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High-resolution subspace-based methods:
eigenvalue- or eigenvector-based estimation??
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GIPSA-lab, CNRS and Univ. Grenoble Alpes, F-38000 Grenoble, France.
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Abstract. In subspace-based methods for mulditimensional harmonic
retrieval, the modes can be estimated either from eigenvalues or eigen-
vectors. The purpose of this study is to find out which way is the best.
We compare the state-of-the art methods N-D ESPRIT and IMDF, pro-
pose a modification of IMDF based on least-squares criterion, and derive
expressions of the first-order perturbations for these methods. The the-
oretical expressions are confirmed by the computer experiments.

Keywords: Frequency estimation, multidimensional harmonic re-
trieval, multilevel Hankel matrix, N-D ESPRIT, IMDF, perturbation
analysis.

1 Introduction

Parameter estimation from bidimensional (2-D) and multidimensional (N -D)
signals finds many applications in signal processing and communications such
as magnetic resonance (NMR) spectroscopy [5], wireless communication channel
estimation, antenna array processing, radar and medical imaging [1]. In these
applications, signals are modeled by a superposition of damped or undamped
N -D complex exponentials.

Signal model. Denote N the number of dimensions and Mn, n = 1, . . . , N ,
the size of the sampling grid in each dimension. In this paper we consider the
following model, for mn = 0, . . . ,Mn − 1:

ỹ(m1, . . . ,mN ) = y(m1, . . . ,mN ) + ε(m1, . . . ,mN ), (1)

where ε(·) is random noise (we leave the assumptions on the noise for later), and
the signal y is a superposition of R N -D damped complex sinusoids:

y(m1, . . . ,mN ) =

R∑
r=1

cr

N∏
n=1

(ar,n)mn , (2)

where
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– cr are complex amplitudes,
– ar,n = e−αr,n+ωr,n are modes in the n-th dimension,

– {αr,n}R,Nr=1,n=1 are (real and positive) damping factors,

– {ωr,n = 2πνr,n}R,Nr=1,n=1 are angular frequencies.

The problem is to estimate {ar,n}Rr=1 and {cr}Rr=1 from the observed signal
ỹ(m1, . . . ,mN ).

State of art. To deal with this problem, several methods have been proposed.
They include linear prediction-based methods such as 2-D TLS-Prony [10],
and subspace approaches such as matrix enhancement and matrix pencil
(MEMP) [3], 2-D ESPRIT [8], improved multidimensional folding (IMDF) [7,6],
Tensor-ESPRIT [2], principal-singular-vector utilization for modal analysis
(PUMA) [14,13]. Among the most promising are N-D ESPRIT [8,12] and IMDF
[7,6]. Both methods use the eigenvalue decomposition (EVD) of a so-called shift
matrix constructed from the estimated basis of the signal subspace, but the
modes are extracted differently: from eigenvalues in ND-ESPRIT and from eigen-
vectors in IMDF. Which method is the best? To our knowledge, there is no sat-
isfactory answer to this question in the literature. The purpose of this paper is
to shed some light on this question.

Contributions. In this paper, we perform a study to compare between methods
that are based on eigenvalues and those based on eigenvectors to extract N-D
modes. Our main contributions are:

– We derive simple expressions of first-order perturbations of IMDF that
do not need to calculate the SVD of the MH matrix as it is needed in
expressions given in [6].

– We propose a variation of IMDF in which the modes are estimated by min-
imizing the least squares criterion. It is shown through perturbation anal-
ysis and simulations that the proposed technique outperforms the original
average-base technique.

Organisation of the paper In Section 2, we recall the definition of multilevel
Hankel (MH) matrices and their main properties. In Section 3, we recall the
algorithms N-D ESPRIT and IMDF, and describe a proposed modification of
IMDF (IMDF LS). In Section 4, we recall known results on first order pertur-
bations and derive new expressions for IMDF and IMDF LS. Section 5 contains
numerical experiments.

