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Highlights

• Development of boundary conditions using patient-specific data.
• A systematic analysis of cardiac mechanics boundary conditions.
• Demonstration of efficacy for 6 patient-specific models.
• Novel quantitative comparison with non-invasive imaging data.

Abstract

Supported by the wide range of available medical data available, cardiac biomechanical modeling has exhibited significant
potential to improve our understanding of heart function and to assisting in patient diagnosis and treatment. A critical step towards
the development of accurate patient-specific models is the deployment of boundary conditions capable of integrating data into the
model to enhance model fidelity. This step is often hindered by sparse or noisy data that, if applied directly, can introduce non-
physiological forces and artifacts into the model. To address these issues, in this paper we propose novel boundary conditions which
aim to balance the accurate use of data with physiological boundary forces and model outcomes through the use of data-derived
boundary energies. The introduced techniques employ Lagrange multipliers, penalty methods and moment-based constraints to
achieve robustness to data of varying quality and quantity. The proposed methods are compared with commonly used boundary
conditions over an idealized left ventricle as well as over in vivo models, exhibiting significant improvement in model accuracy.
The boundary conditions are also employed in in vivo full-cycle models of healthy and diseased hearts, demonstrating the ability of
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the proposed approaches to reproduce data-derived deformation and physiological boundary forces over a varied range of cardiac
function.
c⃝ 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Diagnostic medicine, medical imaging and novel therapies have rapidly improved patient outcomes across a wide
range of heart conditions. While this has led to substantial progress, challenges in understanding (patho)physiology,
improving patient diagnosis and therapy planning and designing the next generation of devices remain. Cardiac biome-
chanics provides a powerful tool for evaluating and predicting the complex behaviors of the heart and is increasingly
playing an important role in translating physiologically based models towards strategies for understanding and treat-
ing heart failure [1–3]. A critical step in this effort is the ability to devise high fidelity computational biomechanical
models that are capable of replicating cardiac function on a patient-by-patient basis.

Bolstered by continual improvements in cardiac biorheology, medical imaging and computational techniques, it is
now possible to create high fidelity biophysical heart models [4–10]. Early studies in animal heart muscle [11–13] and
more recent studies of human tissue [14] have enabled development of constitutive laws characterizing the anisotropic
material behavior of the myocardium. Moving these excised tissue results into computational models was facilitated
by descriptions of the laminar muscle structure, first determined from anatomical dissections [15] and more recently
by diffusion tensor imaging [16,17]. Utilizing biomechanical models in the human heart has been enabled by medical
imaging, capable of describing in vivo anatomy [18], detailed motion [19], blood flow [20] and even non-invasive es-
timates of pressure [21–23]. Exploitation of these patient data sources has been achieved through novel advancements
in data assimilation [24,25,5] and parameter estimation techniques [10,26].

An important step towards translating biophysical heart models on a patient-by-patient basis is the personalization
of cardiac function based on available data. A key challenge in this effort is the determination and handling of
boundary conditions. Despite the importance of these conditions for correctly simulating the biomechanics of the
heart, these effects are often less well-studied. Typical imaging – such as CINE or tagged MRI – can provide some
guidance on motion [27,28]; however, this characterization can be incomplete or corrupted by noise. Use of this type
of data also requires segmentation and image processing techniques that, in themselves, can introduce inaccuracies.
Exploiting this data to drive computational biomechanical models in a manner which maintains model fidelity and
minimizes modeling errors remains an open and important challenge.

Here we propose to address this issue by augmenting the traditional elastic energy potential minimization problem
(commonly applied for cardiac biomechanics simulation) with a series of novel data-driven boundary energy terms.
In this paper we focus on the isolated left ventricle (LV) (see Fig. 1)—commonly used in studies of cardiac
biomechanics [29–32]. While lacking connection to other cardiac chambers, isolated LV models are often more
straightforward to segment and characterize from medical imaging data, particularly MRI and ECHO. In addition,
the LV is often the focus of heart failure studies due to the functional significance of its failure. Addressing boundary
conditions on the LV, we develop tailored energy terms for each boundary component, focusing on the use of data
available from non-invasive medical imaging. Through use of Lagrange multipliers, penalty variables and moment-
based constraints, we devise terms which balance the use of real data with the energy required to force data-derived
motion onto the computational model. These introduced techniques are then systematically compared with other
common boundary conditions, highlighting their influence on simulation results as well as the benefits of the proposed
approaches. Comparisons were carried out using an idealized LV mechanics model as well as patient-specific LV
mechanics models based on data from 3 patients with dilated cardiomyopathy (DCM) as well as 3 volunteers. Efficacy
of the proposed approach is demonstrated through direct quantitative comparisons between 3D displacement fields
extracted from medical imaging data and simulation results.

The remainder of this paper is outlined as follows. A brief review of the LV cardiac mechanics model used is
provided in Section 2. A summary of the elastic energy potential minimization approach is then presented in Section 3,
followed by a description of the novel boundary energy potentials. An overview of the finite element implementation is
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Fig. 1. (Left) Illustration of the biventricular heart and major inlet/outlet valves and (Right) the portion of the left ventricle considered in LV model
analysis. Abbreviations: AV = aortic valve, LV = left ventricle, MV = mitral valve, PV = pulmonary valve, RV = right ventricle, TV = tricuspid
valve.

subsequently provided in Section 4, followed by a description of both idealized and patient-specific models developed
in this work (Section 5). Sections 6–8 systematically assess each boundary energy potential term and, where possible,
compare with other common approaches. The proposed model is then applied to three patient and three volunteer
datasets, illustrating model accuracy as well as the efficacy of the proposed approach (Section 9). The paper concludes
with a summary of the results, key outcomes and future directions (Section 10).

