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Abstract: This paper deals with a fluid-flow modeling under compartmental representation
of a network. The motivating example is a communication network made up of buffers and
transmission lines where densities and flows of packets are viewed as macroscopic variables
respecting the conservation laws. The main contribution lies in the resulting model. It is a
coupled linear hyperbolic partial differential equations (PDEs) with an ordinary differential
equation (ODEs) along with a dynamic boundary condition. Input-to-state stability of an
optimal equilibrium is analyzed using Lyapunov techniques.
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1. INTRODUCTION

Fluid-flow modeling of physical networks is a way of de-
scribing flow of matter through elements of the network
consisting of a finite collection of nodes communicating
to each other and links that connect them. One of the
most important features of the fluid-flow modeling is the
conservation of mass. Several models, in which this prop-
erty is preserved, may result in a macroscopic description.
The most traditional and well-studied example is about
the evolution of vehicular traffic in roads (Garavello and
Piccoli (2009)), whose macroscopic variables are mainly
the density of cars and the averaged velocity. The models
in that framework are then given by one dimensional
partial differential equations (PDEs) of conservation laws
(Coclite et al. (2005); Treiber and Kesting (2013)). Fur-
thermore, inspired by traffic flow on road networks, several
studies deal with flow of information on telecommunication
networks made up of transmission lines and nodes (see e.g.
D’Apice et al. (2006)). One common issue on both road
traffic and communication networks under PDE setting is
related to the congestion. For both applications, there exist
critical densities that split the operation of the network in
two zones (according to the so-called fundamental diagram
of flow-density).
In addition to macroscopic models, compartmental sys-
tems are also known as suitable framework to describe
conservation laws in networks. See for instance Jacquez
and Simon (2002) for the study of the dynamics of com-
partmental systems, even with lags representing delays
which turn out to be represented by linear transport equa-
tions or linear conservation laws. In Bastin and Guffens

⋆ This work has been partially supported by the LabEx
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(2006), congestion control of compartmental networks is
studied, still under fluid-flow modeling, in which they ex-
ploit properties of positive systems to establish stability of
the network and prevent congestion by means of nonlinear
controls. In those studies, each node represents a compart-
ment which contains a variable quantity, e.g. information
being processed. Conceptually, a compartment is a kind
of storage device and is typically modeled by ordinary
differential equations (ODEs). Related works to Bastin
and Guffens (2006), one can also find nonlinear continuous-
time model using fluid-flow approach, as introduced in
Malrait et al. (2009) or conservation law-based fluid-flow
for network congestion control as in Briat et al. (2012).
Networks of conservation laws are also studied in Bastin
et al. (2007), using linear hyperbolic equations. Moreover,
the stability analysis of such linear hyperbolic equations is
carried out by means of Lyapunov analysis. The network
of conservation laws is represented as a compartmental
network with the particularity that the accumulated quan-
tities are distributed on space. It is worth pointing out that
hyperbolic equations have important applications in the
modeling and control of physical networks. Besides road
traffic networks (Coclite et al. (2005)), as previously dis-
cussed, one can highlight other examples such as hydraulic
networks Bastin et al. (2008) and gas pipeline networks
Gugat et al. (2011).
This paper deals with stability analysis of a communica-
tion network which is modeled using the fluid-flow and
compartmental setting, combining hyperbolic conservation
laws with ordinary differential equations. More precisely,
we establish that a compartment is made up of two sub-
compartments: one for the fluid dynamics of servers, com-
posed mainly by buffers (modeled by ODEs), the other to
represent delays in transmission (if there are), or simply



a transmission line modeled by hyperbolic PDEs. Since
we combine both dynamics, the coupling is defined at the
boundaries of the hyperbolic PDEs. It results in what we
call, coupled PDE-ODE with dynamic boundary condition.
We aim then at studying the stability of such systems un-
der the assumption that one wants the system to operate in
free-flow zone to avoid congestion. The main contribution
of this work is the modeling and the study of input-
to-state stability properties of a communication network
when operating at some optimal equilibrium point.

