

A new genus for the eastern dwarf galagos (Primates: Galagidae).

Judith C. Masters, Fabien Génin, Sébastien Couette, Colin P. Groves,

Stephen D. Nash, Massimiliano Delpero, Luca Pozzi

► To cite this version:

Judith C. Masters, Fabien Génin, Sébastien Couette, Colin P. Groves, Stephen D. Nash, et al.. A new genus for the eastern dwarf galagos (Primates: Galagidae).. Zoological Journal of the Linnean Society, 2017, 181 (1), pp.229-241. 10.1093/zoolinnean/zlw028. hal-01576812

HAL Id: hal-01576812 https://hal.science/hal-01576812v1

Submitted on 3 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

A new genus for the eastern dwarf galagos (Primates: Galagidae)

This is the author's manuscript
Original Citation:
Availability:
This version is available http://hdl.handle.net/2318/1618044 since 2018-01-22T10:34:59Z
Published version:
DOI:10.1093/zoolinnean/zlw028
Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

This is the author's final version of the contribution published as:

Masters, Judith C.; Génin, Fabien; Couette, Sébastien; Groves, Colin P.; Nash, Stephen D.; Delpero, Massimiliano; Pozzi, Luca. A new genus for the eastern dwarf galagos (Primates: Galagidae). ZOOLOGICAL JOURNAL OF THE LINNEAN SOCIETY. None pp: 0-0.

When citing, please refer to the published version.

Link to this full text: http://hdl.handle.net/2318/1618044

This full text was downloaded from iris - AperTO: https://iris.unito.it/

Zoological Journal of the Linnean Society

A new genus for the eastern dwarf galagos (Primates: Galagidae)

Manuscript ID ZOJ-06-2016-2657.R1 Manuscript Type: Original Article Keywords: bushbaby, biogeography < Geography, craniodental morphometrics, <i>Galagoides</i> , <i>Paragalago</i> , molecular phylogeny < Genetics, vocalisations	Journal:	Zoological Journal of the Linnean Society
bushbaby, biogeography < Geography, craniodental morphometrics, <i>Galagoides</i> , <i>Paragalago</i> , molecular phylogeny < Genetics,	Manuscript ID	ZOJ-06-2016-2657.R1
Keywords: <i>Galagoides</i> , <i>Paragalago</i> , molecular phylogeny < Genetics,	Manuscript Type:	Original Article
	Keywords:	<i>Galagoides</i> , <i>Paragalago</i> , molecular phylogeny < Genetics,

3 4

2	4	
3 4	1	ABSTRACT
5 6	2	The family Galagidae (African galagos or bushbabies) comprises five genera: Euoticus Gray
7 8	3	1872; Galago Geoffroy Saint-Hilaire, 1796; Galagoides Smith, 1833; Otolemur Coquerel,
9 10	4	1859; and Sciurocheirus Gray, 1872, none of which is regarded as monotypic, but some
11 12	5	(Euoticus, Otolemur) certainly qualify as oligotypic. We argue for the recognition of a sixth
13 14	6	genus, if the taxonomy is to reflect galagid evolution accurately. Genetic evidence has
15 16	7	consistently demonstrated that the taxa currently referred to the genus Galagoides are not
17 18 19	8	monophyletic, but form two clades (a western and an eastern clade) that do not share an
20 21	9	exclusive common ancestor; we review 20 years of genetic studies that corroborate this
22 23	10	conclusion. Further, we compare vocalisations emitted by small-bodied galagids with
24 25	11	proposed phylogenetic relationships, and demonstrate congruence between these data sets.
26 27	12	Morphological evidence, however, is not entirely congruent with genetic reconstructions;
28 29 30	13	parallel dwarfing in the two clades has led to convergences in skull size and shape that have
31 32	14	complicated the classification of the smaller species. We present a craniodental morphometric
33 34	15	analysis of small-bodied galagid genera that identifies distinguishing characters for the
35 36 27	16	genera, and supports our proposal that five taxa currently subsumed under Galagoides (Gs
37 38 39	17	cocos, Gs granti, Gs orinus, Gs rondoensis and Gs zanzibaricus) be placed in their own
40 41 42	18	genus, for which we propose the name Paragalago.
43 44	19	ADDITIONAL KEYWORDS: Bushbaby – Biogeography – Craniodental morphometrics –
45 46 47	20	Galagoides – Paragalago – Molecular phylogeny – Vocalisations
48		

22	INTRODUCTION
23	In A Field Guide to the Larger Mammals of Africa (Dorst & Dandelot, 1970) Pierre Dandelot
24	illustrated five species of galagos (or bushbabies) and two species of pottos. Four of the
25	galagid taxa were subsumed under the genus Galago: i.e. G. alleni, G. crassicaudatus, G.
26	demidovi (sic, now referred to as G. demidoff in accordance with its initial description:
27	Jenkins, 1987; Groves, 2001) and G. senegalensis. The needle-clawed galagos were classified
28	in their own genus, <i>Euoticus</i> , in accordance with the taxonomies of Schwarz (1931), Simpson
29	(1945) and Hill (1953). Forty-five years later, all five taxa are regarded as distinct genera,
30	none of which is generally viewed as monotypic, although much of the detailed research has
31	yet to be conducted. In this contribution we discuss evidence that Galagoides, as construed
32	by Olson (1979) on morphological grounds, does not constitute a clade in molecular
33	phylogenetic reconstructions (DelPero et al., 2000; Masters et al., 2007; Fabre, Rodrigues &
34	Douzery, 2009; Springer et al., 2012; Pozzi, Disotell & Masters, 2014; Pozzi et al., 2015;
35	Pozzi, 2016) and its members are unlikely to have shared an exclusive common ancestor.
36	More specifically, the dwarf galagos confined to the forests of East and southern Africa
37	require the designation of a new genus. In the subsequent text we abbreviate Galagoides as
38	<i>Gs</i> to distinguish it from the abbreviation of <i>Galago</i> (<i>G</i> .).
39	
40	HISTORY OF GALAGID GENERA
41	The first galagid genus to enter the scientific literature was Galago, described by Etienne
42	Geoffroy Saint-Hilaire (1796), and was based on a lesser galago specimen collected in
43	Senegal, West Africa. The name was taken from the Senegalese vernacular name for these
44	animals. The genus Galagoides was proposed by Sir Andrew Smith (1833) to distinguish the

dwarf (G. demidoff) and lesser (G. senegalensis) galagos from what Smith considered to be

Zoological Journal of the Linnean Society

46	the "true Galagos" among which he included species now referred to the genera Microcebus
47	and Otolemur. Galagoides is now restricted to the dwarf galago taxa. Otolemur was
48	introduced as the generic epithet to denote the greater galagos by Charles Coquerel (1859)
49	with Otolemur agisymbanus (= garnettii) from Zanzibar as the type species. The genus
50	Euoticus, which distinguishes the needle-clawed species, was introduced initially by John
51	Gray (1863) as a subgenus under the genus Otogale which also included the greater galagos.
52	A few years later he elevated <i>Euoticus</i> to the status of a full genus (Gray, 1872). In the same
53	publication, Gray (1872) proposed Sciurocheirus as the generic designation of a squirrel
54	galago specimen (S. alleni, sensu lato) deriving from Fernando Po [Bioko Island].
55	The genus <i>Galagoides</i> was redefined on morphological grounds by Olson (1979) and
56	employed subsequently by many authors (Honess & Bearder, 1996; Kingdon, 1997;
57	Wickings, Ambrose & Bearder, 1998; DelPero et al., 2000; Masters & Bragg, 2000; Masters
58	& Brothers, 2002; Butynski et al., 2006). It comprised the true dwarf galagos (Gs demidoff,
59	Gs thomasi), the 'Zanzibar' galagos (Gs cocos, Gs granti, Gs zanzibaricus), and the squirrel
60	galagos (Gs alleni, s.l.). Honess & Bearder (1996) and Kingdon (1997) recognised three new
61	dwarf galago species just before the turn of the twenty-first century: Gs orinus, originally
62	described by Lawrence and Washburn (1936) as a subspecies of Gs demidoff from the
63	Uluguru Mountains, Gs rondoensis from the Rondo plateau, and Gs udzungwensis from the
64	Udzungwa Mountains. All three localities are in Tanzania. Gs udzungwensis has since been
65	downgraded to a subspecies of Gs zanzibaricus confined to the Tanzanian mainland, while
66	Gs z. zanzibaricusis reserved for the form on Zanzibar Island. Gs orinus and Gs rondoensis
67	are now recognised as valid species.
68	The morphological characters uniting Olson's (1979) genus <i>Galagoides</i> were not

The morphological characters uniting Olson's (1979) genus *Galagoides* were not
made explicit, but from our own observations (Groves, 2001; Masters & Couette, 2015) they
include moderate basicranial flexion (i.e. stronger than in most lemuriforms and lorisids, but

not as strong as in the genera *Galago* or *Euoticus*), anterior upper premolar (P^2) not caniniform (sometimes with a hypocone), third upper molar (M^3) > posterior upper premolar (P^4) , and premaxillaries extended into a tube that projects way beyond the lower jaw. The premaxillary tube is longest in dwarf galagos, moderate in 'Zanzibar' galagos, and least pronounced in squirrel galagos. *Euoticus*, *Galago* and *Otolemur* have no premaxillary tube, and the anterior margin of the snout is square; in the absence of a tube, the square-snouted galagos have a relictual nub on the midline beneath the nasal aperture, suggesting that extended premaxillaries may have been the ancestral condition. Among the lorisids, the two small-bodied genera, Arctocebus and Loris, both have premaxillary tubes. Galagoides is further characterized by small body size (smaller in the western clade than in the squirrel galagos or most taxa of the eastern clade), a concave nasal profile, and dark circumocular rings that range in colour from dark brown to black, separated by a grey to white nose stripe. While the deep russet colouration of squirrel galagos makes them instantly recognisable, a survey of other museum specimens designated as *Galagoides* revealed variable pelage colouration, both within and between populations. In most cases, the animals were covered in dense, soft hairs with dark-grey roots, but brown to bright russet tips on the head, dorsum and outer surfaces of the limbs. The tips of the hairs on the under surfaces are yellow-buff to white, and the animals have brown to blackish tails.