2. Cardiac mechanics

In this section we briefly outline the basic components for the LV cardiac mechanics model used in this work.
Under zero loading conditions, the muscular wall of the LV (or myocardium) is characterized by the reference domain
Ω0 ⊂ R3 (with reference coordinates X). The LV only model results from truncation of the heart below the valves in
a short axis plane (see Figs. 1 and 2). The boundary of Ω0 is subdivided into three distinct surfaces: the base Γ b

0 , the
endocardium Γ l

0 and the epicardium Γ e
0 . For each boundary, we use N to denote the outward-facing normal vector. As

we will track the motion of the base plane, we use Nb to denote the mean unit normal vector on Γ b
0 and define a local

coordinate system with orthonormal basis vectors {N1,N2,Nb} (see Fig. 2). As the heart deforms, we use lower case
{n1,n2,nb} to denote the deformed orientations. Throughout the cardiac cycle, at each time t ∈ (0, T ], T > 0, the
deformed physical domain is denoted by Ω(t) ⊂ R3 (with physical coordinates x) with boundaries Γ k and respective
normals n. We assume that for every t ∈ (0, T ] the mapping between x and X is bijective.

In order to represent the highly anisotropic behavior given by the laminar structure of the myocardium, we define
fiber directions f0 over Ω0 (see Fig. 2). While new techniques provide the potential to gain some insight into the
structure of these fibers on a patient-by-patient basis [33,17,34], in the absence of personalized data, we prescribe an
idealized distribution. Briefly, a Laplacian problem was solved on the domain Ω0 to make a harmonic extension of
the endocardial to epicardial surface normal vectors (radial/sheet direction). Subsequently, at each point, fibers were
defined in the sheet direction plane. The fiber vector was defined based on its angle about the sheet axis, with an angle
of 0◦ indicating vectors oriented in the circumferential clock-wise direction (when viewed from the base) and an angle
of 90◦ indicating vectors oriented in the long-axis direction. A linear distribution in angle was defined transmurally,
with the angle varying between 60◦ at the endocardium and −60◦ at the epicardium [35,36] (see Fig. 2).

In modeling cardiac mechanics we seek to find the deformation u = x − X and the hydrostatic pressure p on
Ω0 × (0, T ]. As we outline in the subsequent section, these variables can be found by minimizing an elastic energy
potential. For this, we must model the internal energy within the tissue due to deformation using a strain energy
potential ψ . In this paper, we treat the myocardium as an incompressible, hyperelastic material with the distortional
strain energy ψ = ψp +ψa comprised of passive and active parts. In this work we use the reduced Holzapfel–Ogden
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model [13] to describe the passive behavior of the myocardium using

ψp(Fu) =
a

2b


exp(b[ F − 3])− 1


+

a f

2b f


exp(b f [ F, f − 1]

2)− 1

, (1)

which combines good model fidelity and parameter identifiability [37]. Here we have used some basic kinematic
quantities: F, f = |Fuf0|

2 and F = Fu : Fu denoting material invariants, Fu = ∇Xu + I the deformation gradient
tensor and Ju = det(Fu) its determinant. Here a, a f , b and b f are material parameters. a characterizes the bulk
stiffness of the myocardium while a f describes the stiffness in the direction of fibers f0. Similarly, the parameters b
and b f characterize the shape of the nonlinear response in bulk and the fiber direction.

A simple length-dependent active constitutive law [10] is used in the model, where activation occurs along the
fibers, and a single patient-specific active tension α(t) is applied across the domain at any given time t ∈ (0, T ].
The structure of the idealized fiber distribution results in a singularity arising in the apical region, causing spurious
pressure peaks. As the microstructure in the human heart is less ordered near the apex, the active strain energy function
is augmented with an isotropic term, and both components are scaled so that the total energy is fiber-oriented in most
of the domain and isotropic at the apex, i.e.

ψa(Fu,X, t) = α(t)


[1 − D(X)]


F, f

0
g(ξ) dξ +D(X)


F

0
g(ξ/3) dξ


, (2)

where

D(X) = exp

−(∥X − Xa∥/0.02Lla)

2

, g(ξ) = tanh


2[

ξ − l0]


.

Here D(X) is a distance function taking the value 1 near the apex point Xa and rapidly decaying to zero (with Lla
being the long-axis length and the factor 0.02 set so that D(X) < 0.05 at a distance of ∼0.06Lla), as illustrated
in Fig. 3. g is a given activation function which provides length-dependent scaling of the active strain energy, with
l0 = 0.8 the lower bound for the myocyte compressive strain [38]. From the strain energy, we can derive the first
Piola–Kirchhoff stress [39]

Pu =


k∈{p,a}


∂ψk

∂ F

∂ F

∂Fu
+

∂ψk

∂ F, f

∂ F, f

∂Fu


= a exp(b[ F − 3])Fu + 2a f [ F, f − 1] exp(b f [ F, f − 1]

2)Fuf0 ⊗ f0

+ α(t)D(X)g( F/3)Fu + α(t)[1 − D(X)]g( F, f )Fuf0 ⊗ f0. (3)

Finally, in order to introduce some of the data-driven boundary conditions in the next section, we use the following
notation: ud(t) represents the displacements extracted from the data, e.g. as discussed in Section 5, and Vlv(t)
represents the volume of the left-ventricular cavity Ωlv computed from ud(t).