This paper is organized as follows. In Section 2 we in-
troduce the proposed model. Section 3 contains the well-
posedness and stability analysis, including the steady-state
characterization. Section 4 provides a numerical example
to illustrate the results. Finally, conclusions are given in
Section 5.

Preliminary definitions and notation.

(1) In is the set of the number of compartments, num-
bered from 1 to n.

(2) Iin ⊂ In is the index set of input compartments.
(3) Iout ⊂ In is the index set of outputs compartments.
(4) Di ⊂ In is the index set of downstream compartments

connected directly to compartment i (i.e. those com-
partments receiving flow from compartment i).

(5) Ui ⊂ In is the index set of upstream compartments
connected directly to compartment i (i.e. those com-
partments sending flow to compartment i).

(6) R ⊂ In is the index set of routing compartments
(i.e. those compartments sending flow to two or more
downstream compartments).

Due to space limitation, all proofs are omitted.

2. FLUID-FLOW MODELING

In this section, we present a model of communication
networks under compartmental fluid-flow dynamics using
both partial differential equations and ordinary differential
equations. Highly inspired by Guffens (2005), Bastin and
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Fig. 1. Example of a compartmental network.
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Fig. 2. Compartment: buffer.

Guffens (2006) and Bastin et al. (2007), let us consider

an example of a general network depicted in Figure 1
where each node is illustrated in Figure 2. It is a server
in which a buffer stores information to be processed. The
other compartments considered in this network are the
transmission lines when delays in time may exist. The fact
of considering delays in transmission (not buffer delays)
allows to enrich the model introduced in Guffens (2005)
where delays are not taken into account. Actually, they
assume that the flow transfer is instantaneous between
buffers. In this work we will consider rather that traffic flow
takes a while in traveling from one buffer to another. We
assume that the network is a directed graph in which the
directed arcs i → j of the network represent instantaneous
mass transfers between compartments (more precicely, be-
tween servers compartments and transmission line com-
partments). As already mentioned, if there are time delays,
they can be enclosed into the compartment representing
the transmission line by a transport equation with positive
velocity. We assume that traffic flow may be routed to
different compartments of the network until reaching the
destination. That routing mechanism is assumed to be
located the end of the server compartments.

Under the proposed general topology of compartments,
transmission lines are modeled by the following nonlinear
conservation laws (D’Apice et al. (2006, 2008))

∂tρij(t, x) + ∂xfij(ρij(t, x)) = 0, i ∈ In, j ∈ Di (1)

for all x ∈ [0, 1], t ∈ R
+, where ρij and fij(ρij) are the

density and flow of packets respectively and σij is a critical
density closely related to the probability of loosing packets.

fij(ρij) =

{

λijρij , if 0 ≤ ρij ≤ σij

λij(2σij − ρij), if σij ≤ ρij ≤ ρmax
ij

(2)

Figure 3 shows the so-called fundamental diagram of flow-
density.

σij
ρijρmax

ij

f(ρij)

Fig. 3. Fundamental triangular diagram of flow-density

For ρij ≤ σij , the network is said to be in free-flow. For
ρij ≥ σij , the network is said to be congested. Note that
this fundamental diagram is quite similar to the one used
in road traffic networks (see e.g. (Treiber and Kesting,
2013, Chapter 8) for CTM models). In communication
networks, the averaged velocity of packets is supposed to
be constant. The macroscopic model (1) has been validated
in D’Apice. et al. (2012).

In this work, we assume the specific case when each flow is
a static monotonic increasing function of the density ρij .
Under this assumption, the flow fij(ρij) equals λijρij , for
0 ≤ ρij ≤ σij , where λij is the average velocity of packets
among buffers traveling through the transmission line. Let
us denote the flow fij(ρij) := qij . We will focus on the
case in which the network operates in free-flow and we will
study Lyapunov stability properties on the network when
operating in this zone. This case implies that, according
to (2), qi = λijρij for 0 ≤ ρi ≤ σij . Therefore



∂tρij(t, x) =
1

λij
∂tqij(t, x).