90 OVERVIEW OF MOLECULAR GENETIC EVIDENCE FOR RELATIONSHIPS AMONG 91 GALAGID LINEAGES

93 Genetic studies – from their earliest days – have consistently indicated that *Galagoides* is

94 polyphyletic, implying that the grouping based on morphological similarity is probably based

Zoological Journal of the Linnean Society

1 2 3 4 5 6 7	
8	
9 10 11 12 13 14 15 16 17 18 19	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	
27 28 29 30 31 32	
 33 34 35 36 37 38 20 	
 39 40 41 42 43 44 45 	
46 47 48 49 50 51	
52 53 54 55 56 57	
58 59 60	

95	on plesiomorphic or homoplastic characters. The first such evidence came from allozymes
96	(Masters et al., 1994), highly repeated DNA sequences (Crovella et al., 1994) and 12S
97	ribosomal mitochondrial DNA sequences (rDNA; Bayes, 1998). All of these studies
98	reconstructed the taxon called Galagoides alleni (s.l.) as the sister taxon to Otolemur spp.,
99	although morphological synapomorphies for this group remain elusive. The only shared
100	character Masters and Brothers (2002) identified from their dataset was large, square,
101	bunodont molars, indicative of a predominantly frugivorous diet and potentially homoplastic.
102	The first Zanzibar galago sequences were published by Del Pero et al. (2000). The specimen
103	sampled was probably Gs granti, as it had been collected in northern Mozambique, but was
104	classified as Gs zanzibaricus on the basis of craniodental morphometrics (Masters & Bragg,
105	2000). Using partial sequences of three mitochondrial genes (12S and 16S rDNA and
106	cytochrome b), DelPero and colleagues reconstructed Gs demidoff and so-called Gs
107	zanzibaricus as independent lineages that showed higher levels of genetic divergence from
108	one another than either lineage showed from any other galagid taxon in their sample of eight
109	taxa. This result, coupled with the alliance of Gs alleni with Otolemur, led DelPero et al.
110	(2000) to describe the genus Galagoides as a "wastebasket taxon of plesiomorphic species".
111	This contention has been supported by more recent and more comprehensive studies. The
112	squirrel galagos continue to be recovered as the sister to the Otolemur clade, and Gray's
113	(1872) genus, Sciurocheirus, has been resuscitated (Grubb et al., 2003; Masters et al., 2007).
114	Despite the paucity of morphological synapomorphies for this grouping, it derives support
115	from the sparse fossil record. Wesselman (1984) described a fossil hypodigm from
116	approximately 3 Myr sediments in Ethiopia that comprises a fragmentary maxilla, an isolated
117	M ₂ , and an edentulous mandible. On the basis of its bunodont teeth and its intermediate size
118	between Otolemur and Sciurocheirus, he interpreted the taxon (now termed O. howelli;

Harrison, 2010) as a member of the *Sciurocheirus/Otolemur* clade, with its closest affinities
to *Otolemur*.

Following the removal of the squirrel galagos from *Galagoides*, the western and eastern dwarf galagos have continued to be reconstructed as paraphyletic or even polyphyletic in molecular analyses, indicating that the genus still includes two independent clades that did not share an exclusive common ancestor. The western clade comprises the "true" dwarf galagos, Gs demidoff and Gs thomasi, and the eastern clade includes Gs *zanzibaricus* and its allies. Using complete sequences of the cytochrome b gene, Roos et al. (2004) recovered Gs demidoff as the first galagid lineage to diverge, and Gs zanzibaricus as the sister taxon of Galago, a topology supported by Chatterjee et al. (2009) and Fabre et al. (2009). The tree of Masters et al. (2007) also depicted Galagoides as polyphyletic, but did not group Gs zanzibaricus with the genus Galago. More recently, a more comprehensive phylogenetic study of primates supported a sister taxon relationship between the Zanzibar galagos and the Otolemur/Sciurocheirus clade, with Gs demidoff and Gs thomasi again forming an independent clade (Springer *et al.*, 2012).

The disagreement among these studies regarding the phylogenetic placement of the eastern and western lineages may be related to incomplete lineage sorting (or the failure of two or more lineages in a population to coalesce, leading one of the lineages to coalesce first with a lineage from a less closely related population), or possibly past introgression events, as they were all based solely on mitochondrial sequences. To address this problem, Pozzi et al. (2014) assembled a molecular dataset including 27 independent nuclear loci and inferred phylogenetic relationships also using coalescent-based species tree methods to account for incomplete lineage sorting. Their results strongly confirmed the polyphyletic status of *Galagoides*, as well as a sister-taxon relationship between the eastern clade and the lesser galagos (Galago spp.). The largest molecular dataset compiled for galagids to date, combining

Zoological Journal of the Linnean Society

144	53 nuclear loci and three mitochondrial genes, confirmed these results (Pozzi, 2016). Figure 1
145	represents our current understanding of relationships among the lorisoid primates based on
146	both nuclear and mitochondrial sequence data, derived from the studies of Pozzi et al, (2014,
147	2015) and Pozzi (2016).
148	[FIGURE 1 ABOUT HERE]
149	Despite these large nuclear datasets, the sister-group relationships of two eastern
150	dwarf galagos, Galagoides rondoensis and Gs orinus, remain unresolved because of limited
151	representative specimens and genetic data; a handful of specimens is distributed across
152	museum collections in North America and Europe. A molecular study based on complete
153	mitochondrial cytochrome b sequences strongly supported an affinity between these species
154	and the Zanzibar galagos to the exclusion of the western Galagoides clade (Pozzi et al.,
155	2015), leading us to include them in the proposed new genus, which hence comprises five
156	species distributed in forests east of the African rift and distinct from the true dwarf galagos,
157	Gs demidoff and Gs thomasi, in the west (Figure 2).
158	[FIGURE 2 ABOUT HERE]
159	OVERVIEW OF EVIDENCE FROM VOCAL REPERTOIRES
160	Vocalisations are particularly important indicators of galagid diversity because, as nocturnal
161	animals, galagos do not rely on morphologically-encoded visual signals for the location and
162	attraction of conspecific mates. Many galagid species and species groups have been identified
163	on the basis of differences in loud calls (or advertisement calls), which has led to their being
164	grouped according to call structures: crescendo callers, scaling callers, rolling callers,
165	incremental callers and repetitive callers (Bearder et al., 1996; Kingdon, 1997; Butynski et
166	al., 2013). Like all characters that are crucial to specific-mate recognition, specific loud calls

1	
2 3 4 5 6 7	
4	
5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15 16	
17	
18	
19	
20	
21 22	
22 23	
24	
25	
26	
9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 9 30 132 33 45 6 37 83 9	
28 20	
29 30	
31	
32	
33	
34 25	
30 36	
37	
38	
39	
40	
41 42	
42 43	
44	
45	
46	
47	
48 49	
49 50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

167	are qualitatively different between closely related species, and the rapidity of their evolution
168	may obscure their phylogenetic signal at older levels of divergence (Masters, 2007). For
169	instance, rolling and crescendo calls are polyphyletic when compared with species
170	relationships determined by molecular sequence data, indicating a degree of homoplasy:
171	Galagoides granti and Gs cocos are both described as crescendo callers (Bearder et al., 1996;
172	Kingdon, 1997; Butynski et al., 2013), whereas Gs zanzibaricus, which is reconstructed as
173	the sister taxon to Gs cocos (see Figure 1), is a rolling caller, just like Gs rondoensis. In
174	contrast to advertisement calls, anti-predatory calls tend to be highly conserved
175	phylogenetically, making them more useful as grouping criteria at deeper phylogenetic levels.
176	Vocal homologies among the small-bodied galagos (i.e. excluding Sciurocheirus and
177	Otolemur spp.) can be identified in at least three call types: two anti-predatory calls (mobbing
178	yaps and buzzy alarms; Génin et al., 2016) and the loud socio-territorial calls. These vocal
179	homologies are congruent with phylogenetic relationships among these lineages indicated by
180	molecular analyses, and further justify the creation of a new genus for the eastern dwarf
181	galagos.
182	Mobbing yaps. The mobbing yap is emitted by all small-bodied galagos under similar
183	contexts, and is often recorded while an animal is circling around to face the observer (FG,
184	personal observations). It appears to be homologous to the loud call of <i>Euoticus</i> spp. (Figure
185	3). It is a high frequency atonal call repeated at frequent intervals, often after the emission of
186	a few buzzy alarms. The wide frequency range covered by the call that makes it sound atonal
187	to human ears is due to very rapid modulation that is likely to be perceived by the animals.
188	[FIGURE 3 ABOUT HERE]
189	
190	Buzzy alarms. Buzzy alarms are homologous in Galagoides, Galago and the eastern dwarf
191	galagos, but have very different structures in the three groups (Figure 3). Buzzy alarms are

Zoological Journal of the Linnean Society

often the first indicator of the presence of an animal that has not yet been detected visually
(FG, personal observations). Animals emit several buzzy alarms that may precede or alternate
with yaps. The call is bi-syllabic, consisting of an initial high frequency unit followed by a
highly modulated, lower frequency screech. In western *Galagoides* spp. the buzz is extremely
brief. In *Galago* spp. it is a brief, noisy, low frequency cough-like call (cho-ha). In the eastern
dwarf galago species, the buzz is a long screech peculiar to the group.

Loud calls. Loud calls are far more variable between taxa than anti-predatory calls. Each of the three small-bodied genera emits a different kind of loud call associated with different contexts, indicating that the various calls evolved different functions associated with different habitats and socio-territorial systems. On the basis of our own observations as well as those of other authors (Bearder et al., 1996; Kingdon, 1997; Butynski et al., 2013), western Galagoides spp. are crescendo callers; the crescendo either consists of a single trill (Gs *demidoff*) or a short sequence of trills (*Gs thomasi*), starting with an increase in pitch and amplitude (overtone crescendo) followed by repeated, insect-like, high frequency clicks (Figure 3). The call is typically used as a gathering call emitted when animals leave or return to their nests. Lesser galagos (*Galago* spp.) are repetitive callers. They have low frequency metronomic and tonal calls which are emitted throughout the night, indicating a territorial function. Homology between the loud calls of eastern dwarf galago species and Galagoides crescendo calls is difficult to establish, but such homology with Galago repetitive calls is clear, as they share a basic temporal structure of repeated units forming syllables.

