N

N

Dynamic and quasi-electromagnetostatic evolution of a
thermoelectromagnetoelastic body

Christian Licht, Somsak Orankitjaroen, Panumart Sawangtong, Thibaut
Weller

» To cite this version:

Christian Licht, Somsak Orankitjaroen, Panumart Sawangtong, Thibaut Weller. Dynamic and quasi-
electromagnetostatic evolution of a thermoelectromagnetoelastic body. Comptes Rendus Mécanique,
2017, 345 (5), pp.344 - 352. 10.1016/j.crme.2017.03.005 . hal-01576851

HAL Id: hal-01576851
https://hal.science/hal-01576851
Submitted on 24 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01576851
https://hal.archives-ouvertes.fr

Dynamic and quasi-electromagnetostatic evolution of a
thermoelectromagnetoelastic body

Christian Licht "¢, Somsak Orankitjaroen b.¢ Panumart Sawangtongd,
Thibaut Weller &*

3 LMGC, Université de Montpellier, UMR5508 CNRS, Montpellier, France

b Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

¢ Centre of Excellence in Mathematics, CHE, Bangkok 10400, Thailand

d Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, 10800 Bangkok, Thailand

A standard technique of evolution equations in Hilbert spaces of possible states with finite energy supplies
results of existence and uniqueness for the dynamic evolution of a thermoelectromagnetoelastic body and for its
“quasi-electromagnetostatic approximation” whose relevance is established through a convergence result as a

parameter, accounting for the ratio of the speed of elastic wave propagation to the celerity of the light, goes to
zero.
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1. Introduction

Recently, thermoelectromagnetoelastic materials have been artificially engineered for the design of smart structures as
thermoelectromagnetoelastic actuators or sensors. So it is of interest to propose an efficient mathematical model for the
transient response of a body made of such materials to a given loading. First we will consider the fully dynamic situation
that couples transient thermoelastic equations with the Maxwell equations. Due to the large discrepancy between the
speed of elastic wave propagation and the celerity of light, a “quasi-electromagnetostatic approximation” has been proposed
(see [1]) in order to practice computations. So, here, by using a technique of evolution equations in Hilbert spaces of possible
states with finite energy, we intend to give results on the consistency of both models and on the relevance of the second
one.

As we are mainly concerned with the status of the quasi-electromagnetostatic approximation, we directly consider the
so-called non-dimensionalized equations (see [1,2] for their derivation), which involves a small parameter §, accounting for
the ratio of the maximum of speed of elastic wave propagation to the celerity of the light, and reads as:
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pvs —dives = f, A5 — (divk Vs, tMzs) = (r,— ], —K) inQ
us=0onTyp, osn=gmonlyn

95=OOHF@D, KV@5~n=g@ onI'gnN

Esnn=konlg, HsAn=jonIly

(035, As) = M(e(us), 05, zs) in Q

Us(-, 0) := (us, vs, 05, 25)(-,0) = U in Q

(Ps)

Here Q is a bounded simply connected open subset of R3 with a Lipschitz-continuous boundary I" whose unit outer
normal is denoted by n and which admits three partitions (I'mp, 'mn), (Tep,Ten) and (g, T'y) such that the two-
dimensional Hausdorff measures H,(I"'vp) and H(I'ep) are positive. The symbols oy, As, vs, us, e(us), 0s,zs = (Es, Hs)
represent the stress tensor, the ‘thermoelectromagnetic induction’, the velocity field, the displacement field, the temperature
field, and the electromagnetic field (the couple composed of the electrical field and the magnetic field), respectively; while
f,egm. 1,80, J,j, K,k stand for densities of body and surface forces, heat supply, electric currents, and magnetic currents,
respectively. Eventually upper dot " denotes the derivative with respect to the time parameter ¢, Ug is the given state of the
body at t =0, Us(t) := (us, vs, 05, zs)(t) is its state at t, the positive element (p,«) of L®() x L®(Q; S), S? being the
space of symmetric 3 x 3 matrices, represents the density and the thermal conductivity tensor, M is the Maxwell operator
M(Es, Hs) = (curl Hs, — curl Es), and M is an element of L>°($2; Lin(S? x IT)), IT:=R x R3 x R3, such that;

e R Ik 2

with a in Lin(S?), b in Lin(I1,S?), bT the transpose of b, c in Lin(IT), A in R, « in Lin(R® x R3,R), ¥, u, v in Lin(R3),
which satisfies:

oy >0; M@EmM-m>cylm? VmeS® x1II, ae.xeQ (2)

where Lin(Vq, V») denotes the space of linear mappings between any finite dimensional spaces V; and V, whose canonical
euclidean norm and inner product are systematically denoted by | | and - (as for R3), Lin(V;, V1) is shorten in Lin(V;).