3. Elastic energy potential and weak form equations

The mechanics of the heart can be solved by finding the critical point of the total potential energy function Πt (at
some time t ∈ (0, T ]), where the displacement and pressure state variables satisfy the saddle point condition [39],

Πt (u(t), p(t)) = inf {sup {Πt (v, q), q ∈ P}, v ∈ U}. (4)

In this approach, the saddle point problem is used to solve a quasi-static system, whereby the displacement and
pressure are sought for each time point t ∈ [0, T ] throughout the cardiac cycle subject to varying boundary conditions
or activation states. U and P denote the suitable function spaces for displacement and pressure variables, respectively,
at each individual point in time (see Appendix A). The total potential energy Πt = Π int

t + Π ext
t is the sum of the

internal (superscript int) and external (superscript ext) energy terms, with the internal energy given by

Π int
t (v, q) =


Ω0

ψ(Fv,X, t)+ q(Jv − 1) dX, (5)
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Fig. 2. (Left) Illustration of the left ventricle domain (Ω0) and its constituent boundaries: base plane (Γ b
0 ), endocardial (Γ l

0), and epicardial (Γ e
0 ).

{N1,N2,Nb} denotes the orthonormal coordinate frame for tracking the base plane motion. (Right) Illustration of the fiber architecture in the left
ventricle, showing streamlines in the fiber direction colored white (endocardial) to dark red (epicardial) based on the transmural location. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. (Left) Illustration of the function H : Γ e
0 → [0, 1] labeling the RV/LV junction on the epicardium and (Right) the apex distance function

D : Ω0 → [0, 1] used to scale the orthotropic vs. isotropic terms in the active strain.

where ψ(Fv,X, t) = ψp(Fv)+ ψa(Fv,X, t) is the strain energy potential defined in Eqs. (1) and (2) and the second
term is used to enforce mass conservation. Within the LV, the external energy Π ext

t can be conveniently partitioned
over the base Γ b

0 , endocardial lumen Γ l
0, and epicardial Γ e

0 (see Fig. 2). A variety of boundary conditions have been
employed in models of the left ventricle, providing varying degrees of accuracy and introducing additional forces to
the problem (as will be presented below). To examine the numerical and modeling implications of these conditions,
in this paper we augment the problem in Eq. (4) by writing Π ext

t as a sum of external boundary energies, i.e.

Π ext
t (v,µ) =


k∈{b,l,e}

Π k
t (v,µk) (6)

with µ denoting any additional variables {µk} – tractions or pressures – defined over each boundary domain Γ k
0 ,

k ∈ {b, l, e}. The specifics of these variables depend on the employed boundary conditions and will be introduced
throughout the remainder of this section. We may re-write the saddle-point problem in Eq. (4) as,

Πt (u(t), p(t),λ(t)) = inf {sup {Πt (v, q,µ), (q,µ) ∈ P × Λ}, v ∈ U} (7)

where the the total potential energy Πt = Π int
t +Π ext

t is now a functional on U×P×Λ, (u, p,λ) are the state variables
(e.g. unknown displacement, pressure and boundary tractions and/or pressures, respectively) and (v, q,µ) ∈ U×P×Λ
arbitrary functions within the selected search space. As the saddle point problem is posed at each time point, in what
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follows we simplify the notation such that (u, p,λ) = (u(t), p(t),λ(t)) unless the context is ambiguous. The solution
(u, p,λ) ∈ U × P × Λ is then the critical point of the functional satisfying

D(u,p,λ)Πt (u, p,λ)[v, q,µ] = 0, ∀ (v, q,µ) ∈ U × P × Λ, (8)

with D(u,p,λ)Π denoting the sum of directional derivatives DuΠ , D pΠ and DλΠ [39]. Eq. (8) results in a weak
form statement of the solid mechanics problem and can be split into directional derivatives of internal and individual
external boundary energy terms. With this approach in mind, we use At to denote the directional derivative of the
internal energy potential (or equivalently, the nonlinear weak form operator) from Eq. (5), i.e.

At (u, p; v, q) = D(u,p)Π int
t (u, p)[v, q] =


Ω0

(Pu + pJuF−T
u ) : ∇Xv + q(Ju − 1) dX, (9)

with Pu denoting the first Piola–Kirchhoff stress given in Eq. (3), Fu the deformation gradient tensor, and Ju its
determinant (see Section 2). Similarly, for a given external energy term Π k

t applied on the boundary Γ k
0 we can

introduce a form Ak
t to denote the directional derivative of the external boundary term,

Ak
t (u,λk; v,µk) = D(u,λk )Π

k
t (u,λk)[v,µk]. (10)

In this notation, the weak form problem can be written as: find (u, p,λ) ∈ U × P × Λ such that,

At (u, p; v, q)+


k∈{b,l,e}

Ak
t (u,λk; v,µk) = 0, ∀ (v, q,µ) ∈ U × P × Λ. (11)

In the subsequent sections, we will present different formulations for basal, endocardial and epicardial conditions as
well as novel boundary energy potential terms proposed for patient-specific LV mechanics modeling.