The loud calls emitted by eastern dwarf galagos are so variable that they are difficult to characterise. The group could be called the "varied callers" or "modulated callers", as their loud calls consist of repeated, highly modulated units emitted at higher frequency than *Galago* repetitive calls. Their function is also less clear, as they are given when animals leave

217	or return to their sleeping sites, as well as throughout the night when animals interact. The
218	calls could hence be categorised as long distance contact calls adapted to habitats that are
219	generally drier than those of western Galagoides, but wetter and more closed than Galago
220	habitats (Génin et al., 2016). The specific diversity of this group still requires investigation,
221	as only three call structures (scaling, rolling and incremental) have been described for at least
222	five species.
223	
224	MORPHOLOGICAL DIFFERENTIATION: NEW ANALYSES
225	Morphological characterization of the eastern dwarf galagos has been complicated not only
226	by the scarcity of exemplars of some species, but also by their strong convergence with
227	members of the western clade. In a canonical variate morphometric analysis, the skulls of the
228	type specimens of Gs orinus and Gs rondoensis clustered with the western clade,
229	contradicting their genetic affinity to Gs granti and Gs zanzibaricus (Masters & Couette,
230	2015). In an attempt to resolve this contradiction, we searched through museum collections in
231	the USA and Europe, and identified seven probable Gs rondoensis specimens in addition to
232	the type specimen held in the Natural History Museum, London. Their identification was
233	based on three factors: the consistent presence of a square M ³ with a very small hypocone (a
234	very rare occurrence in other eastern dwarf galagos); collection locality (east of the Rift); and
235	a disjunction between the completion of the eruption of the permanent dentition and skull
236	maturation. In most galagid genera the attainment of adult body size occurs shortly after the
237	complete eruption of the adult dentition. In the putative Gs rondoensis specimens we
238	identified, animals with adult (and often worn) dentition had unfused cranial sutures, and are
239	likely to have continued to grow had their lives not been prematurely ended. Groves (2001)
240	based his assessment of Gs rondoensis as the smallest living galagid on the type specimen
241	which had a body weight of 60 g, but animals trapped in the field may be $20 - 25$ g heavier

Zoological Journal of the Linnean Society

(Andrew Perkin, personal communication). The type specimen has its permanent dentition, but its morphology is juvenile, and fully grown members of this species are likely to be larger than G. orinus adults.

Materials and methods used in the new morphometric analyses. In order to investigate the morphological distinctiveness of the eastern dwarf galagos from other small-bodied galagids, a set of 12 linear craniodental measurements was taken from 610 galago specimens including western dwarf galagos (Galagoides demidoff and Gs thomasi, n = 322; see Masters & Couette, 2015 for specimen list), lesser galagos (*Galago moholi*, n = 150) and squirrel galagos (*Sciurocheirus alleni*, s.l., n = 58), plus specimens formerly identified as *Galagoides* cocos, Gs granti, Gs orinus, Gs rondoensis, Gs udzungwensis and Gs zanzibaricus (n = 80). Accession details of these specimens are listed in Table 1 of the supplementary data, and the institutions in which mensural data were collected are listed in the Acknowledgements. We followed the methodology of Masters & Couette (2015): measurements (Figure 4, Table 1) were recorded using digital callipers, and the sample was composed only of specimens with [FIGURE 4 ABOUT HERE] fully erupted dentition.

Raw data were size-adjusted using the Burnaby (1966) procedure which consists of extracting an isometric vector from the multivariate dataset and back-projecting the values in a multivarate subspace orthogonal to this vector (Klingenberg, 1996). The geometric mean (GM) was computed using the isometric vector and served as a proxy for size. Thus size (GM) and shape (size corrected variables = shape variables) are considered independently through ANOVA (size) or MANOVA, PCA and CVA (log transformed values of shape). We performed a Between Group Principle Component Analysis (BGPCA, Mitteroecker &

3
4
5 6 7
6
7
1
8
9
10
11
12
13
14
10 11 12 13 14 15
16
16 17
17
18 19 20 21
19
20
21
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
23
24
24
25
26
27
28
29
30
31
20
32
33
34
35
36
37
38
30
40
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
55 56
57
58
59
60

266	Bookstein, 2011), which is a classic PCA based on the mean values for each group with no
267	regard for intragroup variation. Specimens are then back-plotted in the morphospace by
268	multiplying the morphological data matrix (log transformed values of shape) by the
269	coefficient of the BGPCA; the PCs are computed only on the intergroup variation rather than
270	on a mix of intra- and intergroup variation. All statistics were performed with R 3.0.2.
271	software (R Core Team, 2013) and the packages "candisc" (Friendly &Fox, 2015), "car" (Fox
272	& Weisberg, 2011), "geomorph" (Adams & Otarola-Castillo, 2013) and "smatr" (Warton et
273	<i>al.</i> , 2012).
274	Results of the morphometric analyses. MANOVA results attested to significant differences in
275	cranial morphology among genera (Pillai Trace = 1.84, F = 86.09, df = 33, $p < 0.001$). In the
276	BGPCA, three PCs summed up the entire variation in our sample: PC1, PC2 and PC3
277	accounted for 88.9%, 9.91% and 1.19%, respectively. The genera Galago, Galagoides and
277 278	accounted for 88.9%, 9.91% and 1.19%, respectively. The genera <i>Galago</i> , <i>Galagoides</i> and <i>Sciurocheirus</i> were well separated in the PC1 x PC2 morphospace, with no overlap except for
278	Sciurocheirus were well separated in the PC1 x PC2 morphospace, with no overlap except for
278 279	<i>Sciurocheirus</i> were well separated in the PC1 x PC2 morphospace, with no overlap except for some outlier specimens (Figure 5). The presence of outliers and the degree of dispersion
278 279 280	<i>Sciurocheirus</i> were well separated in the PC1 x PC2 morphospace, with no overlap except for some outlier specimens (Figure 5). The presence of outliers and the degree of dispersion evident in Figure 5 may mean that some subadult skulls were included, along with their
278 279 280 281	<i>Sciurocheirus</i> were well separated in the PC1 x PC2 morphospace, with no overlap except for some outlier specimens (Figure 5). The presence of outliers and the degree of dispersion evident in Figure 5 may mean that some subadult skulls were included, along with their correlated allometric shape differences. The cranial morphology of <i>Galagoides</i> individuals
278 279 280 281 282	<i>Sciurocheirus</i> were well separated in the PC1 x PC2 morphospace, with no overlap except for some outlier specimens (Figure 5). The presence of outliers and the degree of dispersion evident in Figure 5 may mean that some subadult skulls were included, along with their correlated allometric shape differences. The cranial morphology of <i>Galagoides</i> individuals was clearly different from that of the <i>Galago</i> specimens, and the differences constituted the
278 279 280 281 282 283	<i>Sciurocheirus</i> were well separated in the PC1 x PC2 morphospace, with no overlap except for some outlier specimens (Figure 5). The presence of outliers and the degree of dispersion evident in Figure 5 may mean that some subadult skulls were included, along with their correlated allometric shape differences. The cranial morphology of <i>Galagoides</i> individuals was clearly different from that of the <i>Galago</i> specimens, and the differences constituted the major variation along PC1. On this axis all of the variables had similar loadings (values
278 279 280 281 282 283 283	<i>Sciurocheirus</i> were well separated in the PC1 x PC2 morphospace, with no overlap except for some outlier specimens (Figure 5). The presence of outliers and the degree of dispersion evident in Figure 5 may mean that some subadult skulls were included, along with their correlated allometric shape differences. The cranial morphology of <i>Galagoides</i> individuals was clearly different from that of the <i>Galago</i> specimens, and the differences constituted the major variation along PC1. On this axis all of the variables had similar loadings (values between -0.24 and 0.07) except for premaxillary length, for which the loading was very high
278 279 280 281 282 283 284 285	<i>Sciurocheirus</i> were well separated in the PC1 x PC2 morphospace, with no overlap except for some outlier specimens (Figure 5). The presence of outliers and the degree of dispersion evident in Figure 5 may mean that some subadult skulls were included, along with their correlated allometric shape differences. The cranial morphology of <i>Galagoides</i> individuals was clearly different from that of the <i>Galago</i> specimens, and the differences constituted the major variation along PC1. On this axis all of the variables had similar loadings (values between -0.24 and 0.07) except for premaxillary length, for which the loading was very high (0.91); hence the greater part of variation along PC1 was due to differences in the length of
278 279 280 281 282 283 284 285 286	<i>Sciurocheirus</i> were well separated in the PC1 x PC2 morphospace, with no overlap except for some outlier specimens (Figure 5). The presence of outliers and the degree of dispersion evident in Figure 5 may mean that some subadult skulls were included, along with their correlated allometric shape differences. The cranial morphology of <i>Galagoides</i> individuals was clearly different from that of the <i>Galago</i> specimens, and the differences constituted the major variation along PC1. On this axis all of the variables had similar loadings (values between -0.24 and 0.07) except for premaxillary length, for which the loading was very high (0.91); hence the greater part of variation along PC1 was due to differences in the length of the tip of the muzzle. PC2 separated the genus <i>Sciurocheirus</i> (positive values) and the genera
278 279 280 281 282 283 284 285 286 287	<i>Sciurocheirus</i> were well separated in the PC1 x PC2 morphospace, with no overlap except for some outlier specimens (Figure 5). The presence of outliers and the degree of dispersion evident in Figure 5 may mean that some subadult skulls were included, along with their correlated allometric shape differences. The cranial morphology of <i>Galagoides</i> individuals was clearly different from that of the <i>Galago</i> specimens, and the differences constituted the major variation along PC1. On this axis all of the variables had similar loadings (values between -0.24 and 0.07) except for premaxillary length, for which the loading was very high (0.91); hence the greater part of variation along PC1 was due to differences in the length of the tip of the muzzle. PC2 separated the genus <i>Sciurocheirus</i> (positive values) and the genera <i>Galago</i> and <i>Galagoides</i> (negative values). The variation along PC2 was mainly structured by

and Galagoides on PC1 and between Sciurocheirus and the group composed of Galago and *Galagoides* on PC2. Although the three groups were clearly distinguished on PC1, they overlapped on PC2. The putative Gs rondoensis specimens were scattered in the space between the eastern dwarf species and *Galagoides*, and their variation in body size was evident (Figure 5); despite our best efforts, it is possible our sample included representatives of more than one species. The Gs orinus specimens formed part of the main eastern dwarf cluster, although they overlapped with some Gs rondoensis specimens. [FIGURE 5 ABOUT HERE] Canonical Discriminant Analysis defined three significant canonical axes, accounting for 70.98%, 27.06% and 1.96% of interclass variation (Figure 6). The variable Premaxilla contributed the main discrimination along the first axis. The four genera were well

302 individualised on the first two axes, with high percentages of correct classification: 100% for

Galago, 98.14% for *Galagoides*, 91.3% for the eastern dwarf galagos and 86% for

Sciurocheirus. As is evident in visual comparisons of skulls, the elongation of the premaxilla

305 is greatest in *Galagoides*, smaller in the eastern dwarf galagos and smallest in *Galago*

306 (TukeyHSD post hoc test p values<0.01 among these genera), but the difference in

307 premaxillary length between the eastern dwarf galagos and *Sciurocheirus* was not significant.