In what follows, any element h of IT may be written as h = (hg, h;), hg in R, h, = (hg, hy) in R? x R3, while C will
denote various constant independent of § that may vary from line to line.

2. Existence and uniqueness result for dynamic evolution problem (Pj)
Classically, we seek Uy in the form:
Us = USyn + U (3)

where Ugyn is the solution to a steady-state problem taking into account part of the external loading, while Uy is the
solution to a linear evolution equation governed by an m-dissipative operator As in a Hilbert space Hgy, of possible states
with finite energy.

In the sequel, HL,(Q) and HL,(Q; R3) will denote the subspaces of the Sobolev spaces H!(2) and H!(2; R?) made of
the elements with vanishing traces on I'” included in I". We introduce the following spaces:

V:=H[, (R x Hl (Q)
12(Q, curl) = {g € [2(2: R3); curl£ € L2(Q: R3) ]

L3 (2, curl) = $eL2(Q;R3);/.§ ccurly’ —curlé - y/dx=0 Vy'eH[ (R
§ (4)
L%H(Q, curl) = { n e L>(Q; R?); / n-curlg’ —curln-¢'dx=0 V¢'ec H}E(Q; R>)
Q

L*(Q, M) = L*(2, curl) x L%(£2, curl)
Z:= L} (Q. curl) x Lf, (R, curl)

which are equipped with their usual norm.



For p in {0, 1}, we introduce the assumption (Hayn, p):

(i) (f,r, J,K)eC?1([0, T]; L?(2; R3 x )
(gm. go) € C2PTL1([0, T; L2(Tvn; R?) x L?(Ten))
(ii) (j,k) belongs to L(I'y; R3) x L%(I'g; R3) with Jr, J-ndHa = [ k-ndH, =0and

: . H
3z4 = (E¥, H7) € C2PF11([0, T L2(Q, M) sit. (Hayn. p)
Jq EX-curly’ — curl EX - ¢/ dx = Jr kv dHa VY € H (2 R?)
JoHI-curlg’ —curlH - ¢'dx = [ j-¢'dHa V¢' € H[ (@ R?)
and, taking p =0 in (Hgyn, p), we will define Ugyn in (11) through the following result.
Proposition 2.1. There exists a unique solution ((u$, 65), z5) in C>1([0, T1; V x L2(Q, M)) to
((u§, 65),25) € V x (27 + 2)
1
/M(e(ug), 986, Zg) (e(u)),6',7)+ (KVG(';, —g./\/lzg) (VO ZHdx=Lw@',0") Y(W,0),Z)eV xZ
Q (5)
LW,0)= / gv-u dHy + / ge0 dH>
'vin Ten
Proof. Let 220 :=z8 — ZKJ, as (ug, 6%, 8°) has to satisfy
) 1 )
20 ez /(c(@f, 220+ 249y +bTeud)) - (0,7) — SM(zgo +200).7dx=0 VZeZ (6)
Q
we introduce the key lemma:
Lemma 2.1. For all h = (hq, hy) in L?>($2; R3 x R3) there exists a unique ¢ = (£, ) := E(h) in Z such that
. 1
cr — gMg =h (7)
with
° |E(h)|L2(Q;R3XR3) SCI\_/Il|h|L2(Q;R3><R3) (83)
~ 1,,T,,—1
1 gv j| / /
° _ 1 |(m,curln) - (H', curl H") dx
/ [—%y 1, 61_2), 1 n n
_VT)/_] I / l / 2
= —1)/_] 0 h-(H,curlH)dx VH' e LFH(Q,curl) (8b)
5
1 1
o £=y (—vn+gcurln+h1) (8¢c)
1 . curl
. gcurl§=—(,un+va_1 (T" +h1) —hy) (8d)
o fi=pu—vyly (8e)