2 Multilevel Hankel matrices and their subspaces

2.1 Definition and factorization

Assume that the set of parameters (Ln)Nn=1 is chosen such that 1 ≤ Ln ≤
Mn and define Kn

def
= Mn − Ln + 1. The multilevel Hankel (MH) matrix H ∈
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C(L1···LN )×(K1···KN ) is defined as

H =


H0 H1 ··· HK1−1

H1 H2 ··· HK1

...
...

...
HL1−1 HL1

··· HM1−1

, (3)

where for n = 1, . . . , N − 1 the block matrices Hm1,...,mn
are defined recursively

Hm1,...,mn
=


Hm1,...,mn,0 Hm1,...,mn,1 ··· Hm1,...,mn,Kr+1−1

Hm1,...,mn,1 Hm1,...,mn,2 ··· Hm1,...,mn,Kr+1

...
...

...
Hm1,...,mn,Lr+1−1 Hm1,...,mn,Lr+1

··· Hm1,...,mn,Mr+1−1

 (4)

and the blocks of the first level are scalars (1× 1 matrices)

Hm1,...,mN
= y(m1, . . . ,mN ).

By H̃ we denote the MH matrix constructed from noisy observations ỹ. There are
alternative equivalent ways to construct the MH matrix: using selection matrices
[7] or using operations with tensors [12].

It can be verified (see [7, Lemma 2] or [12, Section III.A]) that for the noiseless
signal the MH matrix admits a factorization of the form

H = P diag(c)QT (5)

where

P = A
(L1)
1 �A

(L2)
2 � · · · �A

(LN )
N , Q = A

(K1)
1 �A

(K2)
2 � · · · �A

(KN )
N ,

� denotes the Khatri-Rao product, A
(Ln)
n ∈ CLn×R are Vandermonde matrices

(with (A
(Ln)
n )j,r = aj−1r,n ), and c = [c1, . . . , cR]T is the vector of amplitudes.

2.2 Shift properties of subspaces

Let us define the selection matrices

I
n — def

= IL1 � IL2 � · · ·� ILn � · · ·� ILN
= I∏n−1

i=1 Li
� ILn � I∏N

i=n+1 Li
(6)

I
n —

def
= IL1

� IL2
� · · ·� ILn

� · · ·� ILN
= I∏n−1

i=1 Li
� ILn

� I∏N
i=n+1 Li

(7)

and

J = IL1
� IL2

� · · ·� ILN
, (8)

Jn = IL1
� IL2

� · · ·� ILn
� · · ·� ILN

, J =

N∑
n=1

βnJn, (9)

where X (resp. X) represents X without the last (resp. first) row, � denotes the
Kronecker product, and IL is an L× L identity matrix.
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Next, for a matrix X we define X
n —

= I
n —

X and X
n —

= I
n —

X. Then the shifted
versions of P satisfy the following equation:

P
n —
Ψn = P

n —

, (10)

where Ψn = diag(a(n)), a(n) = [a1,n, . . . , aR,n]T.
Now consider the matrix Us of the leading R left singular vectors of the

noiseless matrix H. Since the ranges of Us and P coincide, they are linked by a
nonsingular transformation:

P = UsT.

Hence, we have that the matrix Fn
def
= TΨnT−1 satisfies the equation

Us
n —

Fn = Us

n —

. (11)

If Us
n —

is full-column rank, then Fn can be obtained as:

Fn =
(

I
n —

Us

)† (
I

n —

Us

)
:=
(
Us
n —

)† (
U
n —

s

)
(12)

Hence, the matrices Fn can be computed from the signal subspace Us, and the
modes of each dimension n can be estimated by the eigenvalues of Fn.