308 The variables with highest loading on the second axis were Total Skull Length, Snout Length

309 and Cheek Tooth Width. The eastern dwarf galagos differed significantly in Snout Length

310 from *Galago* and *Sciurocheirus*, but not from *Galagoides*. All of the genera differed

311 significantly in Cheek Tooth Width, with values increasing from *Galago* through *Galagoides*

312 to the eastern dwarfs and finally *Sciurocheirus*, the large bunodont molars of which evince its

313 affinity to *Otolemur* spp. A similar trend is noticeable for Total Skull Length measurements,

314 with the smallest values in *Galagoides*, increasing in *Galago* and the eastern dwarfs, and with

Sciurocheirus having the longest skulls. As in the BGPCA analysis, the *Gs rondoensis*

Zoological Journal of the Linnean Society

specimens occupied the morphospace between the eastern dwarf galagos and *Galagoides*. while Gs orinus was more closely grouped with the eastern dwarf species. Specimens of Gs rondoensis and Gs orinus show intermediate morphology and overlap with eastern dwarf galagos and specimens of the genus *Galagoides*. [FIGURE 6 ABOUT HERE] An ANOVA of skull size repeats the pattern shown by Total Skull Length (p value < 0.001 and all Tukey HSD multiple comparison of means p values below 0.001). In order to test the relationship of size (GM) and shape (logged size corrected variable), we performed a multivariate regression considering the effect of size on shape, genus and the interaction between size and genus. We used a Type II ANOVA to test each term of the linear model. Size, genus and the interaction had a significant effect on shape with p values below 0.001, attesting that shape variation is explained by size variation (allometry). The common allometry, that is the proportion of shape explained by size across the entire sample, was 77.7%, but considering the allometric vectors for each genus yielded much lower values: size accounted for 15.1% of shape variation in Galago, 20% in Galagoides, 13.8% in the eastern dwarfs and 8.7% in *Sciurocheirus*. Pairwise comparison of multivariate allometric patterns demonstrated significant differences between the eastern dwarfs and Galago (p value of angle between allometric vectors = 0.0428), Galagoides (p = 0.019) and Sciurocheirus (p = 0.014) (Figure 7). With respect to univariate differences in allometries among genera, *Sciurocheirus* presented a very different pattern from all other genera: the allometric slopes of the variables SL, CH, FL, CTW, PW, MW, TC, and P were all significantly different. The eastern dwarf galagos differed in slope from Galago for variables SL and CTW, and from Galagoides for variables IC, CTW, TSL and P.

[FIGURE 7 ABOUT HERE]

Zoological Journal of the Linnean Society

3
4
5
6
7 8 9 10 11 23 4 56 7 8 9 10 11 23 4 56 7 8 9 10 11 23 4 56 7 8 9 10 11 23 4 56 22 23 4 52 27 28 9 30 13 23 34 56 7 8 9 30 33 33 34 56 7 8 9 30 31 23 34 35 36 37 8 9 30 31 23 31 32 33 32 33 32 33 32 33 33 33 33 33 33
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
25
20
07
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
54
55
56
57
58
59
60

340	Sciurocheirus is hence clearly differentiated in both size and shape. Comparing the
341	three smaller-sized genera, our multivariate analyses indicated marked differences in cranial
342	shape among them. From a univariate perspective, the eastern dwarf group differed mainly in
343	Supraoccipital Length (intermediate between Galago and Galagoides), Interorbital
344	Constriction, Cheek Teeth Width and Total Skull Length (higher values in the eastern dwarf
345	group). These morphometric differences reinforce our proposal to distinguish the eastern
346	dwarf galagos from Galago and Galagoides at the generic level.
347	
348	SYSTEMATICS
349	Paragalago gen. nov.
350	TYPE SPECIES: Galago zanzibaricus Matschie, 1893.
254	
351	INCLUDED SPECIES: Galago granti Thomas & Wroughton, 1907; Galago cocos Heller,
352	1912; Galago demidovii orinus Lawrence & Washburn, 1936; Galagoides udzungwensis
353	Honess, 1996; Galagoides rondoensis Honess, 1996.
354	DIAGNOSIS: Medium to small sized galagos (60 – 250 g), overlapping in size with Galago
355	spp. and notably smaller than Sciurocheirus, Euoticus and Otolemur spp. Two species
356	(Paragalago orinus and P. rondoensis) show convergence in shape and size with Galagoides
357	spp. Cranium ovoid in shape, narrowing posteriorly so that the pneumatised mastoids
358	protrude. Premaxillaries protracted into a short tube that extends beyond lower jaw, as in
359	Galagoides and Sciurocheirus; the tubular extension in Paragalago is intermediate in length
360	between the premaxillary tubes of the smaller and larger taxa. Anterior upper premolar (P^2)
361	double-rooted, slender but distally trenchant, as in Galagoides, not caniniform as in Euoticus
362	and some <i>Galago</i> spp. Upper posterior premolars (P ⁴ s) are slightly larger than upper posterior

equivalent in size to P^4 , while in *Galago* M^3 is much reduced. In *Paragalago* spp. the M^3

365 hypocone is absent or minute, but commonly observed in *Galagoides* spp. Coronoid

366 processes delicate and curved, extending almost as far back as glenoid process, as in

Sciurocheirus and *Galagoides*; not flattened and foreshortened, as in *Galago* and *Euoticus*.

368 Distribution east of the Great African Rift.

DESCRIPTION: The snout is longer than in *Galago*, chiefly because premaxillaries extend well beyond the lower jaw, although not to the degree seen in *Galagoides*. The facial profile is distinctly concave (Schwarz, 1931) as in *Galagoides* and *Sciurocheirus*, not straight or slightly convex as in Galago. Canines are slender. Anterior palatal foramina intrude between medial upper incisors, as in most galagid taxa. P4s fully molarised as in all crown galagids. In most *Paragalago* specimens examined, the M³ had no hypocone, although a minute hypocone was present in some specimens from the Rondo Forest (probably *P. rondoensis*). The degree of basic anial flexion is moderate, as seen in *Galagoides*, *Otolemur* and Sciurocheirus, not markedly flexed as in Euoticus and in Galago. Cranial shape is oblong as in Galagoides and Sciurocheirus, not globular as in Galago and Euoticus. Postorbital bars are generally slender, lacking the flanges sometimes seen in *Euoticus*, *Galago* and even Galagoides, usually in older specimens. Lower anterior premolars (P_2) are partially procumbent, but not to the same degree as the tooth-comb, and never erect, as usually seen in male Galagoides (Masters & Couette, 2015). Parietal muscle scars/crests on either side of the medial suture outline a broad parietal plate over the orbits that narrows posteriorly. The colour of the dorsal pelage is drab-brown to cinnamon with varying degrees of

384 The colour of the dorsal pelage is drab-brown to cinnamon with varying degrees of 385 rufous wash; outer surfaces of limbs similar to dorsum in colouration. Individual hairs are 386 slate grey near the root, contributing to the overall dark colouration. Hairs on ventrum and

inner surfaces of limbs also with grey roots but cream-buff to yellow-buff tips, and the throat may be yellowish (Groves, 2001). The ears are dark brown to black, depending on the species, and the tail varies from rufous brown to chocolate or even black. Paragalago granti and *P. orinus* have a darker tail tip. The cream to white nose stripe is emphasised by dark brown to black eve rings. Mature males of all species have unidentate penile spines (Perkin, 2007). Species of *Paragalago* show behavioural differences that distinguish them in the field from both *Galagoides* and *Galago* taxa. Eastern dwarf galagos tend to leap more often than Galagoides, but not as frequently or extensively as Galago spp. Moreover, the three genera can be readily distinguished by vocalisations that differ in structure, in context, and probably in function. NOTES: The new genus embraces several taxa originally allied with lesser or dwarf galagos,

depending on body size. *Paragalago zanzibaricus* was described by Paul Matschie (1893) as a pale cinnamon-coloured lesser galago from western Zanzibar, although the species also occurs on the Tanzanian mainland (see Figure 2). A recent conservation risk assessment conducted by the Primate Specialist Group of the International Union for the Conservation of Nature (IUCN) considered populations on small islands to be particularly vulnerable, and deserving of subspecific recognition for the purpose of conservation monitoring. The Zanzibar population of dwarf galagos was hence designated as the subspecies P. z. zanzibaricus, while the mainland representatives of this species were classified as P. z. *udzungwensis.* Preliminary genetic studies of mainland and island populations (Pozzi, unpublished data) support their conspecific identity, but a more extensive comparison is necessary to confirm this.