Proof. An obvious variational elimination of £ in (7) yields that n has to solve variational equation (8b), which, by Lax Mil-
gram lemma, has a unique solution. If & is defined by (8c), then (8b) implies (8d), so that ¢ belongs to Z and solves (7). O

For all (w, 7) in H}MD(Q; R3) x L2(2) we denote —E(aTt + (bTe(w)),) by Ss(w, T) with of course:

1S5 (W, T)] 1203 xr3) < Cl(W, T)|H11_MD(Q;R3)><L2(Q) ©)



Hence the element (uf, 67) of V has to satisfy the variational equation:

1
/ M(e(ug), 05, Ss(u§, 65)) - (e(u), 0', Ss(u’, 0") + (k V65, —5MSs (u§, 65)) - (VO', S5 (', 0")) dx

/M(OOz"er“( ey + Mz"f)) (e, 6’ O)dx+/gM ud?—t2~|—/go o' dH, VYW,0)eV

I'mp Tep
which, by Lax Milgram lemma, has a unique solution, so that if
28 = S5 (uf, 05) + 249 + B(—e(M) + %Mzk*j) (10)
(u§, 05, z5) is solution to (5). O
Finally we define U§ dyn by
Ugyn = (u§, U5, 65 25) (11)

Clearly U§,, belongs to cz1(0, TY; H}MD(Q; R3)) x ct1([0, T]; H}MD(Q; R3)) x c21([0, T]; H}(_)D(Q) x L2(2; R3 x R3)).
Next, the Hilbert space Hgyy is:

Hayn := HJ,, (2 R?) x L*(2: R?) x L*(Q: 1) (12)
and is equipped with the inner product and norm:
(U, U?)gyn ::/ae(ul).e(uz)der/pv1 .vzdx+/c(91,zl)-(ez,zz)dx
Q Q Q (13)
U'3yn = (U, UNayn, VU' € Hayn, Vi € (1,2}

while operator A;s is defined by:
D(4s) i={U =W, v.6,2) € Hapn;

(i) (v,0,2)eV xZ
(i) A(w, 7,¢) € L2(Q; R3 x IT) sit.

/,ow v dx—i—/(ae(u)—b(@ 2))-e(v)dx=0 Wv'eH}, (2R (14)

/(c(l’ {)-I—bTe(v)) O',7)+ kv -V — Mz Zdx=0 V(Q’Z)EHI-GD(Q)XZ

AgU:(V,W,t,{)}

and satisfies:
Proposition 2.2. Operator As is m-dissipative.

Proof. First the very definition of As implies that for all U in D(As) we have
1
(AsU, U)dyn :/ae(v) -e(u)dx — /(ae(u) —b(0,2))-e(v)dx + / —(bTe(v) -(0,2) +kVH-VO — gMz-z) dx
Q Q Q

—/KVO'Vdeso
Q

Second, as for all ¢ = (du, ¢, g, ¢;) in Hayn, the possible, but necessary unique, solution U = (a1, v, 6, (E, H)) to
U—-AsU=¢ (15)

does satisfy:



/pv-v’+(ae(v)—b(9’,z))-e(v’)dx:/pqsv-v’—ae(¢u)-e(v’)dx Vv e Hf, (2 R?)

Q Q
_ _ 1
/(C(O,Z) +bTe(@) -0, 2) +KkVH -V — SMZ -z dx:/c(qbg,qbz) -(0',Z)dx v(@©',7) e H}-(_)D(Q) x Z
Q Q
(16)
Lemma 2.1 implies that (v, d) is determined as the solution to
(v,0) eV
_ _ _ 1 _
fp\_/ V' 4+ M(e(V),0,85(v,0)) - (e(v), 0", S5(v',0")) + (k VO, _EM(S‘S(‘_/’ 0)) - (VO',Ss(v',0") dx
(17)
Q

= / Py - V' + (b(0, E(c(dg, ¢2)2)) —ae(¢y)) -e(v)dx V(v',0") eV
Q
which, by Lax Milgram lemma, exists and is unique. So U := (il + ¢y, v, 8, S5(¥, 8) + E(c(¢y, ¢7)z)) belongs to D(As) and is
solution to (15). O

Thus, as (Ps) is formally equivalent to

dU§ ;
ar = A3U5 + Fs
Ut =ul:=ud - Ugyn(0) (18)

. . o1 .
Fs:=(0, f/p —ii§,c™'((r.— ], —K) + (divk V(65 —65), sME =) € C®1([0, T1; Hayn)

one has Theorem 2.1.