On the other side it was shown in [6] that

G = JUsT, G Diag(η) = JUsT, (13)

with G = A
(L1−1)
1 � · · · � A

(LN−1)
N , η = [η1, . . . , ηR]T and ηr =

∑N
n=1 βnar,n

where βn are user parameters such that ηr 6= ηi for r 6= i .
From (13) it follows that

T Diag(η)T−1 = (JUs)
†(JUs), (14)

Hence, the modes can be estimated from the elements of G.

3 ESPRIT-type algorithms for MH matrices

3.1 N-D ESPRIT algorithm

The N-D ESPRIT algorithm [12] is an extension of the 2-D ESPRIT [8] and
ESPRIT [9] algorithms. The algorithm consists of the following steps :

1. Choose L1, . . . , LN .
2. Construct the MH matrix H̃ from the noisy signal.
3. Perform the SVD of H̃, and form the matrix Ũs ∈ C(L1···LN )×R of the R

dominant singular vectors.
4. Compute the matrices F̃n such that:

F̃n :=
(
Ũs
n —

)† (
Ũ
n —

s

)
(15)
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5. For given parameters β1, . . . , βn, compute a linear combination of F̃n:

K̃ =

N∑
n=1

βnF̃n (16)

6. Compute a diagonalizing matrix T of K̃ from its EVD:

K̃ = T Diag(η)T−1. (17)

7. Apply the transformation T to Fn:

D̃n = T−1F̃nT, for n = 1, . . . , N. (18)

8. Extract {[â1,n, . . . , âR,n]}Nn=1 from diag(D̃n), n = 1, . . . , N .

3.2 IMDF algorithm

The IMDF algorithm consists of the following steps [6]:

1. Choose L1, . . . , LN .
2. Construct the MH matrix H̃ from the noisy signal.
3. Perform the SVD of H̃, and form Ũs ∈ C(L1···LN )×R, as in N-D ESPRIT.

4. Compute the matrix K̃IMDF = (JŨs)
†(JŨs).

5. Compute a diagonalizing matrix T of K̃IMDF from its EVD:

K̃IMDF = T Diag(η)T−1. (19)

6. Estimate a scaled and permuted matrix G:

G̃ = JŨsT (20)

7. Extract {[â1,n, . . . , âR,n]}Nn=1 from G̃ by

âr,n =
1

µn

L′0∑
k=1

mod (k−1,L′n−1)≥L
′
n

G̃k,r

G̃k−L′n,r
, (21)

where µn =
L′0(Ln−2)
Ln−1 and L′

n =

{∏N
i=n+1(Li − 1), 0 ≤ n ≤ N − 1,

1, n = N.

3.3 IMDF based on least squares (IMDF LS)

The averaging (21) may not be optimal, if some elements of G̃ take small values.
To tackle this problem, we propose a modification of IMDF. The algorithm is the
same as IMDF, except the last two steps, which are replaced by the following:

6. Estimate the scaled and permuted matrix P

P̃ = [p̃1, . . . , p̃R] = ŨsT.

7. Extract {[ã1,n, . . . , ãR,n]}Nn=1 from P̃ as

âr,n =
(p̃r

n —
)Hp̃r

n —

‖p̃r
n —
‖22

= (p̃r
n —

)†p̃r
n —

.



6 K. Usevich, S. Sahnoun, P. Comon. High-resolution subspace-based methods:

4 Perturbation analysis

4.1 Basic expressions

The SVD of the noiseless MH matrix H is given by:

H = UsΣsV
H
s + UnΣnVH

n , (22)

where Σn = 0. The subspace decomposition of the perturbed matrix H̃ =
H +∆H is given by

H̃ = ŨsΣ̃sṼ
H
s + ŨnΣ̃nṼH

n (23)

We use the following lemma on the first-order approximation.

Lemma 1 ([4] and [15]). The perturbed signal subspace is Ũs = Us + ∆Us,
Ṽs = Vs +∆Vs and Σ̃s = Σs +∆Σs. A first order perturbation is given by

∆Us = UnUH
n∆H VsΣ

−1
s (24)

∆VH
s = Σ−1s UH

s∆H VnVH
n , ∆Σs = UH

s∆H Vs (25)

For N-D ESPRIT, an expression for first-order perturbation was derived in [12].