Paragalago cocos, which is morphologically indistinguishable from *P. zanzibaricus*, was

410 described by Heller (1912) from the Kenyan mainland. *Paragalago granti*, with a type

411 locality in southern Mozambique, has the largest geographical range among representatives

Zoological Journal of the Linnean Society

1 2	
3 4	
5	
6 7	
8	
9	
10	
12	
13	
14	
16	
17	
18	
20	
21	
22	
23	
25	
26	
9 10 11 12 13 14 15 16 17 18 9 21 22 23 24 25 26 27 28 9 31 32 33 45 36 7 37 37 37 37 37 37 37 37 37 37 37 37 3	
29	
30	
31	
33	
34	
35	
30	
38	
39	
40 41	
42 43	
43 44	
44 45	
46	
47 48	
40 49	
50	
51 52	
52 53	
54	
55	
56 57	
58	
59	
60	

412	of the genus, extending from the north-east of South Africa throughout Mozambique (and
413	possibly parts of Malawi, where it has been referred to under the rubric Galagoides nyasae
414	Elliot, 1907; Grubb et al., 2003) into southern Tanzania. The type and only known skin of
415	Galago mertensi Frade, 1924 was collected at a locality not far west of the type locality of P.
416	granti, and has, rightly or wrongly, been subsumed under this species (Schwarz, 1931).
417	The two smallest members of the genus, P. orinus and P. rondoensis, are the most
418	recent members of the eastern dwarf clade to have been accorded full species status.
419	Paragalago orinus is a montane endemic and occurs within a restricted habitat at high
420	altitude in the Udzungwa and Uluguru mountains of Tanzania. Paragalago rondoensis has a
421	highly fragmented range in scattered lowland forest patches throughout Tanzania, but is no
422	longer considered to be of critical conservation concern (A. Perkin, personal communication).
423	The apparent heterochronic disjunction between the eruption of adult dentition and the
424	cessation of growth in this species may explain why both it and the genus to which it belongs
425	have defied characterisation for so long.
426	Our demonstration that the eastern dwarf galagos constitute a genus entirely distinct
427	from the western dwarf galagos reinforces the conclusions of Groves (in press) that the
428	Eastern Arc Mountains and the Swahilian (Tanzanian/northern Mozambique) coastal forests
429	constitute a separate subregion of the African fauna, the Zanj subregion. The Zanj
430	mammalian fauna is unique and restricted, and deserves the highest conservation priority.
431	
432	ACKNOWLEDGEMENTS
433	Our project was funded primarily by National Research Foundation grants 93924 awarded to
434	FG, and 92541 and 90772 awarded to JCM; grant number GB-TAF 4120 awarded by the
435	Synthesys Program to SC; and an ABIC grant awarded to JCM by the Royal Museum for

Zoological Journal of the Linnean Society

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
18	
19	
20	
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 21 \\ 22 \\ 22 \\ 24 \\ 26 \\ 27 \\ 28 \\ 20 \\ 31 \\ 33 \\ 33 \\ 33 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 33 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 33 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 32 \\ 34 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11$	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
57 58	
58 59	
60	

436	Central Africa through a Framework Agreement with the Belgian Development Co-
437	operation. Our research was further made possible by the support of the hard-working
438	curators and collection managers of fifteen museums who kindly gave us access to their
439	specimens: American Museum of Natural History (AMNH, New York, USA); Carnegie
440	Museum of Natural History (CMNH, Pittsburgh, USA); Ditsong Natural History Museum
441	(Transvaal Museum; TM, Pretoria, South Africa); Field Museum of Natural History (FMNH,
442	Chicago, USA); Museum für Naturkunde (MFN, Berlin, Germany); Muséum national
443	d'Histoire naturelle (MNHN, Paris, France); Museum of Comparative Zoology (MCZ;
444	Harvard Museum of Natural History, Cambridge, USA); Natural History Museum (NHM,
445	London, UK); Royal Museum of Central Africa (RMCA, Tervuren, Belgium); National
446	Museum of Kenya (NMK, Nairobi, Kenya); Powell-Cotton Museum (PCM, Birchington,
447	UK); National Museum of Natural History (USNM, Smithsonian Institution, Washington
448	DC, USA); National Museum of Scotland (NMS, Edinburgh, UK); Naturmuseum
449	Senckenberg (SFR, Frankfurt-am-Main, Germany); Zoologisches Forschungmuseum
450	Alexander Koenig (ZFMK, Bonn, Germany). We express our gratitude to two reviewers
451	whose suggestions improved the final text significantly, and to the colleagues who have
452	advised, assisted and encouraged us, particularly Simon Bearder, Iris Dröscher, Paula
453	Jenkins, Nokuthula Kom, John Oates, Andrew Perkin, Hajarimanitra Rambeloarivony,
454	Magdalena Svensson and Ayabulela Yokwana. This is publication no. 5 of the African
455	Primate Initiative for Ecology and Speciation (APIES).
456	

457	REFERENCES
458	Adams DC, Otarola-Castillo E 2013.Geomorph: an R package for the collection and analysis
459	of geometric morphometric shape data. Methods in Ecology and Evolution 4: 393-399.
460	Bayes M. 1998.A molecular phylogenetic study of the galagos, strepsirrhine primates and
461	archontan mammals.Unpublished D. Phil. Thesis, Oxford Brookes University.
462	Bearder SK, Honess PE, Bayes M, Ambrose L, Anderson, M. 1996. Assessing galago
463	diversity – a call for help. African Primates 2: 11-15.
464	Burnaby TP. 1966. Growth-invariant discriminant functions and generalized distances.
465	<i>Biometrics</i> 22: 96–110.
466	Butynski TM, de Jong Y, Perkin AW, Bearder SK, Honess PE. 2006. Taxonomy,
467	distribution, and conservation status of three species of dwarf galagos (Galagoides) in eastern
468	Africa. <i>Primate Conservation</i> 21: 63-79.
469	Butynski TM, Kingdon J, Kalina J. 2013. Mammals of Africa. Volume II. Primates. London:
470	Bloomsbury
471	Chatterjee HJ, Ho SYW, Barnes I, Groves C. 2009. Estimating the phylogeny and divergence
472	timesof primates using a supermatrix approach. BMC Evolutionary Biology 9: 259.
473	Coquerel C. 1859. Notes de mammalogie. 1. Genre nouveau de Lémurien. Revue et Magasin
474	<i>Zoologique</i> 2: 457-464.
475	Crovella S, Masters JC, Rumpler Y. 1994. Highly repeated DNA sequences as phylogenetic
476	markers among the Galaginae. American Journal of Primatology 32: 177-185.

477	DelPero M, Masters JC, Zuccon D, Cervella P, Crovella S, Ardito G. 2000. Mitochondrial
478	sequences as indicators of generic classification in bush babies. International Journal of
479	<i>Primatology</i> 21: 889-904.
480	Dorst J, Dandelot P. 1970. A field guide to the larger mammals of Africa. London: Collins.
481	Elliot DG. 1907. Descriptions of apparently new species and subspecies of mammals
482	belonging to the families Lemuridae, Cebidae, Callitrichidae, and Cercopithecidae in the
483	collection of the Natural History Museum. Annals and Magazine of Natural History (series 7)
484	20: 185-196.
485	Fabre PH, Rodrigues A, Douzery EJP. 2009. Patterns of macroevolution among Primates
486	inferred from a supermatrix of mitochondrial and nuclear DNA. Molecular Phylogenetics and
487	<i>Evolution</i> 53: 808-825.
488	Fox J, Weisberg S. 2011. An {R} companion to applied regression, 2nd edn. Thousand Oaks,
489	CA: Sage.
490	Frade F. 1924. Notes de Mammalogie Africaine. 1. Une nouvelle espèce de galago de
491	Moçambique. Bulletin de la Société Portugaise des Sciences Naturelles 9: 127-130.
492	Friendly M, Fox J. 2015.candisc: visualizing generalized canonical discriminant and
493	canonical correlation analysis. R package version 0.6-7.
494	Génin F, Yokwana A, Kom N, Couette S, Dieuleveut T, Nash SD, Masters, JC. 2016. A new
495	galago species for South Africa (Primates: Galagidae). African Zoology in press.
496	Geoffroy Saint-Hilaire E. 1796. Mammifères. Mémoire sur les rapports naturels des makis
497	Lemur, L. et description d'une espèce nouvelle de Mammifère. Magasin Encyclopédique
498	(2)1: 20-50.

Zoological Journal of the Linnean Society

499	Gray JE. 1863. Revision of the species of lemuroid animals, with the description of some new
500	species. Proceedings of the Zoological Society of London 1863(9): 129-152.
501	Gray JE. 1872. Notes on Propithecus, Indris, and other Lemurs (Lemurina) in the British
502	Museum. Proceedings of the Zoological Society of London 1872 (54): 846-860.
503	Groves CP. 2001. Primate taxonomy. Smithsonian Institution Press, Washington, DC.
504	Groves CP (in press). Jonathan Kingdon and the East African forests. Journal of East African
505	Natural History.
506	Grubb P, Butynski TM, Oates JF, Bearder SK, Disotell TR, Groves CP, Struhsaker TT. 2003.
507	Assessment of the diversity of African primates. International Journal of Primatology 24:
508	1301-1357.
509	Harrison T. 2010. Later Tertiary Lorisiformes. In: Werdelin L, Sanders WJ, eds. Cenozoic
510	mammals of Africa. Berkley, CA: University of California Press, 333-349.
511	Heller E. 1912. New races of insectivores, bats and lemurs from British East Africa.
512	Smithsonian Miscellaneous Collections 60: 1-13.
513	Hill WCO. 1953. <i>Primates: comparative anatomy and taxonomy</i> . <i>1–Strepsirhini</i> . Edinburgh:
514	University of Edinburgh Press.
515	Honess PE. 1996. Speciation among galagos (Primates, Galagidae) in Tanzanian forests.
516	Unpublished D. Phil. Thesis, Oxford Brookes University.
517	Honess PE, Bearder SK. 1996. Descriptions of the dwarf galago species of Tanzania. African
518	<i>Primates</i> 2: 75-79.