Replacing it in (1), we obtain the linear hyperbolic system
as Kinematic wave equations (as in Bastin et al. (2007)),
that is

∂tqij(t, x) + λij∂xqij(t, x) = 0, i ∈ In, j ∈ Di (3)

Concerning the modeling of buffers, let us consider the
balance equation for each buffer i ∈ In as follows:

żi(t) = vi(t)− ri(zi(t)) (4)

where vi is the sum of all input flows getting into the
buffer and ri is the output flow of the buffer. It will
be characterized later as the processing rate function.
We assume that there is only an outgoing flow ri from
buffer i getting into the transmission line instantaneously.
Furthermore, with vi(t) = di(t) +

∑

k 6=i

k∈Ui

qki(t, 1), where

• di(t) is the external input flow demands. Note that
di ≡ 0 as long as i /∈ Iin;

•
∑

k 6=i

k∈Ui

qki(t, 1) are the flows coming from the trans-

mission line connecting upstreams compartments,

we obtain

żi(t) = di(t) +
∑

k 6=i

k∈Ui

qki(t, 1)− ri(zi(t)) (5)

It represents the rate of accumulation of quantity zi. The
flows can be modulated by suitable actuators. On one
hand, we have control actions uij(·) devoted to route the
flow of information through different paths of the network.
In this work, they are time-varying and represent contin-
uous time control values, that we call routing splitting
controls. The routing takes place at the output of the
server. On the other hand, we have control actions wi(·)
devoted to reject packets (traffic flow) before they enter
to the buffers. Combining both control actions, we have,
on one hand, that the buffer model given in (5) can be
expressed as follows:

żi(t) = wi(t)di(t) +
∑

k 6=i

k∈Ui

wi(t)qki(t, 1)− ri(zi(t))

where di(t) is the actual input flow demand, then widi is a
fraction of such a demand and wi(t)qki(t, 1) is a fraction of
the incoming flow entering to the buffer i, 0 ≤ wi(t) ≤ 1.
The output flow ri(zi) (processing rate function) of each
buffer is considered as the ratio between the quantity zi
and the residence time. It is given as follows (see (Guffens,
2005, Chapter 2))

ri(zi) =
zi

θi(zi)

The residence time is the averaged time at which packets
stay in the server when being processed.

θi(zi) =
1 + zi
ǫi

(6)

with ǫi > 0 as the maximal processing capacity of each
server. Hence, the processing rate function is given by

ri(zi) =
ǫizi
1 + zi

(7)

It can be can noticed that ri(zi) is a positive bounded
function of the quantity zi (0 ≤ ri(zi) < ǫi).

On the other hand, regarding the routing splitting control,
the boundary condition for the linear hyperbolic system
(3) is as follows:

qij(t, 0) = uij(t)ri(zi(t)) (8)

with 0 ≤ uji(t) ≤ 1, j ∈ Di, i ∈ In. In fact i ∈ R. Note
that the left boundary condition (8) depends on the state
variable zi, being this one a solution to the ODE system
(5). In that sense, we shall consider in the sequel that
the boundary condition of the linear hyperbolic PDE is a
dynamic boundary one. The left-boundary condition itself
is enough to be considered in the whole model for the study
of well-posedness and stability issues.

Finally, the output function for each output compartment
i ∈ Iout is given by

ei(t) = ui(t)ri(zi(t)) (9)

with
∑

i6=j

j∈Di

uij(t) + ui(t) = 1 (ui(t) ≡ 0 if i /∈ Iout). The

complete model, for the network as depicted in Figures 1
and 2, is then:










∂tqij(t, x) + λij∂xqij(t, x) = 0, i ∈ In, j ∈ Di

żi(t) = wi(t)di(t) +
∑

k 6=i

k∈Ui

wi(t)qki(t, 1)− ri(zi(t))

(10)
with dynamic boundary condition,

qij(t, 0) = uij(t)ri(zi(t)), ri ≥ 0 (11)

output function,

ei(t) = ui(t)ri(zi(t)) (12)

and initial conditions
{

qij(0, x) = q0ij(x), x ∈ [0, 1]

zi(0) = z0i .
(13)

3. STABILITY ANALYSIS AND WELL-POSEDNESS
OF THE NETWORK

We want the network to operate at some equilibrium point,
to be precise, at some free-flow steady-state. Since we
are going to deal with input flow demands, we aim at
studying the influence of those inputs over the stability
of the network. Therefore, Input-to-state stability (ISS)
property with respect to those inputs by using Lyapunov
analysis will be addressed for the corresponding linearized
system.