3.1. Base plane boundary conditions

In studies of LV mechanics, the ventricular domain is often truncated. This approach avoids complications associ-
ated with modeling the basal tissue structure (that is dominated by fibroelastic connective tissue) and basal anatomy
which is often poorly resolved in standard magnetic resonance or echocardiographic clinical imaging. Truncation of
the myocardial geometry, however, introduces an artificial boundary, Γ b

0 , over which non-trivial boundary conditions
are likely active.

A common approach in LV models is to impose some form of Dirichlet or mixed Dirichlet/zero-traction conditions
(see Table 1). Assuming a known displacement ud is available – either observable from imaging data or determinable
by other means – many common conditions can be integrated using the boundary energy potential term (Eq. (12)) and
its directional derivative (Eq. (13)), i.e.

Π b
t (v,µb) :=


Γ b

0

µb · (v − ud(t)) dX, (12)

Ab
t (u,λb; v,µb) :=


Γ b

0

λb · v + µb · (u − ud(t)) dX. (13)

Typical conditions can be employed by careful selection of the space Λb (itself a subset of Λ from the previous section)
containing the Lagrange multiplier λb and test variable µb (also provided in Table 1 and discussed in Appendix A).
For most conditions in Table 1, the presence of a Lagrange multiplier variable on the boundary introduces unnecessary
added complexity to approaches where direct Dirichlet conditions are imposed. However, use of a Lagrange multiplier
constraint to enforce these conditions was done in order to present the problem in the same manner and compare
resultant boundary tractions.

Perhaps the most common condition using Eqs. (12) and (13) is the fixed-base(0) condition, which is straightfor-
ward to impose and popular if no other data is available. This condition is often applied to idealized analysis or for
model testing. However, this condition is strict, often yielding unphysiological stresses and singularities in hydrostatic
pressure. Moreover, in patient-specific simulations, this condition neglects base plane motion which may introduce
both long-axis and short-axis motion throughout the LV model. Fixed-base(ud ) condition using data derived boundary
motion provides a viable alternative, but success of this approach depends significantly on data quality.
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Table 1
Summary of some common and proposed base plane conditions for LV mechanics models. Table provides a selection of
references to models using these conditions, the typical manner in which the condition is integrated into the model, and how
this can be implemented through boundary energy terms. ĚFixed-In-Plane requires additional conditions to eliminate rotational
modes. This is typically done by fixing opposing in-plane components on two nodes.

Base plane conditions

Name Eqn Ref Description

Fixed-base(0) (12), (13) [30,65] Typically applied as u = 0 Dirichlet zero condition.
Assume ud = 0 and choose Λb = γbU.

Fixed-base(ud ) (12), (13) [26,66] Typically applied as u = ud Dirichlet condition.
Use data derived ud and choose Λb = γbU.

Fixed-in-planeĚ (12), (13) [8,67] Typically applied as Dirichlet zero condition on through-plane
component.
Assume ud · nb = 0 and choose
Λb = {µ ∈ γbU| µ · n1 = 0, µ · n2 = 0}.

Fixed-endo-ring (12), (13) [68] Typically applied as Dirichlet zero condition on Γ l
0 ∩ Γ b

0 . Assume

ud = 0 on Γ l
0 ∩ Γ b

0 and choose

Λb = {µ ∈ γbU| µ = 0, on Γ b
0 \ Γ l

0}.
Springs – [40,41] The attachment of the base to the cardiac valves is modeled using

linear springs, which allow for small valve motion.

Relaxed-base (15) [45,10] Use data derived ud and choose Λb = γbU.

Moments + relaxed-base (18) – Use data derived ud and choose Λb = [R3
]
3

× γbU.

Avoiding unphysiological stress and pressure peaks associated with Dirichlet conditions is an alternative technique
employing springs to attach the base on the heart valves [40,41]. Contrary to the fixed base boundary condition, this
technique enables a small degree of basal motion while avoiding strict enforcement of the constraint. Nevertheless,
the motion introduced into the model is still substantially smaller compared to physiological motion observed in vivo.

In order to incorporate basal motion observed in vivo, Billet et al. proposed an image-based boundary condition. In
particular, the basal motion applied on the model was estimated from the images by introducing an image force into
the model dynamic equations [42,43].

An alternative is to apply penalty techniques [44], enabling some violation of conditions if excessive energy is
required. This can be done using the relaxed-base condition [45,10],

Π b
t (v,µb) :=


Γ b

0

µb ·


v − ud −

1
2

Kb(t)µb


dX, (14)

Ab
t (u,λb; v,µb) :=


Γ b

0

λb · v + µb · [u − ud(t)− Kb(t)λb] dX, (15)

where Kb is a penalty matrix, which can be chosen based on the accuracy of the data-derived motion ud . We note that
this formulation shares similarities with the employment of springs and Kb could be thought analogously as a spring
constant. However, in this case the reference position of the spring is adjusted dynamically by the data itself, making
it conceptually different from the typical spring model. In [45,10], the penalty matrix Kb(t) = ε


I − nb(t) ⊗ nb(t)


was used to ensure that displacements in the direction of nb are equivalent (weakly), while short-axis displacements
are relaxed by the parameter ε.