2		
2 3 4	519	Jenkins PD. 1987. Catalogue of Primates in the British Museum (Natural History). Part IV:
5 6	520	Suborder Strepsirrhini, including the subfossil Madagascan lemurs and Family Tarsiidae.
7 8	521	London: British Museum (Natural History).
9 10 11 12	522	Kingdon J. 1997. The Kingdon field guide to African mammals. London: Academic Press.
13 14	523	Klingenberg CP. 1996. Multivariate allometry. In: Marcus LF, Corti M, Loy A, Naylor GJP,
15 16 17	524	Slice DE, eds. Advances in morphometrics. New York: Plenum, 23–49.
18 19	525	Lawrence B, Washburn SL. 1936. A new eastern race of Galago demidovii. Occasional
20 21 22	526	Papers of the Boston Society of Natural History 8: 255-266.
23 24 25	527	Masters JC. 2007. Taking phylogenetics beyond pattern analysis: can models of genome
26 27	528	dynamics guide predictions about homoplasy in morphological and behavioral data sets?
28 29	529	Journal of Human Evolution 52: 522-535.
30 31 32	530	Masters JC, Bragg NP. 2000. Morphological correlates of speciation in bush babies.
33 34 35	531	International Journal of Primatology 21: 793-813.
36 37	532	Masters JC, Brothers DJ. 2002. Lack of congruence between morphological and molecular
38 39 40	533	data in reconstructing the phylogeny of the Galagonidae. American Journal of Physical
41 42 43	534	Anthropology 177: 79-813.
44 45	535	Masters JC, Couette S. 2015. Characterizing cryptic species: A morphometric analysis of
46 47	536	craniodental characters in the dwarf galago genus Galagoides. American Journal of Physical
48 49 50	537	Anthropology 158: 288-299.
51 52	538	Masters JC, Rayner RJ, Ludewick H, Zimmermann, E, Molez-Verriere N, Vincent F, Nash
53 54 55	539	LT. 1994. Phylogenetic relationships among the Galaginae as indicated by erythrocytic
56 57	540	allozymes. Primates 35: 177-190.

541	Masters JC, Boniotto M, Crovella S, Roos C, Pozzi L, DelPero M. 2007. Phylogenetic
542	relationships among the Lorisoidea as indicated by craniodental morphology and
543	mitochondrial sequence data. American Journal of Primatology 69: 6-15.
544	Matschie P. 1893. Über anschienend neue africanische Säugethiere. Sitzungsberichte der
545	Gesellschaft Naturforschender Freunde zu Berlin 1893 (4): 107-114.
546	Mitteroecker P, Bookstein FL. 2011. Linear discrimination, ordination, and the visualization
547	of selection gradients in modern morphometrics. Evolutionary Biology 38: 100-114.
548	Oates JF. 2011. Primates of West Africa. A field guide and natural history. Conservation
549	International, Washington, DC.
550	Olson TR. 1979. Studies on aspects of the morphology of the genus Otolemur Coquerel, 1859.
551	Unpublished D. Phil. Thesis, University of London.
552	Perkin A. 2007. Comparative penile morphology of East African galagos of the genus
	Perkin A. 2007. Comparative penile morphology of East African galagos of the genus
553	Galagoides (Family Galagidae): implications for taxonomy. American Journal of
553	Galagoides (Family Galagidae): implications for taxonomy. American Journal of
553 554	<i>Galagoides</i> (Family Galagidae): implications for taxonomy. <i>American Journal of Primatology</i> 69: 16-26.
553 554 555 556	 <i>Galagoides</i> (Family Galagidae): implications for taxonomy. <i>American Journal of</i> <i>Primatology</i> 69: 16-26. Pozzi L. 2016. The role of forest expansion and contraction in species diversification among galagos (Primates: Galagidae). <i>Journal of Biogeography</i> 43: 1930-1941.
553 554 555 556 557	 <i>Galagoides</i> (Family Galagidae): implications for taxonomy. <i>American Journal of</i> <i>Primatology</i> 69: 16-26. Pozzi L. 2016. The role of forest expansion and contraction in species diversification among galagos (Primates: Galagidae). <i>Journal of Biogeography</i> 43: 1930-1941. Pozzi L, Disotell TR, Masters JC. 2014. A multilocus phylogeny reveals deep lineages within
553 554 555 556	 <i>Galagoides</i> (Family Galagidae): implications for taxonomy. <i>American Journal of</i> <i>Primatology</i> 69: 16-26. Pozzi L. 2016. The role of forest expansion and contraction in species diversification among galagos (Primates: Galagidae). <i>Journal of Biogeography</i> 43: 1930-1941.
553 554 555 556 557	 <i>Galagoides</i> (Family Galagidae): implications for taxonomy. <i>American Journal of</i> <i>Primatology</i> 69: 16-26. Pozzi L. 2016. The role of forest expansion and contraction in species diversification among galagos (Primates: Galagidae). <i>Journal of Biogeography</i> 43: 1930-1941. Pozzi L, Disotell TR, Masters JC. 2014. A multilocus phylogeny reveals deep lineages within
553 554 555 556 557 558	 <i>Galagoides</i> (Family Galagidae): implications for taxonomy. <i>American Journal of</i> <i>Primatology</i> 69: 16-26. Pozzi L. 2016. The role of forest expansion and contraction in species diversification among galagos (Primates: Galagidae). <i>Journal of Biogeography</i> 43: 1930-1941. Pozzi L, Disotell TR, Masters JC. 2014. A multilocus phylogeny reveals deep lineages within African galagids (Primates: Galagidae). <i>BMC Evolutionary Biology</i> 14: 72.
553 554 555 556 557 558 559	 <i>Galagoides</i> (Family Galagidae): implications for taxonomy. <i>American Journal of</i> <i>Primatology</i> 69: 16-26. Pozzi L. 2016. The role of forest expansion and contraction in species diversification among galagos (Primates: Galagidae). <i>Journal of Biogeography</i> 43: 1930-1941. Pozzi L, Disotell TR, Masters JC. 2014. A multilocus phylogeny reveals deep lineages within African galagids (Primates: Galagidae). <i>BMC Evolutionary Biology</i> 14: 72. Pozzi L, Nekaris KAI, Perkin A, Bearder SK, Pimley ER, Schulze H, Streicher U, Nadler T,

2	
3	
4	
5	
6	
0	
1	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
22	
$\begin{smallmatrix} 3 & 4 & 5 & 6 & 7 & 8 \\ 9 & 1 & 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$	
24	
25	
26	
27	
28	
29	
20	
00	
31	
32	
33	
34	
35	
36	
37	
201	
30	
39	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55	
54	
55	
56	
57	
58	
59	
60	

562 R Core Team.2015. *R: a language and environment for statistical computing*. Vienna: R
563 Foundation for Statistical Computing.

- 564 Roos C, Schmitz J, Zischler H. 2004. Primate jumping genes elucidate strepsirrhine
- 565 phylogeny. *Proceedings of the National Academy of Sciences, USA* 101: 10650-10654.
- 566 Schwarz E. 1931.On the African long-tailed lemurs or galagos. *Annals and Magazine of*
- 567 *Natural History* (series 10) 7: 41-66.
- 568 Simpson GG. 1945. The principles of classification and a classification of the mammals.
 - 569 Bulletin of the American Museum of Natural History 85: 1-350.
 - 570 Smith, A.1833. An epitome of African zoology. *South African Quarterly Journal* (series 2) 1:
- 571 16-32; 49-51 [Order Quadrumana].
- 572 Springer MS, Meredith RW, Gatesy J, Emerling CA, Park J, Rabosky DL, Stadler T, Steiner
 - 573 C, Ryder OA, Janečka JE, Fisher CA, Murphy WJ. 2012. Macroevolutionary dynamics and
- 574 historical biogeography of primate diversification inferred from a species supermatrix. *PLoS*575 *ONE* 7: e49521.
- 576 Thomas O, Wroughton RC. 1907. The Rudd exploration of South Africa. VII. List of

577 mammals obtained by Mr. Grant at Coguno, Inhambane. *Proceedings of the Zoological*578 *Society of London* 1907: 285-299.

579 Warton DI, Duursma RA, Falster, DS, Taskinen S. 2012. smatr 3 - an R package for

estimation and inference about allometric lines. *Methods in Ecology and Evolution* 3: 257259.

Wesselman HB. 1984. The Omo micromammals: systematics and paleoecology of early man
sites from Ethiopia. *Contributions to Vertebrate Evolution* 7:1-219.

Wickings EJ, Ambrose L, Bearder SK. 1998. Sympatric populations of Galagoides demidoff

and Galagoides thomasi in the Haut-Ogooué Region of Gabon. Folia Primatologica 69

2
3
1
4
5
6
7
,
8
9
10
11
10
12
13
14
15
10
16
17
$1 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 12 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 13 \\ 23 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 12 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 13 \\ 23 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $
10
19
20
21
22
22
23
24
25
26
07
21
28
29
30
00
31
32
33
34
0
35
36
37
38
200
39
40
41
42
43
43
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
58

59 60

1

584

585

586

587

(suppl. 1): 389-393.

2	
3	
4	
5	
6	
7	
8	
9	
10	
8 9 10 11	
12	
13	
14	
12 13 14 15 16 17 18 19	
16	
17	
10	
10	
19	
20	
21	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

588 Figure legends

589 Figure 1: Phylogenetic relationships among galagos. The tree represents a summary of our 590 current understanding of relationships among the lorisoid primates based on both nuclear and 591 mitochondrial sequence data, derived from the studies of Pozzi et al. (2014, 2015) and Pozzi (2016). The western dwarf galago clade is identified by a red rectangle, while the eastern 592 593 clade is enclosed within a blue square. 594 Figure 2: Map showing approximate geographic ranges of the two independent dwarf galago 595 clades, Galagoides (red) and the eastern dwarf galagos (blue). The type localities of the 596 species comprising the genera are indicated by symbols. In the case of *Galagoides demidoff*, 597 the type locality is estimated from Fischer's (1806) description. Figure 3: Sonagrams of vocalisations emitted by small-bodied galagid species. Calls of 598

599 *Euoticus* (Cameroon) and *Galagoides granti* (Tshanini, South Africa) were recorded by FG.