3.1 Free-flow steady-state characterization

For a given constant input flow demand d∗i , sys-
tem (10)-(13) has infinitely many equilibrium points
{q∗ki, z

∗
i , u

∗
ij , u

∗
i , w

∗
i , e

∗
i } with q∗ij time and space invariant.

They satisfy the following algebraic equations:


















w∗
i d

∗
i +

∑

k 6=i

h∈Ui

w∗
i q

∗
ki − ri(z

∗
i ) = 0

q∗ij = u∗
ijri(z

∗
i )

e∗i = u∗
i ri(z

∗
i ).

(14)

We assume then that the system admits a free-flow steady-
state. Among all possible equilibrium points, we choose
the free-flow steady-state that meets some performance
criterion for the network. Inspired by road traffic networks
where two usual performance metrics such as the total
travel time (TTT) and total travel distance (TTD) are
considered (see e.g. Treiber and Kesting (2013)), here we
focus on a particular static case:



1) Maximizing the total output flow rate of the network.
The first optimization objective is as follows:

maximize J1 =
∑

i∈Iout

e∗i

2) Minimizing the total mean travel time (TMTT ). In each
compartment i ∈ In, information is processed and it
takes some time according to the residence time θi(zi)
before it is sent through the transmission line. Besides
this, there is a time propagation given by 1

λij
due to

the transport equation. Let us denote the total travel
time in each compartment i by Ti = θi(z

∗
i ). We do not

give any explicit formula of the TMTT because of the
complexity that the network topology might have, but we
explain the approach to compute it. The first issue worth
remarking is that in this framework, there are no cycles
in the network. It implies that there is a finite number
of possible paths that the information flow can follow
from input compartments until output compartments.
Therefore, looking at each input-output path, the sum
of total times Ti of compartments involved in along with
time propagation between compartments 1

λij
, is weighted

by the effective output flow which travels through them.
In order to homogenize, the result is divided by the sum
of the output flows of the whole network. Repeating the
same procedure with every input-output path and adding
the obtained weighted average value, the total mean travel
time can be deduced accordingly. In Section 4, a specific
example is provided to better illustrate the idea. Hence,
the second optimization objective is as follows:

minimize J2 = TMTT

Let us call J = α(−J1) + (1−α)J2 the cost function with
weighting coefficient α ∈ [0, 1]. J is a nonlinear function
to be minimized subject to (14) along with the following
constraints related to:
(1) free-flow conditions over the linear hyperbolic system:

q∗ij ≤ σijλij

(2) maximal processing rate capacity:

ri(z
∗
i ) < ǫi

(3) control variables:

0 ≤ u∗
ij ≤ 1, 0 ≤ w∗

i ≤ 1, 0 ≤ u∗
i ≤ 1,

∑

i6=j

j∈Di

u∗
ij + u∗

i = 1

3.2 Linearization around the free-flow steady-state

Defining the deviations yij = qij − q∗ij , Zi = zi − z∗i , Uij =

uij − u∗
ij ,Wi = wi − w∗

i and d̃i = di − d∗i , ẽi(t) = ei(t) −
e∗i the linearization of the coupled PDE-ODE system in
(10) with dynamic boundary condition (11) and initial
condition (13) around the optimal free-flow equilibrium
is given by






























∂tyij(t, x) + λij∂xyij(t, x) = 0, i ∈ In, j ∈ Di

Żi(t) = d∗iWi(t) + w∗
i d̃i(t) +

∑

k 6=i

k∈Ui

q∗kiWi(t)