Proposition 1 ([12]). Denote by br ∈ CR the r-th unit vector. Then first order
perturbations of the modes obtained by the N -D ESPRIT admit an expansion

∆ar,n =
1

cr
b>r P

n —

†( I
n —

− ar,n I
n —

)∆H (QT)†br. (26)

4.2 IMDF Perturbations

Perturbation analysis of IMDF have been done in [6]. However, the obtained
expressions require the calculation of the SVD of the MH matrix H. To get
simplified perturbation expressions we use the following fact: from (9), KIMDF

can be written as a linear combination of FIMDF
n

KIMDF =

N∑
n=1

βnFIMDF
n , (27)

where

FIMDF
n = (JUs)

†(JnUs). (28)

We use the following lemma, which is a slight modification of [12, Lemma 4].

Lemma 2 ( [12, Lemma 4, a modification]). The first-order perturbation
of FIMDF

n is given by

∆FIMDF
n = (JUs)

†(Jn∆Us − J∆UsFn). (29)
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Next, we derive perturbation expression of ar,n with respect to ∆gr from (21)

∆ar,n =
ar,nG

−1
1,r

µn
vT
r,n∆gr, (30)

where

vr,n = (φr,1 � · · ·� φr,n−1) �ψr,n � (φr,n+1 � · · ·� φr,N ), (31)

φr,1 =
[
1 a−1r,n · · · a

−(Ln−2)
r,n

]T
∈ C(Ln−1)×1, (32)

ψr,1 =
[
−1 0 · · · 0 a

−(Ln−2)
r,n

]T
∈ C(Ln−1)×1, (33)

the vectors gr are
gr = JUstr,

and tr are the eigenvectors of KIMDF (the columns of T):

T = [t1, . . . , tR].

The perturbation of gr can be expressed as:

∆gr = J∆Ustr + JUs∆tr, (34)

where:

– ∆Us can be found from equation (24);
– ∆tr can be found as

∆tr =

R∑
i=1,i6=r

1

ηr − ηi
tiτ

T
i ∆Ktr (35)

= TΞ(r) T−1∆K tr. (36)

where τT
r denote the rows of T−1

T−1 = [τ1, . . . , τR]T,

and Ξ(r) is a diagonal matrix with Ξii(r) = 1
ηr−ηi , for i 6= r and Ξrr(r) = 0.

From equations (27), (28), and (35) we get, after some simplifications

∆tr =

N∑
n=1

βn

{
TΞ(r) P

n —

†(Jn − ar,nJ) +

R∑
i=1,i6=r

(ar,n − ai,n)

ηr − ηi
tiτ

T
i (T−1)HPH

}
1

cr
∆H (QT)†br.

(37)

Then, by combining (24) and (37), we get

∆gr = J
{

(I−Pbrb
T
rP†) + PΞ(r) P

n —

†
(
J− ηrJ

)}
· 1

cr
∆H (QT)†br. (38)

Here the SVD of H is not required.
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4.3 IMDF LS perturbations

For establishing the perturbations of ar,n for IMDF LS we can use eqn. (29):

∆ar,n = (pr
n —

)†(∆pr
n — −∆pr

n —
ar,n) =

1

‖pr
n —
‖22

pr
H(Jn − ar,nJ)∆pr

The perturbation ∆pr is, in fact, given in (34). Finally, since

(Jn − ar,nJ)Pbr = 0,

we have

∆ar,n=
1

cr‖pr
n —
‖22

pr
H(Jn−ar,nJ)

(
I + PΞ(r) P

n —

†
(
J− ηrJ

))
∆H (QT)†br. (39)

4.4 Computing the first-order perturbation and its moments

Similarly to [12, §V.C], the perturbations in eqn. (26), (38), (39) have the com-
mon form:

∆ar,n = v>r,n∆Hxr,

where xr = (QT)†br, and the vector v>r,n depends on the method. Since the
MH matrix ∆H depends linearly on the elements of e (vectorization of the noise
term), the perturbation can be expressed as

∆ar,n = zHr,ne. (40)

where zr,n can be computed from v>r,n and xr efficiently using the N-D convo-
lution, as shown in [12].

