., 2012; Sadras et al., 2012). None of these points question the method itself, 499 

but rather the protocol of the experiments using the method.  500 

Whereas the method for light mapping can be easily applied in any greenhouse regardless of 501 

the presence of a phenotyping platform, the light interception routine is only accessible to 502 

platforms equipped with 3D imaging of individual plants, thereby limiting its diffusion. Its 503 

main interest is to fill a gap in photosynthesis research, namely the high throughput 504 

estimation of light interception and RUE in view of genetic analyses, rather than to be widely 505 

distributed in hundreds of platforms.  506 
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 507 

 508 

Conclusion 509 

We believe that the suite of methods proposed here may have a significant impact on future 510 

studies of canopy photosynthesis because of it is compatible with the necessary throughput 511 

for genetic analyses and because it allows dissecting the genetic variability of biomass 512 

accumulation into different traits that have each their genetic architecture. Field-estimations 513 

of intercepted light based on field-based imaging or spectral techniques (Comar et al., 2012; 514 

Sankaran et al., 2015) will still be necessary, but they can be combined with genotypic values 515 

of RUE and leaf angles estimated in the platform, thereby avoiding the time-consuming step 516 

of sequential destructive measurements of plant biomass. 517 
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Figure Captions 721 

Figure 1. Hemispheric images of the greenhouse seen from below at a given x-y position, 722 

superimposed to the sun paths (yellow lines) during (a) winter and (c) summer solstices and 723 

(b) spring and (d) autumn equinoxes. Time courses of the fraction of transmitted direct light 724 

at three different positions (red, green and black lines) in the greenhouse at four different 725 

dates (e-h). Grey dashed lines represent the average greenhouse transmission value. Maps 726 

of the fraction of transmitted direct light in the greenhouse at the same dates (i-l). Black, red 727 

and green dots represent the three studied positions in the greenhouse. The black arrow 728 

represents the geographical North.  729 

Figure 2. Schematic representation of the method for estimating the local PPFD reaching 730 

each x-y position in the greenhouse using daily direct light maps (a), a diffuse light map (b) 731 

and the local amount of PPFD (direct + diffuse) light map (c).   732 

Figure 3. Comparison of measured and estimated available PPFD. (a) Bar plots represent the 733 

comparison between measured and estimated weekly PPFD at each of the six positions in 734 

the greenhouse equipped with light sensors. (b) Time courses of measured and estimated 735 

PPFD with an hourly basis at the positions of the six light sensors. 736 

Figure 4. Step-by step method to extract mean leaf angles from a multi-view set of Zea mays 737 

plant images (a), side image selection from top image (b), binarization (c), skeletonization 738 

(d), identification of 50-pixel elements and calculation of angles for each element (e,f). The 739 

output of calculations is presented for three maize lines with contrasting architectures. (g) 740 

Time course of mean leaf angle as a function of thermal time (d20ºC) after sowing, autumn 741 

experiment (h). Values are the mean ± SD of 5 replicates.  742 

Figure 5. Canopy structure Zea mays plants in the greenhouse superimposed to a three-743 

dimensional array of voxel 0.20 m × 0.20 m × 0.20 m (a). 3D representation of the grid 744 

corresponding to the 1680 plant in the greenhouse (b). Each volume represents a voxel, with 745 

a size proportional to the leaf area inside the voxel and a colour representing the dominant 746 

leaf angle class. Dark blue 60°, pale blue 53°, green 47°, orange 42°, red 36°. 747 
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Figure 6. 3D representation of 10 contiguous Zea mays plants in the greenhouse at 20 (a), 35 748 

(b) and 50 (c) days after sowing. (d ,e, f) Bar plots representing daily light interception per 749 

plant obtained with the RATP model for the plants depicted in Figures a, b and c.  750 

Figure 7. Time courses of biomass accumulation (a) and intercepted PPFD (c), and biomass 751 

accumulation of Zea mays as a function of intercepted PPFD (d) in two experiments in 752 

autumn and winter-spring. Insets in panels a, c and e present the comparison of biomass (b), 753 

intercepted PPFD (d) and RUE (f) between experiments. Values are the mean ± SD of 115 and 754 

92 replicates for autumn and winter experiments, respectively. 755 

Figure 8. Histograms showing variation in cumulated intercepted PPFD (a) and biomass (b) 756 

per plant in Zea mays plants growing in Exp 2. The relationship between total intercepted 757 

PPFD per plant and total cumulated biomass (c). Red and blue symbols / bars refer to water-758 

deficit and well-watered conditions. Each point represents a plant (n= 1600 (200 genotypes x 759 

2 water scenarios x 4 repetitions)) 760 

Figure 9. Relationship between radiation-use efficiency (RUE) and leaf net photosynthesis (a) 761 

and leaf stomatal conductance (b) in eight genotypes of Zea mays with contrasting RUEs 762 

grown under well-water (open symbols) and water-deficit conditions (grey symbols). Each 763 

point represents the mean ± SE of 3 replicates. 764 

  765 
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Fig. 2 770 
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Fig. 3 774 
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Fig. 4 777 
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Fig. 5 780 
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Fig.6 783 
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Fig.7 785 
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Fig.8 787 
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Fig.9 789 
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Supporting Information  

Additional supporting information may be found in the online version of this article. 

 

Fig. S1. Pipeline analysis of greenhouse hemispherical images. 

Fig. S2. Comparison between measured and predicted leaf area and plant biomass. 

Methods S1. Shiny App for Sun Paths and Light transmission calculation. 

Table S1. Detailed list of software and packages used in this study.  

Video S1. Direct light transmission over a year at the different positions in the greenhouse.  

Please note: Wiley-Blackwell are not responsible for the content or functionality of any 

supporting information supplied by the authors. Any queries (other than missing material) 

should be directed to the New Phytologist Central Office. 