600 All other sonograms were downloaded from the East African Primate Diversity and

601 Conservation website (http://www.wildsolutions.nl/vocal-profiles).

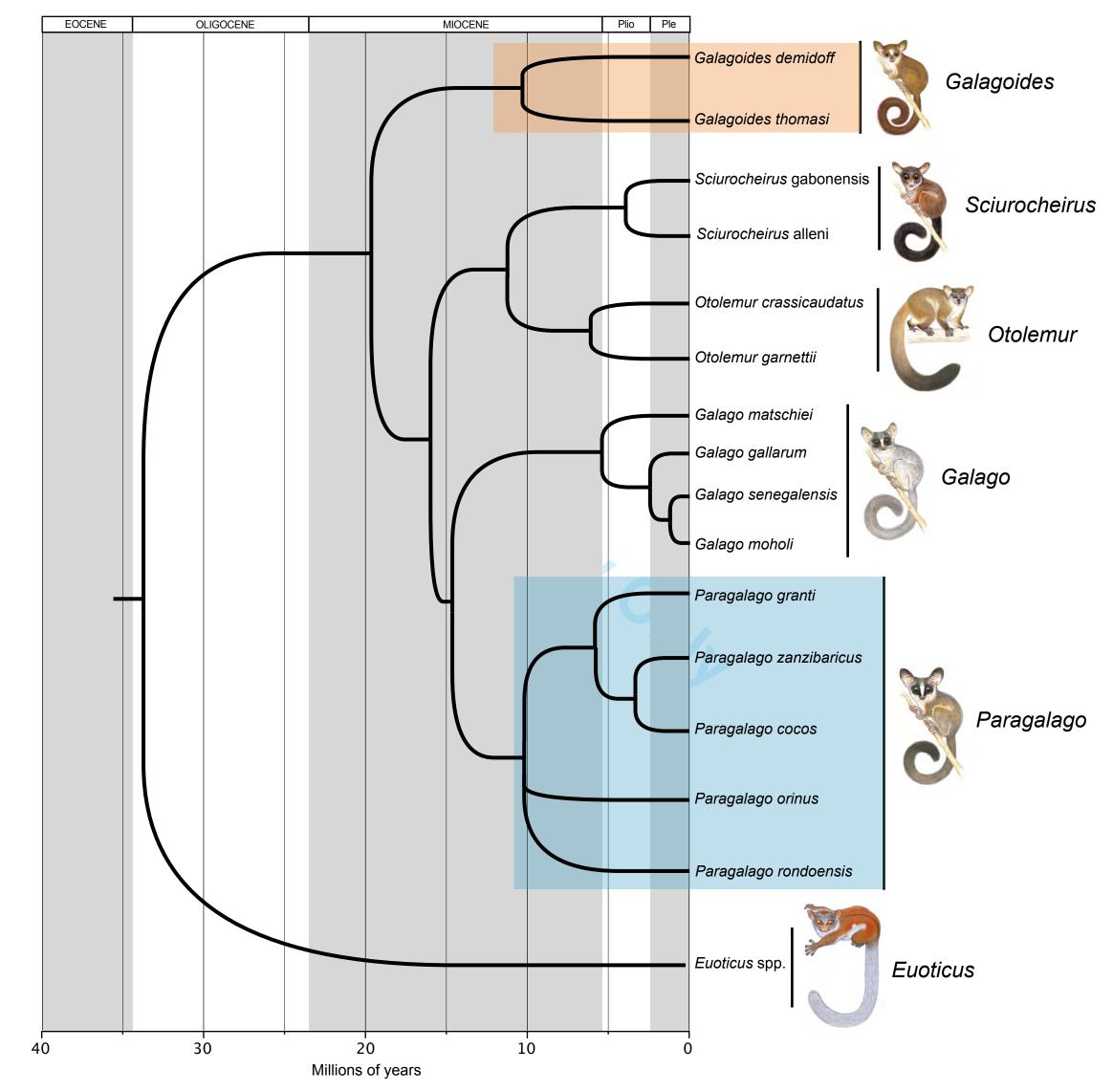
Figure 4: Schematic depiction of an eastern dwarf galago skull showing the 12 craniodental
measurements included in the multivariate morphometric analyses. Descriptions of the
variables are presented in Table 1.

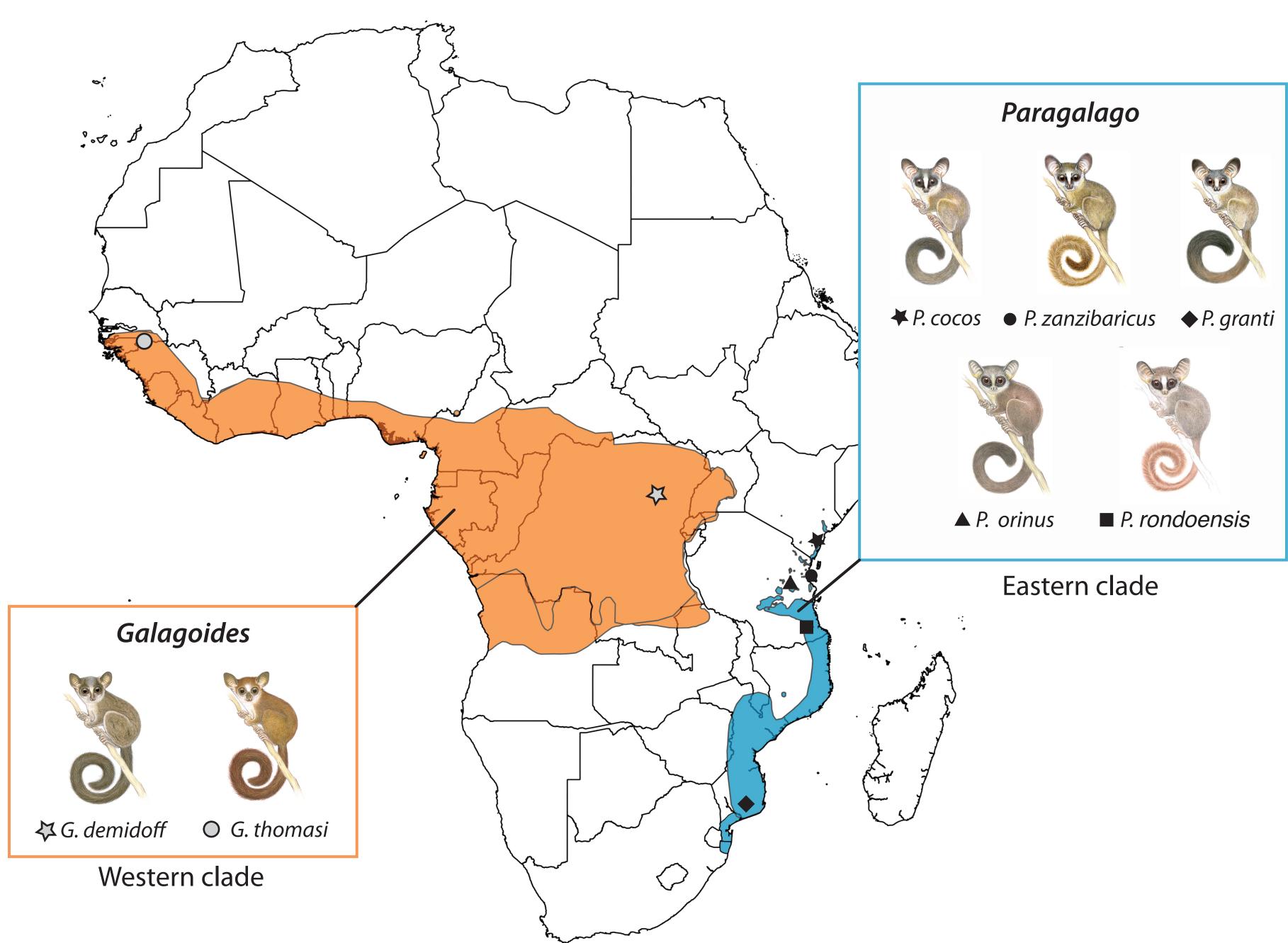
Figure 5: Between Group Principle Component Analysis (BGPCA) calculated on the twelve
shape variables. Crosses indicate the mean values of each group that defined the principle
component axes to analyse inter-group variation. Specimen data were back-projected in this
space. Specimens of the two smallest eastern taxa, *orinus* and *rondoensis*, are indicated.

609 Figure 6: Canonical Variate Analysis of the twelve shape variables. Crosses indicate the

610 centroid of each group. The first two roots illustrate significant differences in skull shape

among genera. Specimens of the two smallest eastern taxa, orinus and rondoensis, are indicated.


Figure 7: Allometric trajectories for each genus described by the linear regression of


PC1against the log-transformed centroid size. The allometric patterns are different among

- genera. Unlike the other genera, the eastern dwarf galago taxa do not show significant
- allometry. Specimens of the two smallest eastern taxa, orinus and rondoensis, are indicated.

Table 1: Cranial measurements used in the study (illustrated in figure 1)

Zoological Journal of the Linnean Society

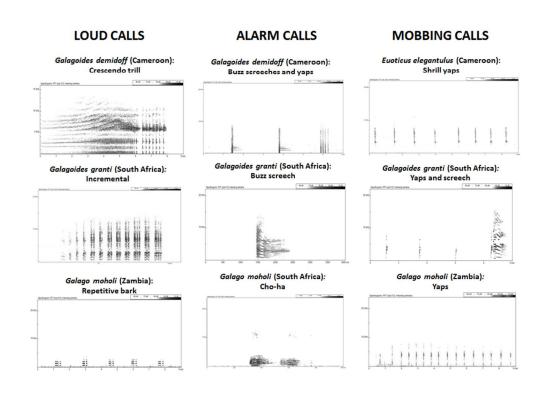
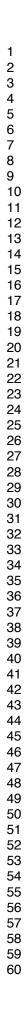



Figure 3: Sonagrams of vocalisations emitted by small-bodied galagid species. Calls of Euoticus (Cameroon) and Galagoides granti (Tshanini, South Africa) were recorded by FG. All other sonograms were downloaded from the East African Primate Diversity and Conservation website (http://www.wildsolutions.nl/vocal-profiles).

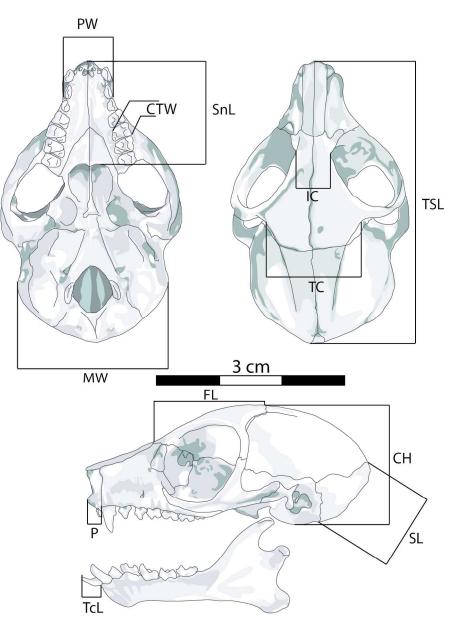


Figure 4: Schematic depiction of an eastern dwarf galago skull showing the 12 craniodental measurements included in the multivariate morphometric analyses. Descriptions of the variables are presented in Table 1.