While this relaxation prevents some potential artifacts due to imprecise data or image processing, noise in the base
plane direction nb is still imposed weakly on the model. In addition, the formulation does not ensure that some basic
quantities are retained. Data averaged quantities, such as the mean position or the mean affine transformation, tend to
minimize the impact of data noise and artifacts and should, therefore, be preserved. These quantities can be captured
by considering the 0th and 1st moments of the data ud . To this end, we define Mm,n[w] as the m, nth moment of
a function w on the base Γ b

0 . Specifically, we may define local coordinates aligned with the base plane axes, e.g.
ξi = (X − Xb) · Ni (see Fig. 2) where Xb is the mean position of the base and Ni the i th base vector (i = 1, 2). Using
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this, the m, nth moment is defined as,

Mm,n[w] :=


Γ b

0

ωm,n(X)w dX, ωm,n
= ξm

1 ξ
n
2 . (16)

From Eq. (16), we see that the zero moment M0,0 provides mean quantities. For example, M0,0[X] = Xb provides
the mean position of the base and M0,0[ud ] = u0 the mean displacement of the base plane. Hence, requiring
M0,0[u − ud ] = 0 constrains the mean quantity of the model to match that of the data. Similarly, constraining first
order moments M1,0 and M0,1 ensures conditions of the optimal affine transformation are preserved in the model. To
see this, we can define the best affine transformation A as

A = min
M∈R3×2

1
2


Γ b

0

|uM − ud |
2 dX

where uM = M(ξ1, ξ2)
T

+ u0 is an affine function on the plane. Taking the derivative with respect to components of
the generic matrix M, it can be shown that the optimal affine transformation must satisfy the constraints

Γ b
0

ξi (uA − ud) dX, i = 1, 2

or equivalently, that Mm[uA − ud ] = 0 for m = (1, 0) and (0, 1). As these integrative quantities are less subject to
data errors, we propose that the zero and first moments of the base plane – M0,0, M1,0, M0,1 – should be consistent
between the data and model. To achieve this, we propose a moments + relaxed-base condition, i.e.

Π b
t (v, {µ

k
b}) :=


m

µm
b · Mm[v − ud(t)] +


Γ b

0

µb ·


v − ud(t)−

1
2
Σµb


dX (17)

Ab
t (u, {λ

k
b}; v, {µk

}) :=


m

λm
b · Mm[v] +


m

µm
b · Mm[u − ud(t)]

+


Γ b

0

λb · v + µb · [u − ud(t)− Σλb] dX

for m = {0, 0}, {1, 0}, {0, 1} (18)

where {λk
b} = {λ

0,0
b ,λ

1,0
b ,λ

0,1
b ,λb} ∈ [R3

]
3
×γbU is a partitioning of the boundary traction into its 0th order moments

(λ0,0
b ), 1st order moments (λ1,0

b ,λ
0,1
b ) and higher order effects (λb). Here, λ

0,0
b ,λ

1,0
b ,λ

0,1
b denote Lagrange multipliers

constraining equality of the indicated moments between data and model and λb denotes a penalty variable which can
be used to constrain base plane motion towards the data. Similarly, {µk

} = {µ0
b,µ

1,0
b ,µ

0,1
b ,µb} ∈ [R3

]
3

× γbU.
Relaxation is controlled by the matrix Σ , which we tune asymmetrically in the long-axis and base plane due to
inherent differences in the expected forces as well as potential asymmetry in data accuracy, i.e.

Σ = εlaNb ⊗ Nb + εsa(I − Nb ⊗ Nb), εla, εsa > 0.

In this formulation, only integrated quantities are imposed strictly – i.e. mean point and the best fit affine map to the
data – while more stringent conditions on base plane motion stemming from data may be relaxed using εla and εsa
to minimize the influence of potential artifacts to the mathematical model. By design, the formulation ensures that λb
satisfies,

M0,0[λb] = M1,0[λb] = M0,1[λb] = 0,

and that uniqueness is retained in the variables {λk
b} (under suitable assumptions on the original model problem).

Briefly, this can be seen by examining Ab
t . Choosing all other test function to be zero and varying {µ0

b,µ
1,0
b ,µ

0,1
b }

individually, we see that these moments match between data and model. Hence, choosing all other test function to be
zero and selecting µb to be a vector with each component equal to 1, ξ1 or ξ2 we arrive at the above constraints on λb.
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Table 2
Summary of some common and proposed endocardial boundary conditions for LV mechanics models. Table provides a selection
of references to models using these conditions, the typical manner in which the condition is integrated into the model, and how
this can be implemented through boundary energy terms.