+
∑

k 6=i

k∈Ui

w∗
i yki(t, 1)− r

′

i(z
∗
i )Zi(t)

(15)

with dynamic boundary condition

yij(t, 0) = u∗
ijr

′

i(z
∗
i )Zi(t) + ri(z

∗
i )Uij(t), i ∈ In, j ∈ Di

(16)
with output function

ẽi(t) = u∗
i r

′

i(z
∗
i )Zi(t) + ri(z

∗
i )Ui(t) (17)

and initial conditions
{

yij(0, x) = y0ij(x), x ∈ [0, 1]

Zi(0) = Z0
i .

(18)

Recall that
∑

i6=j

j∈Di

uij(t) + ui(t) = 1 and
∑

i6=j

j∈Di

Uij(t) +

Ui(t) = 0. We remark that since ui(t) ≡ 0, u∗
i ≡ 0 if

i /∈ Iout, thus, Ui(t) ≡ 0 as well.

The system (15)-(18), can be written in matrix form as
{

∂ty(t, x) + Λ∂xy(t, x) = 0

Ż(t) = AZ(t) +Gyy(t, 1) +BwW (t) +Dd̃(t)
(19)

with boundary condition

y(t, 0) = GzZ(t) + BuU(t) (20)

and initial condition
{

y(0, x) = y0(x), x ∈ [0, 1]

Z(0) = Z0.
(21)

where y : R+ × [0, 1] → R
m with m is given by

m :=
∑

i∈In

card(Di) (22)

For the system (19)-(21) in this new matrix formulation,
Λ is a diagonal positive matrix in R

m×m such that Λ =
diag(λij), i ∈ In,j ∈ Di. W : R+ → R

n, Z : R+ → R
n and

• A = diag(−r
′

i(z
∗
i )) ∈ R

n×n;
• Gy ∈ R

n×m withGy[i, j] = w∗
i if j ∈ Ui orGy [i, j] = 0

otherwise;
• Bw = diag(d∗i +

∑

k 6=i

k∈Ui

q∗ki) in R
n×n (di ≡ 0 as long

as i /∈ Iin);
• D is a diagonal matrix in R

n×n whose diagonal entries
are w∗

i if i ∈ Iin or 0 otherwise.

In addition, U : R
+ → R

l where l is given by
l :=

∑

i∈R(card(Di) − 1) +
∑

i∈R∩Iout
card(Di). In

order to characterize Bu, we define for i ∈ R,

B̃ui =
[

diag(ri(z
∗
i ))

−ri(z
∗
i )

]

∈ R
card(Di)×(card(Di−1). Similarly,

in order to characterize Gz, we define, for i ∈ R, G̃zi =
[u∗

ijr
′

i(z
∗
i )] ∈ R

card(Di). Note that ỹi(t, 0) = G̃ziZi(t) +

B̃uiŨi(t), for i ∈ R. With all these ingredients, we can
finally build up the matrix Bu as a diagonal block ma-
trix of B̃ui’s, that is Bu = diag(B̃ui) ∈ R

m×l and the
matrix Gz as block matrix made up of Gzi’s, that is
Gz = [ diag(G̃zi) 0m×1 ] ∈ R

m×n. To finish stating the

system (19)-(21), it remains to say that d̃(t) is the in-
put flow that can be viewed in the sequel as an input
disturbance. We assume that d̃ is in Cpw(R+;Rn). Finally,
y(0, x) = y0(x) ∈ L2([0, 1];Rm) and Z(0) = Z0 ∈ R

n.

Let us now study the well-posedness and the stability
of the system (19)-(21) in open-loop, i.e. U(t) = 0 and
W (t) = 0.



3.3 Well-posedness of the system in open-loop

Proposition 1. [Well-posedness in open-loop] Let d̃ be in
Cpw(R+;Rn). For every Z0 ∈ R

n and y0 ∈ L2([0, 1];Rm),
there exists a unique solution to the system (19)-(21).
Moreover, y ∈ C0(R+;L2([0, 1];Rm)) and Z ∈ C0(R+;Rn).