Theorem 2.1. Under the assumption (Hgyn o), and ifug0 € D(As), then (Ps) has a unique solution in C1([0, T]; Hayn) with (vs, 65, z5)
in C9([0, T1; V x L2(2, M)).

3. The quasi-electromagnetostatic approximation
3.1. Existence and uniqueness result for quasi-electromagnetostatic evolution problem (P)

Computing a numerical approximation of the solution to (Ps) may be difficult because the speed of propagation of elastic
waves is rather lower than the light celerity, the parameter § being of order 2 x 10~> for a BaTiO3-CoFe;04 composite with
0.6 volume fraction of barium titanate (see [1]). Thus in [1] is introduced the so-called quasi-static evolution problem which
consists in assuming that there exists an electromagnetic potential (¢, ) in H1(Q2) x H'() such that the electromagnetic
field z= (E, H) reduces to (E, H) = (Vg, V). We also add an assumption on ZkJ, more precisely let us introduce (Hgst):

(i) (f.reC®(0,T]; L*(2;R? x R)),
((J.K), gm, go) € C11([0, T]; L*(2: R? x R?) x L*(Tun; R?) x L?(Ton)), (Hgst)
(i) 3" ) eCV(0, T, Hy () x Hp, (R)): 20 = (Vg*, vy )

Taking into account these assumptions in the equations associated with (Ps) implies that the thermoelectromagne-
toelastic state U := (u,v,0, (Vo, Vi), with (u,v,6, (¢, ¥)) in H}MD(Q;R?) x L2(Q; R3) x H}@D(Q) x (%, vi) + W),
W= H}E(Q) x H}H(Q), has to solve the following problem (P):

(0,A)=M(ew),0,(Ve, Vi)

/A (0, (V¢', VI/f’))dXI/(AO —(0,0.K) - (0, (V¢', Vy')) dx V(¢'.y') e W
Q

Q
/A-(9/,0)+KV9~V9/dx:/r-9’dx+ / go-0'dHy Y0 eH[, ()
(P) Q Q Feon
/p\'f V4o -e(v’)dx:/f vidx + / gv-VdHy, W e H}MD(Q;Rg)
Q Q 'mn
U©)=U%:= @ v% (ve®, vy0) with @, v°,6°, (¢°, v°))
givenin Hl, (2 R?) x L2(2; R?) x L2(Q) x ((¢*, ¥)(0) + W)




where

t
A%:=bTe® +¢(0°, (V@°, V), (K@) = f (J.K)(s)ds (19)
0
As in [3,4], we seek U in the form:
U=Ug,+U" (20)
with Uflst defined by:
USq = (u®, %, 0%, (Vg®, V§r®)) (21)

where ((u€, 6%), (¢¢, ¥©)) in V x ((¢*, ¥J) + W) is uniquely determined by:
/M(e(ue), 0%, (Ve&, VY - (e, 0, (Vo', V') +k VO - VO dx =
Q
=L, 0" +/((AO —(0.(J,K)) - (0, (Vo' V¥ Ndx V(W',0), (@, ¢¥')eVxW (22)
Q

Next we note that if U" = (u', v', 6%, (V¢', V")) then (p", ") satisfies:

(", ¥ e W st

/ M(e("), 6", (Vo", V) - (0,0, (Vg', VY ) dx=0 V(¢',¢¥')eW (23)
Q
so that there exists a linear continuous mapping S from H}MD(Q; R3) x L%(Q) into G,
Gi={ € e @R x B3¢ ¥) e W st (6.1) = (V. V) | (24)

verifying (Vo', Vi) = S(u', 67). Hence U' reduces to U" = (u, v¥, 0), and this multi-physical constraint therefore suggests
the introduction of the following Hilbert space Hgs of possible states with finite energy, isomorph to a closed subspace of
denZ