Endocardial conditions

Name Eqn Ref Description

Endo-pressure (19) [12,52,31,40] Typically applied using measured/literature/model derived −Plv in
the normal direction on Γ l .
Iso-volumic phases controlled using iterative approach

Endo-volume (21), (22) [45,69] Applied using Λe = R and using data-derived Vlv .
Methods vary in how V (u) is computed:
SVI: V calculated using Eq. (24)
VI: V calculated using Eq. (28)

Endo-volume-rate (26) [56,66] Applied using Λe = R and using data-derived ∂t Vlv . VRI: V
calculated using Eq. (26)

3.2. Endocardial boundary conditions

The endocardial surface of the LV is comprised of myocardial muscle, trabeculae and papillary muscles that are
interacting with intraventricular flows [46]. Typically, the complexity of cardiac anatomy is simplified to consider
only the myocardial muscle, neglecting the presence of trabeculae and papillary muscles which serve support roles
in contraction. The interaction of muscle and blood flow can yield complex hemodynamics and momentum transfer.
While in some disease cases, such as congenital heart disease [47] or valve stenosis [48,49], hemodynamic effects can
play an important role, in many circumstances the mechanics of the heart are principally dominated by hemodynamic
pressure (with minimal influence of shear stress). It has been shown both experimentally [50] and numerically [51]
that momentum effects yield spatial variation in the left ventricular fluid pressure. However, apart from early diastolic
and systolic phases, these variations in pressure are usually <5% of the mean pressure, making spatial variability in
pressure less significant in predicting muscle behavior.

As a result, most LV mechanics models assume a constant intraventricular lumen pressure, Plv . This pressure
can be either derived from data, tuned through use of Windkessel models [52] or inferred at some or all states
through the heart cycle [21]. Integration of endocardial constraints can be employed through multiple mechanisms
(see Table 2), perhaps the most common of which is through direct imposition of pressure data by a surface traction tlv ,
i.e.

Π l
t (v) :=


Γ l

0

tlv(t) · v dX (19)

Al
t (u; v) := −Plv(t)


Γ l

0

v · JuF−T
u N dX, (20)

where tlv is considered given data in Eq. (19) and is subsequently related to the pressure (using Nanson’s formula [39])
by tlv = −Plv JF−T N. This boundary constraint is commonly used in cardiac mechanical models of both animals [31]
and humans [26]. However, this approach requires a priori knowledge of the intraventricular pressure throughout the
cardiac cycle. While some non-invasive techniques are under development [21,53], measurement of intraventricular
pressure is currently dependent on cardiac catheterization, limiting the application of this model to patients who
will undergo this invasive procedure. Additional complexity occurs during isovolumetric phases of the cardiac cycle,
where the changing activation of the heart muscle leads to a variable increase or decrease in pressure, while the LV
cavity volume, Vlv , remains constant. These phases can be addressed by iteratively solving for the pressure yielding
negligible volume change [31].

An alternative approach is to instead impose the volume, Vlv , of the LV cavity directly. In this approach, Vlv may
be defined based on non-invasive imaging data taken throughout the cardiac cycle. This volume driven approach can
be achieved by changing Π l

t to denote the boundary energy required to achieve the volume Vlv . It also provides a more
straightforward approach for full cycle simulations by eliminating the need to apply iterative approaches to manage
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isovolumetric phases of the heart cycle. Introducing a Lagrange multiplier, λl(t) ∈ Λl = R, the energy constraint can
be written as,

Π l
t (v, µl) := µl [V (v, t)− Vlv(t)], (21)

Al
t (u, λl; v, µl) := −λl


Γ l

0

v · JuF−T
u N dX + µl [V (u, t)− Vlv(t)], (22)

with the volume V (u, t) computed using the boundary integral over the truncated LV lumen,

V (u, t) =
1
3


Γ l

0

(u + X) · ñl dX +


Γ lv,t

(ud(t)+ X) · nb dx


. (23)

In Eq. (23) the second term gives the effective flux of volume due to motion of the top of the lumen (denoted Γ lv,t )
and can be derived from the data. In Eq. (23) we assume that ñl (the area weighted outward normal of the LV lumen
domain Ωlv) is given, replacing ñl = −JuF−T

u N in Eq. (22) using Nanson’s formula. Note, a change of variables is
performed on λl to eliminate the additional factor 1/3.

Methods of volume prescription in Eq. (22) vary in the literature. One simplification is to assume negligible base
plane motion in Eq. (23), computing the model-derived volume V in Eq. (22) as,

VSVI(u, t) = −
1
3


Γ l

0

(u + X) · JuF−T
u N dX. (24)

Here we note that this formulation requires re-orienting the heart so x · nb = 0 on the base (e.g. translation/rotation so
the base plane integral goes to zero). Another approach which avoids re-orienting the model can be derived using the
Spatial Conservation Law [54]. Noting that,

∂t V (u, t) = ∂t


Ωlv

dx =


Ωlv

∇ · ∂t u dx =


Γ l

0

∂t u · ñ dX +


Γ lv,t

vb · nb dx, (25)

under assumptions of negligible base plane velocity vb, we can compare the rate of volume change with the known
increase/decrease in volumes by replacing [V (u)− Vlv] with [VVRI(u(t))− ∂t Vlv(t)] in Eq. (22) and computing,

VVRI(u, t) = −


Γ l

0

∂t u · JuF−T
u N dX. (26)

Both VSVI and VVRI are valid when base plane motion is minimal but may introduce a potential bias when motion is
observed. However, this assumption can be easily compensated for by noting that the volume formula in Eq. (23) is
not unique, but instead exploits the divergence theorem. In general, we may compute the cavity volume based purely
on the motion of the endocardial cavity boundary. In this case, we seek a vector function g that satisfies,

V =


Ωlv

∇ · g(x) dx =


Γ l

0

g(x) · ñl dX. (27)

Assuming that the base plane maintains planarity throughout the cardiac cycle, we may select the simple form
g(x) = Ib(t)x, with Ib(t) = (1/2)(I − nb(t)⊗ nb(t)) Here, we observe

Ωlv

∇ · g(x) dx =
1
2
(I − nb ⊗ nb) :


Ωlv

∇x dx =
1
2

V (I − nb ⊗ nb) : I = V .