3.4 Stability results in open-loop

Let us define the notion of input-to-state stability for the
system (19)-(21).

Definition 1. [Input-to-state stability ISS] The system

(19)-(21) is input-to-state stable (ISS) with respect to d̃ ∈
Cpw(R

+;Rn), if there exist ν > 0, C1 > 0 and C2 > 0 such
that, for every Z0 ∈ R

n, y0 ∈ L2([0, 1];Rm), the solution
satisfies, for all t ∈ R

+,

(‖Z(t)‖2 + ‖y(t, ·)‖2L2([0,1],Rm)) ≤

C1e
−2νt(‖Z0‖2 + ‖y0‖2L2([0,1];Rm)) + C2 sup

0≤s≤t

‖d̃(s)‖2

(23)

C2 is called the asymptotic gain.

Theorem 1. [Input-to-state stability analysis in open-
loop] Let λ = min{λij} i∈In

j∈Di

. Assume that there exist µ, γ >

0, a symmetric positive definite matrix P ≥ I ∈ R
n×n and

a diagonal positive matrix Q ≥ I ∈ R
m×m such that the

following matrix inequality is satisfied:




ATP + PA+GT
z QΛGz + 2µλP PGy PD
⋆ −e−2µQΛ 0
⋆ ⋆ −γI



 ≤ 0

(24)
Then, the system (19)-(21) is input-to-state stable (ISS)

with respect to inputs d̃ ∈ Cpw(R+;Rn), and the asymptotic
gain satisfies

C2 ≤
γ

2µλ
e2µ. (25)

4. NUMERICAL SIMULATIONS

Let us consider a network under compartmental setting as
represented in Figure 4 which is made up of 4 buffers along
with 5 transmission lines.

The index sets involved in the example are: In =
{1, 2, 3, 4}, Iin = {1}, Iout = {4}, U1 = ∅, U2 = {1};
U3 = {1, 2}, U4 = {2, 3}, D1 = {2, 3}, D2 = {3, 4},
D3 = {4}, D4 = ∅. Consider then the model (10)-(12)
introduced in Section 2. We assume that the system admits
a free-flow steady-state satisfying (14) and according to the
constrained optimization problem described in Subsection
3.1. Recall that the cost function to be minimized is
J = α(−J1) + (1− α)J2 with α chosen according to some
decision-maker criteria by means of the so-called Pareto
fronts. Here, J1 = e∗4 according to (3.1). Following the
procedure to compute J2 = TMTT we have explained in
Subsection 3.1, we have

TMTT =
(T4+T2+T1+

1
λ24

+
1

λ12

)(w∗
4
(1−u∗

23
)w∗

2
u∗
12

w∗
1
d∗
1
)

e∗
4

+
(T4+T3+T1+

1
λ34

+
1

λ13
)(w∗

4
w∗

3
(1−u∗

12
)w∗

1
d∗
1
)

e∗
4

+
(T4+T3+T2+T1+

1
λ34

+
1

λ23

+
1

λ12

)(w∗
4
w∗

3
u∗
23

w∗
2
u∗
12

w∗
1
d∗
1
)

e∗
4

with Ti = θi(z
∗
i ), i ∈ In (θi given by (6)) that

can be obtained using the minimizers of J , i.e.
(w∗

1 , w
∗
2 , w

∗
3 , u

∗
12, u

∗
23) and d∗1. The linearized system

(19) around the free-flow equilibrium has the
following matrices: Λ = diag(λ12, λ13, λ23, λ24, λ34),

A = diag(−r
′

i(z
∗
i )) with r

′

i(z
∗
i ) = ǫi

(1+zi)2
.