Therefore, we have the following:

1. E {∆ar,n} = 0 if e is zero-mean.
2. E

{
∆a2r,n

}
= 0 if e is circular.

3. E
{
|∆ar,n|2

}
= zHr,nΓzr,n if e has covariance matrix Γ = E

{
eeH

}
.

4. E
{
|∆ar,n|2

}
= σ2

e‖zr,n‖22 if e is white with variance σ2
e .

5. Finally,

var(∆ωr,n) = var(∆αr,n) =
E
{
|∆ar,n|2

}
2|ar,n|2

if e is complex circular Gaussian.

5 Simulations

Numerical simulations have been carried out to verify theoretical expressions and
compare the performances of N-D ESPRIT, IMDF and IMDF LS algorithms in
the presence of white Gaussian noise. The performances are measured by the
total mean squared error (tMSE) on estimated parameters. The total MSE is
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defined as tMSEtotal = 1
RF Ep

{∑R
r=1

∑F
f=1(ξf,r − ξ̂f,r)2

}
where ξ̂f,r is an esti-

mate of ξf,r, and Ep is the average over p Monte-Carlo trials. In our simulations,
ξf,r can be either a frequency or a damping factor.

In the following experiments we plot theoretical expressions of the variances
and compare them with empirical results of N-D ESPRIT, IMDF and IMDF LS.
Cramér-Rao bounds are also reported [11]. In all experiments, Ln = dMn

3 e.

Experiment 1 In this experiment, we simulate a 3-D signal of size 10× 10× 10
containing two modes whose parameters are given in Table 1. Figure 1(a) shows
the obtained results. We can see that N -D ESPRIT and IMDF LS have the
similar results, which are almost equal to theoretical ones beyond -10 dB. We
can also remark that N -D ESPRIT and IMDF LS outperforms slightly IMDF.

Table 1. 3-D signal with two modes

r ωr,1 αr,1 ωr,2 αr,2 ωr,3 αr,3 cr

1 0.2π 0.01 0.3π 0.01 0.26π 0.01 1

2 0.6π 0.01 0.8π 0.015 0.2π 0.01 1

Experiment 2 In this experiment, we simulate a 3-D signal of size 10× 10× 10
containing nine modes. Figure 1(b) shows the obtained results. First, we remark
that theoretical variances match the empirical ones beyond thresholds. Then, we
can see that N -D ESPRIT outperforms IMDF and IMDF LS.
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(a) 3-D damped signal containing two tones.

−5 0 5 10 15 20 25 30 35 40
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

3−D signal (10x10x10) with 9 tones

SNR

T
o
ta

l 
M

S
E

 f
o
r 

F
re

q
u
e
n
c
y

 

 

ESPRIT ND

IMDF

IMDF LS

Theoritical ESPRIT

Theoritical IMDF

Theoritical IMDF LS

CRB

(b) 3-D damped signal containing nine tones.

Fig. 1. Theoretical and empirical tMSEs versus SNR. (M1,M2,M3) = (10, 10, 10).
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6 Conclusions

Our study suggests that the N-D ESPRIT outperforms IMDF when the number
of tones increases. The same conclusion holds for the improvement of IMDF pro-
posed in this paper. We conjecture that the eigenvalue-based estimation should
be preferred over the eigenvector-based ones, since they do not contain an ad-
ditional estimation step. An extensive study (for different noise scenarios and
parameter values of the methods) is needed to confirm our conjecture.
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