Moreover, due to the assumed planarity and using Divergence theorem,
Ωlv

∇ · g(x) dx =


Γ l

0

g(X + u) · ñl dX +


Γ lv,t

g(x) · nb dx =


Γ l

0

g(X + u) · ñl dX
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where we note g(x) · nb = 0 for any x. Hence, we propose to compute the model derived volume in Eq. (22) using

VV I (u, t) := −


Γ l

0

Ib(t)(u + X) · JuF−T
u N dX. (28)

3.3. Epicardial boundary conditions

The epicardial constraint on the left ventricular myocardium is arguably the least well characterized. Although
some studies have introduced a fixed pericardial surface to constrain the epicardial motion [41,40], in most cases,
the uncertainty concerning the forces applied on the epicardial wall has led to the external energy on the epicardium
being set to zero, i.e. Π e

t (v) = 0. Though the heart is surrounded by the fibrous pericardial sac and is adjacent to
the diaphram, ribcage and lungs, this assumption is based on the premise that the boundary energies coming from the
epicardium are negligible compared to the other boundary energies present.

However, similar to the base of the LV, truncation is also introduced along the LV/RV junction (RV denotes the right
ventricle). This is likely to introduce non-negligible forces on the LV heart wall, owing to both filling and contraction
in the right ventricle. To account for this missing force, we propose the following energy model on the epicardium,

Π e
t (v,µe) :=


Γ e

0

Hµe ·


v − ud(t)−

εe

2
µe


dX (29)

Ae
t (u,λe; v,µe) :=


Γ e

0

λe · w + µe · [H(u − ud(t))− εeλe] dX (30)

where λe is an added penalty variable defined on the epicardial surface (and µe the corresponding test function),
εe > 0 is a relaxation parameter and H : Ω0 → [0, 1] is a scalar function labeling the RV/LV junction (1) and
epicardial/septal surfaces (0) as derived from images (see Fig. 3). In this case, the epicardial boundary energy is
introduced to account for the potential traction stemming from right ventricular filling and contraction through the
penalty variable λe ∈ γeU defined on the entire epicardium. While forces are only required at the LV/RV junction,
extension to the entirety of Γ e

0 is performed in order to ease the need for developing complex boundary domains. For
this reason, a change of variables λe = Hλe is applied from Π e

t to Ae
t to ensure solvability of the penalty variable λe

over the entire epicardial region.

4. Discretization and solution

To simulate the LV cardiac model, the time interval (0, T ] was discretized into time points {t1, . . . , tN } starting from
end diastole and transitioning through the heart cycle. Patient-specific input data – e.g. ud , Vlv , nb – is interpolated
from imaging sources to the n = 1, . . . , N time steps. The reference domain Ω0 is then split into tetrahedral or
curvilinear hexahedral elements and displacement–pressure state variables are interpolated using quadratic–linear
Taylor–Hood elements (details on interpolations can be found in Table 3 and meshes in Table 4). Spaces Uh and Ph

(discrete displacement and pressure spaces) are constructed in the standard way, and required boundary tractions are
constructed from the trace restricted to the appropriate subset boundary (see Appendix A).

At each time point tn , we then look to find the displacement, pressure and boundary tractions/pressures
(uh, ph, {λh,k}) ∈ Uh

× Ph
× Λh such that,

Atn (uh, ph; vh, qh)+


k∈{b,l,e}

Ak
tn (uh,λh,k; vh,µh,k) = 0, ∀(vh, qh, {µh,k}) ∈ Uh

× Ph
× Λh . (31)

Note that, for ease of notation, we omit the reference to the current timestep (e.g. uh = uh(tn) in Eq. (31)). The final
form depends on the selected boundary energies, hence we leave the actual defined multipliers in Eq. (31) general.
However, for the proposed patient-specific LV model, {Ab,Al ,Ae} are defined using Eqs. (18), (22), (28) and (30).
Here, {λh,k} = {λ

0,0
b ,λ

1,0
b ,λ

0,1
b ,λb, λl ,λe} denotes the group of boundary multipliers and penalty variables introduced

on boundaries of the model and the resultant space Λh is defined as

Λh
= [R3

]
3
× γbUh

× R × γeUh
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Table 3
Summary of finite element interpolations used for the LV mechanics model. Here, W denotes the
basis matrix and U the coefficient vector for each variable. Note that the total rank of the system,
NT = 3Nu + Np + 3Nb + 3Ne + 9. Nu = no. displacement nodes, Np = no. pressure nodes,
Nb = no. base plane displacement nodes, Ne = no. epi displacement nodes.