Hgst := Hpy o (2 R?) x L2(2; R?) x L2(Q) (25)
equipped with the inner product and norm:
U, UP) gst ::/ae(ul) -e(uz)dx+/pv] -vzdx+fc(91,3(u1,91)).(92,5(u2,92))dx
Q Q Q (26)
U= U Ugst YU' € Hosri=1,2

The unbounded operator A which will govern the evolution of " is then defined by:

D(A) = [u=(u,v,9)qust;

(i) (v,0) eV
(i) A(w, 1) € L2 (4 R x R?) sit.
/,ow V' + (ae(u) —b(®, S(u,0))) -e(v)dx=0 Vv e Hf (2R 27)

Q
/(c(r, S, 1) +b"e(v) - (0',0)+kV0 Vo dx=0 V0 e H[ (Q)}
Q

AU=(v,w,T)

Of course one has the following.

Proposition 3.1. Operator A is m-dissipative.



Proof. First, the very definitions of A and S imply that for all ¢/ in D(A):

(Au,u)qstzfae(v)-e(u)dx—/(ae(u)—b(@,S(u,G))) -e(v)dx+/c(r,$(v,r))~(G,S(u,e))dx
Q

Q Q
= /(9, S, 9))-bTe(v) —bTe(v) - (0, S, 0)) — VO -VOdx <0
Q

Second, for all W = (W, Wy, Wp) in Hgs, the possible and unique I/ = (i, v, §) such that i — AU = ¥ has to satisfy:

(v,0) eV
/p\7 vV +M(ee@),0,87,0)) - (e(v),8,8W,0)) +kVH -V dx
5 (28)
=/,0\IJV v —ae(Wy) -e(v) + c(Wy, S(0, ¥y)) - 6’ + b(0, S(V,,0)) -e(v)dx Y(V,0)eV
Q

Hence (v, 6) is determined in a unique way and If := (v + Wy, v, 6) belongs to D(A) and i/ — AU =V! O

Eventually, as (P) is formally equivalent to

du” .. . .
o SAUEF. F=0.f/p il p7(divieV (0° —0°) + 1) € €110, T]: Hogo)

(29)
U 0) =U" := @w® — u®0), v° — v¢(0), 6° — 6°(0))

one has:

Theorem 3.1. Under assumptions (Hayn,0) and (Hqs), and if U™ belongs to D(A) then (P) has a unique solution C ([0, T1; H}MD X
L2(S2: R3) x L2(Q) x (Vok, Vird) + G)) with (v, 0) € CO([0, T]; V).

Remark 3.1. Under the assumption

3(Qe. Qu) in C'([0, T]; L?(2) x L3(Q)) s.t. (H1)
(Qe, Qu) + (div ], divK) =0

electric induction Ag and magnetic induction Ay satisfy
divAg+div] =0 divAy+divk =0 (30)
Ag-n=—]-n Ay-n=—-K-n

thus, if the data of the problem is (Qg, Qum), the density of electric and magnetic body charges, it is not necessary to
introduce initial conditions (¢°, ), which then satisfy

@° v%) e @k, v (0 + W
((8°, Vg, Vi) +bTe(v0)) - (0, Vo', V') = / (Qe(0), Qu(0)) - (¢', ¥)dx V(¢',y')e W (31)
Q

so that
(div Ag(t), div Ap(t)) = (Qe(t), Qu(®)) Vte[0,T] (32)

Moreover, classically, (j, k), (J, K) and (gg, qq), the so-called surface electric and magnetic charges assumed to belong to
C1([0, T]; L2(Tg) x L3(T'y)) are linked by:

gu+divrk—K-n=0 onTg, gg+divrj—J-n=0o0nTy (33)
where divr is the surface divergence operator. As (Hgs¢)(ii) implies divr j =0 on I'y, divr k=0 on I'g, one has:

—Ag-n=qg only, —Ap-n=qy onlg (34)



3.2. (P) as the limit of (Ps) when § goes to zero

Assumption (Hgs¢) allows us to determine a new Ugyn denoted by ﬁgyn and a new Fs denoted by F, which are independent
of 8 by:

08, = (@°. 1°,6°, (V§©, Viir®))
F:=(@, f/p— i€, c‘1((r, —J,—K)+ (diVKV(Gf, é§), 0,0)))
((@°,0°), (@%, ¥) € V x (¢, y*) + W) sit.