163x220mm (300 x 300 DPI)

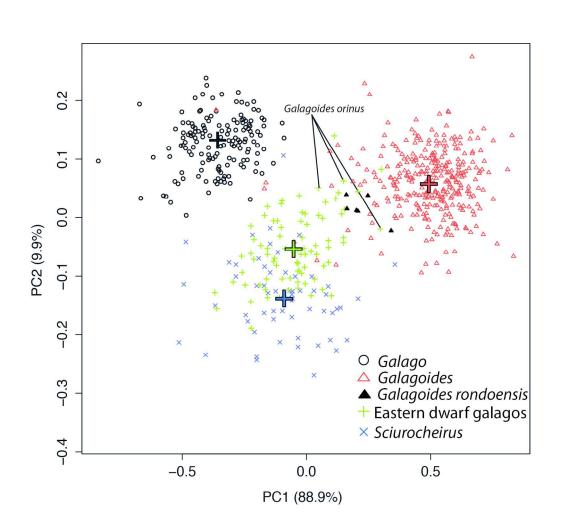


Figure 5: Between Group Principle Component Analysis (BGPCA) calculated on the twelve shape variables. Crosses indicate the mean values of each group that defined the principle component axes to analyse intergroup variation. Specimen data were back-projected in this space. Specimens of the two smallest eastern taxa, *orinus* and *rondoensis*, are indicated.

174x161mm (300 x 300 DPI)

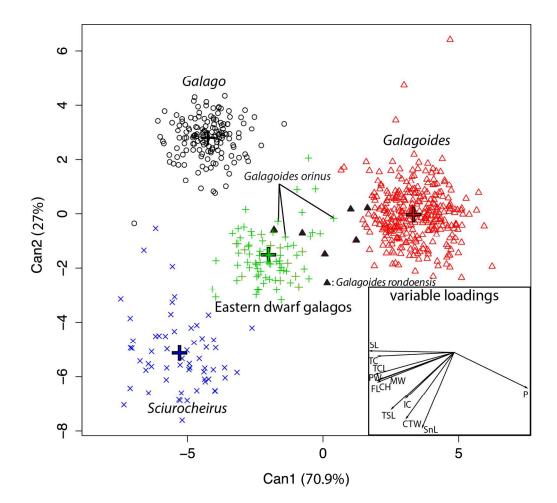


Figure 6: Canonical Variate Analysis of the twelve shape variables. Crosses indicate the centroid of each group. The first two roots illustrate significant differences in skull shape among genera. Specimens of the two smallest eastern taxa, *orinus* and *rondoensis*, are indicated.

160x152mm (300 x 300 DPI)

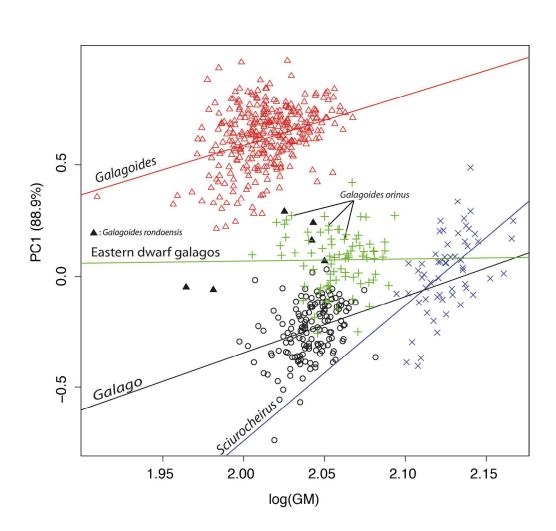


Figure 7: Allometric trajectories for each genus described by the linear regression of PC1against the logtransformed centroid size. The allometric patterns are different among genera. Unlike the other genera, the eastern dwarf galago taxa do not show significant allometry. Specimens of the two smallest eastern taxa, *orinus* and *rondoensis*, are indicated.

201x187mm (300 x 300 DPI)

TABLE 1. Cranial measurements used in the study (illustrated in Figure 1)

Abbreviation	Name	Definition
SL	Supraoccipital length	From lambda to opisthion
СН	Cranial height	From basioccipital-basisphenoid suture to the highest point of the braincase
FL	Frontal length	From bregma to nasion
IC	Interorbital constriction	Minimal distance between the inner margins of the orbits
CTW	Cheek teeth width	Maximum width of right M ¹
PW	Palate width	Distance between labial margins of right and left P ²
TSL	Total skull length	From prosthion to opisthocranion
SnL	Snout length	From prosthion to nasion
MW	Mastoid width	Distance between left and right mastoid processes
тс	Temporal constriction	Minimum distance between left and right fronto-temporals
Р	Premaxilla	Length of the premaxillary tube
TCL	Toothcomb length	From the base to the tip of the incisors

- 6

Supplementary Information

Table 1. Eastern dwarf specimens included in the morphometric analysis of skulls

Accession		0		
number	Genus	Species	Subspecies	
FMNH 177220	Galagoides	granti		
NHM 6.11.8.5	Galagoides	granti		Paratype
NHM 6.11.8.6	Galagoides	granti		Paratype
NHM 6.11.8.7	Galagoides	granti		Туре
NHM 6.11.8.9	Galagoides	granti		Paratype
NHM 6.11.8.10	Galagoides	granti		Paratype
NHM 8.1.1.12	Galagoides	granti		
NHM 8.1.1.13	Galagoides	granti		
NHM 8.1.1.15	Galagoides	granti		
NHM 8.1.1.16	Galagoides	granti		
NHM 8.1.1.129	Galagoides	granti		
NHM 94.1.25.22	Galagoides	granti		Paratype
NMZ 28344	Galagoides	granti		
NMZ 67333	Galagoides	granti		
NMZ 67340	Galagoides	granti		
NMZ 67341	Galagoides	granti		
NMZ 67342	Galagoides	granti		
NMZ 67344	Galagoides	granti		
NMZ 67346	Galagoides	granti		
NMZ 67347	Galagoides	granti		
NMZ 67349	Galagoides	granti		
NMZ 67353	Galagoides	granti		
NMZ 67354	Galagoides	granti		
NMZ 67355	Galagoides	granti		
NMZ 67357	Galagoides	granti		
NMZ 67358	Galagoides	granti		
NMZ 67359	Galagoides	granti		
NMZ 67361	Galagoides	granti		
NMZ 67362	Galagoides	granti		
USNM 352253	Galagoides	granti		
USNM 352254	Galagoides	granti		
USNM 181810	Galago	moholi	00000	Туре
MCZ 22453	•		cocos	
NHM 54.748	Galagoides	orinus		Туре
	Galagoides	orinus		
NHM 54.747	Galagoides	orinus		
SFR 83201	Galagoides	orinus		-
MCZ 38875	Galagoides	rondoensis		
SFR 94901	Galagoides	rondoensis		
ZMB 8903	Galagoides	rondoensis		
ZMB 9130	Galagoides	rondoensis		_
ZMB 9131	Galagoides	rondoensis		
NHM 64.1970	Galagoides	rondoensis		Туре

NHM 1995.251	Galagoides	udzungwensis		Туре
MCZ 26446	Galagoides	zanzibaricus		
MCZ 26449	Galagoides	zanizibaricus		
MCZ 26451	Galagoides	zanzibaricus		
ZMB 64201	Galagoides	zanzibaricus		Туре
AMNH 187362	Galagoides	zanzibaricus	COCOS	
CMNH 57948	Galagoides	zanzibaricus	cocos	
CMNH 98107	Galagoides	zanzibaricus	cocos	
CMNH 98108	Galagoides	zanzibaricus		
MCZ 22449	Galagoides	zanzibaricus		
MCZ 22450	Galagoides	zanzibaricus		
MCZ 38911	Galagoides	zanzibaricus		
MCZ 38912	Galagoides	zanzibaricus		
MCZ 38915	Galagoides	zanzibaricus		
NMK DM 4533	Galagoides	zanzibaricus	cocos	
NMK DM 4537	Galagoides	zanzibaricus	cocos	
NMK DM 4547	Galagoides	zanzibaricus	cocos	
NHM 55.330	Galagoides	zanzibaricus		
NHM 64.972	Galagoides	zanzibaricus		
NHM 64.974	Galagoides	zanzibaricus		
NHM 64.975	Galagoides	zanzibaricus		
NHM 64.976	Galagoides	zanzibaricus		
NHM 64.977	Galagoides	zanzibaricus		
NHM 64.978	Galagoides	zanzibaricus		
NHM 64.979	Galagoides	zanzibaricus		
NHM 64.980	Galagoides	zanzibaricus		
NHM 20.6.10.2	Galagoides	zanzibaricus		
NHM 20.6.10.3	Galagoides	zanzibaricus		
NHM 54.738	Galagoides	zanzibaricus		
NHM 54.739	Galagoides	zanzibaricus		
NHM 54.740	Galagoides	zanzibaricus		
TM 45930	Galagoides	zanzibaricus		
USNM 184218	Galagoides	zanzibaricus	COCOS	
USNM 184220	Galagoides	zanzibaricus	cocos	
USNM 184221	Galagoides	zanzibaricus	COCOS	
USNM 184222	Galagoides	zanzibaricus	COCOS	
USNM 184224	Galagoides	zanzibaricus	COCOS	
USNM 241579	Galagoides	zanzibaricus		

Key to museums:

AMNH: American Museum of Natural History, New York, USA

CMNH: Carnegie Museum of Natural History, Pittsburgh, USA

FMNH: Field Museum of Natural History, Chicago, USA

MCZ: Museum of Comparative Zoology, Harvard Museum of Natural History, Cambridge MA, USA

NHM: Natural History Museum, London, UK

NMK: National Museum of Kenya, Nairobi, Kenya

NMZ: National Museum of Natural History, Bulawayo, Zimbabwe

SFR: Senckenberg Museum of Natural History, Frankfurt, Germany

TM: Ditsong Museum of Natural History (Transvaal Museum), Pretoria, South Africa

USNM: United States National Museum of Natural History (Smithsonian Institution), Washington DC, USA

ZMB: Museum of Natural History, Berlin, Germany