Gz =











u∗
12

r
′

1
(z∗

1
) 0 0 0

(1−u∗
12

)r
′

1
(z∗

1
) 0 0 0

0 u∗
23

r
′

2
(z∗

2
) 0 0

0 (1−u∗
23

)r
′

2
(z∗

2
) 0 0

0 0 r
′

3
(z∗

3
) 0











Gy =

( 0 0 0 0 0
w∗

2
0 0 0 0

0 w∗
3

w∗
3

0 0

0 0 0 w∗
4

w∗
4

)

, Bw =





d∗
1

0 0 0

0 q∗
12

0 0

0 0 q∗
13

+q∗
23

0

0 0 0 q∗
24

+q∗
34



,

D =

(

w∗
1

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)

, and Bu =





w∗
1
d∗
1

0

−w∗
1
d∗
1

0

0 w∗
2
u∗
12

w∗
1
d∗
1

0 −w∗
2
u∗
12

w∗
1
d∗
1

0 0



.

As initial conditions, we have taken Z0 = 0.1z∗ and
y0(x) = 0.1q∗ for all x ∈ [0, 1]. Let us consider the
following network parameters: i) for the processing
capacities; ǫ1 = 100, ǫ2 = 50, ǫ3 = 80 and ǫ3 = 80, ii)
the transport velocities; λ12 = 1, λ13 = 1.2, λ23 = 1.7,
λ24 = 0.5 and λ34 = 2 and iii) the critical traffic densities
for free-flow condition; σ12 = 50, σ13 = 50, σ23 = 50,
σ24 = 30 and σ34 = 100. For a given constant input
flow demand d∗1 = 100, equilibrium points were found by
solving the constrained optimization problem described in
Subsection 3.1 using the optimization toolbox in Matlab
fgoalattain. Nevertheless, one is not able to guarantee a
global minimizer but a local one because the cost function
is not convex. Using a Pareto front of the multi-objective
optimization problem J , one can obtain the following
minimizer decision variables for J : w∗

1 = 0.95, w∗
2 = 0.95,

w∗
3 = 0.95,w∗

4 = 0.95 and u∗
12 = 0.36, u∗

23 = 0.54. The
steady-states are z∗1 = 19, z∗2 = 1.98, z∗3 = 13.12, z∗4 = 5.6
and q∗12 = 35, q∗13 = 60, q∗23 = 18.25, q∗24 = 15 and
q∗34 = 74.3. With this values, we obtain that J1 = 84.8
and that J2 = 2.19. We aim at minimizing the asymptotic
gain in open-loop subject to (24). This can be formulated
as an optimization problem involving a bilinear matrix
inequality (BMI), which can be solved by a line search
algorithm (on µ) to get successive LMIs to be solved using
semi-definite programing. At each iteration, hypothesis
of Theorem 1 are satisfied. Once the optimization
problem is solved, Theorem 1 holds with optimal matrices

P =

(

1 0 0 0
0 20.96 0 0
0 0 1 0
0 0 0 1.40

)

, Q =

(

4.25 0 0 0 0
0 3.41 0 0 0
0 0 7.023 0 0
0 0 0 1 0
0 0 0 0 1

)

along

with optimal values µ = 0.11, ν = 0.055 and γ = 3.59.
Then, a bound of the asymptotic gain obtained is
γ
2ν e

2µ = 40.48. Figure 5 shows the total output function
e4(t) (right). It can be observed that it remains close to
the optimal steady-state value given by J1 = e∗4 = 84.8.
However, as expected, no convergence is guaranteed to
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Fig. 4. Network of compartments made up of 4 buffers and 5 transmission lines.
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Fig. 5. Input flow demand d̃(t) (left) and total output flow e4(t) of the network (right).

such a optimal value due to the influence of the input
disturbance (unless d1 ≡ 0) which has a profile shown in
Figure 5 on the left.

5. CONCLUSION

Fluid-flow modeling for a network along with stability
analysis has been studied. The motivating application is
a communication network. We studied a free-flow oper-
ating point for which we proved Input-to-state stability
properties. We deduced a bound of the asymptotic gain
which measures the impact of the input flow demands
into the network. It could be fruitful to study feedback
control setting, using the two control actions described in
this work. We would expect to reduce the asymptotic gain
and to improve the performance of the network.
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