/M(e(ﬁe),ée, (VGE, YY) - (e(u'), 0, (Vo' , Vy')) +k VO - VO dx= L', 0") V(1,0 (@, ¥) eV xW
Q

(35)

We introduce the additional assumption:

UM = (u™,v™M,0™,z9) 0<qg<2s.t

(i) U®:=u°-— Ugyn(O) € D(As)
U™ := AsU™ + F(0) € D(As) (Heonv)
U2 := AsU™ 4+ F(0) € D(As)

(i) M(E@0™ + (bTe(v'®),) + (J(0), K(0))) =0

and adapt the strategy of [2] to show that the solution to (Ps) converges toward the one to (P) in the following sense.

Theorem 3.2. Under assumptions (Hgyn, 1), (Hgst), (Heony) and if (Ugo, U™ := U° — Ugyn(0), L{ro) belongs to D(As) x D(As) x
D(A), then

t
sup |Us() — U(®layn < [UY — UClayn + C8 | (U™ ayn + 1(J, KO (O 2 (g3 3 + f (IF (5)layn ds
0

tel[0,T]
. s (36)
#1021+ 10 OO @i + [ FDlandy | ds
0 0
Proof. First we choose Ug = UY and by using the unique decomposition:
z5=(Vgs, Vibs) +2s, (@s, ¥s) € (9°, ¥°) + W
(37)

%5 € Zaivwo = | (€.1) € Z: / (V& um) - (V. V') dx =0 (¢, y') e W
Q

we observe that U := (us, vs, 05, (V@s, Vis)) — U is solution to a problem similar to (P), but with vanishing initial data,
0 in place of (¢*, v), and a loading reduced to

—/b(O, Zs) -e(v)) — |:1§)T g:| Zs- (Vo', Vy')dx —/c(o,é,;) -(0',0)dx
Q Q
so that

t
U5 ©leyn = ¢ (1250l 2(m ko) + f 123(5) | 20:m0 ci2y d5) V€ [0,T] (38)
0
Next, as (Hcony)(ii) implies that U™ does not depend on 8, (Hgyn, 1) and (Heony)(i) yield the uniform bound:

dq
—Uj(0)

" ds V(g,t)e{1,2} x[0,T] (39)

dyn

r [ d?
s|Uq|dyn+/‘—qu<s>
dyn o t



Finally, as
q—1
dea—1

da-!
dea—1

+
dyn

‘M z5(t) (J, K)(@® V(@.t)e{1,2} x[0,T]  (40)

<cs(|Lure
=< g U5 O

L2(Q;R3xR3) L2(Q;R3xRR3)

the proof is achieved by using the crucial inequality in the mathematical analysis of electromagnetism (see [5]):
3C > 0; 1§23 < Cleurlél2qps),  1Ml2@ry) < Cleurlnlzgps)y V(E, 1) € Zdiv,fux.0 (41)

as, of course, if the initial data of (Ps) differs from U, the additional term is bounded by |Ug — U0|dyn, the semi-group
generated by As being of contraction. O

4. Concluding remarks

This mere exercise on the use of the theory of semi-groups of linear operators in Hilbert spaces shows that the quasi-
electromagnetostatic evolution is a rather good approximation of the dynamic evolution. When (], j), (K, k) are smooth
enough (see Remark 3.1), problem (P) involves the electromagnetic boundary conditions:

Voan=k onlg, —Ag-n=qg only

. (42)
VyAan=j onl'y, —Ax-n=qq onlg

In term of smart devices, an electric actuator condition and a magnetic sensor condition are involved together on T,
whereas a magnetic actuator condition and an electric sensor condition are involved in I'y. Hence, on each part I'g or I'y,
we have mixed conditions. By arguing as in Section 3.1, it is easy to show the well-posedness of a quasi-electromagnetostatic
evolution problem, with two different partitions (rg', I‘?'), (™, ™) where actuator/sensor electric and actuator/sensor
magnetic conditions are imposed, respectively. Such a problem should be the approximation of a dynamic evolution problem
with boundary electromagnetic data on the sole physically realistic partition (I'g, I'y) satisfying rather complex compatibility
conditions, which makes the practical character of such a situation rather questionable!
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