Finite element implementation

Variable Interpolation Notation

Q2(HEX) Uu
∈ R3Nu

uh = W uUu or W u
: Ω0 → R3×3Nu

P2(TET) W u
= [ϕu

1 e1, ϕ
u
1 e2, . . . , ϕ

u
Nu

e3]

Q1(HEX) U p
∈ RNp

ph = W pU p or W p
: Ω0 → R1×Np

P1(TET) W p
= [ϕ

p
1 , . . . , ϕ

p
Np

]

[R3
]
3, Q2(SQ) Ub,k

∈ R3, Ub
∈ R3Nb

λk
h,b = W bUb,k or W b,k

: Ω0 → R3, W b
: Ω0 → R3×3Nb ,

[R3
]
3, P2(TRI) W b,k

= [Iωk
], W b

= [ϕb
1 e1, ϕ

b
1 e2, . . . , ϕ

b
Nb

e3].

(for k = {0, 0}, {1, 0}, {0, 1})

λh,l = W lU l R U l
∈ R

W l
: Ω0 → 1

Q2(SQ) U e
∈ R3Ne

λh,e = W eU e or W e
: Ω0 → R3×3Ne

P2(TRI) W e
= [ϕe

1e1, ϕ
e
1e2, . . . , ϕ

e
Ne

e3]

at each time step. In the usual way, the FEM discrete weak form problem in Eq. (31) can be equivalently written as
the root to the vector function R : RNT → RNT . Noting that, from Table 3, the state variables, boundary tractions and
pressures can be written as a weighted sum WU , with

WU =



u
p
λ

0,0
b

λ
1,0
b

λ
0,1
b

λb
λl
λe


, W =


W u,W p,W b0,0

,W b1,0
,W b0,1

,W b,W l ,W e

, U =



U u

U p

U b0,0

U b1,0

U b0,1

U b

U l

U e


.

Eq. (31) can be written concisely as a function of the unknown weights U and V of the trial and test function
coefficients, i.e.

Atn (U, V ) := Atn (W
uU u,W pU p

; W uV u,W pV p)+


k∈{b,l,e}

Ak
tn (W

uU u,W kU k
; W uV u,W k V k).

Here W k denotes a vector of all basis functions used for the k-variable (see Table 3) and similarly U k denotes the
corresponding weights. Hence, the solution U is a root of the residual vector function R given as,

R(U ) = ∇V Atn (U, V ) = 0. (32)

The general solution procedure to solve Eq. (32) is outlined in Algorithm 1. Briefly, we follow a Shamanskii–Newton
Raphson procedure introduced previously in [55] and used in [56]. Here, the Jacobian matrix, K, and its inverse
are initially computed and only recomputed when residual convergence slows. This is controlled by the parameter
γ ∈ (0, 1), which dictates the minimum relative decrease required in the residual vector function (here γ = 0.75 was
used). The Jacobian matrix itself is computed as K = ∇U R which, owing to the structure of boundary energy terms,
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Table 4
Table of sizes for different computational meshes used for idealized and patient-
specific meshes. NE = no. of elements, Nu = no. of nodes for displacement, Np = no.
of nodes for hydrostatic pressure, Nb = no. of nodes for basal penalty variable,
Ne = no. of nodes for the epicardial multiplier. E[h] and σ(h) denote mean and
standard deviation of the mesh size h.

Idealized mesh

NE E[h] ± σ(h) (Nu; Np) Nb Ne

448 8.30 ± 2.31 (4,185; 605) 289 465

Volunteer/Patient meshes

NE E[h] ± σ(h) (Nu; Np) Nb Ne

V1 17,153 3.33 ± 0.53 (27,589; 4,048) 574 4,852
V2 6,787 3.88 ± 1.09 (12,657; 2,050) 451 3,735
V3 7,795 4.34 ± 0.34 (13,499; 2,088) 543 3,372
P1 10,740 3.90 ± 0.56 (18,104; 2,747) 487 3,913
P2 17,047 3.47 ± 0.53 (28,012; 4,173) 629 5,487
P3 10,731 3.45 ± 0.67 (19,025; 2,986) 632 4,688

can be written as,

K :=


A B
C D


, A := KV u,U u ,

B :=


KV u,U p , Kb

V u,U b0,0 , Kb
V u,U b1,0 , Kb

V u,U b0,1 , Kb
V u,U b , Kl

V u,U l , Ke
V u,U e



C :=



KV p,U u

Kb
V b0,0

,U u

Kb
V b1,0

,U u

Kb
V b0,1

,U u

Kb
V b,U u

Kl
V l ,U u

Ke
V e,U u


, D :=



0 · · · · · · · · · · · · · · · 0
...

. . .
...

...
. . .

...
... 0

...
... Kb

V b,U b

...

... 0 0
0 · · · · · · · · · · · · 0 Ke

V e,U e


with Kk

V β ,Uα denoting the sub block matrix corresponding to the derivative with respect to the indicated variables,
i.e.

Kk
V β ,Uα = ∇Uα∇V β Ak

tn (U, V ),

Kk

V β ,Uα


i j

=
∂2 Ak

t (U, V )

∂Uα
i ∂V β

j

(33)

and Ak
tn denoting the individual operators Ak

tn . All model components were implemented and solved in C Heart—a
multiphysics solver developed at King’s College London [57] and used in a number of cardiac modeling projects
[58,59,10,60,61].

5. Model problems

5.1. Idealized LV model

The boundary conditions introduced in Sections 3.1–3.3 were initially tested using in silico passive inflation of
an idealized LV. The LV was modeled as a thick-walled truncated ellipsoid of physiological cardiac dimensions.
A quadratic hexahedral mesh was used to solve the discretized problem with dimensions as described in Table 4.
Consistent physiological values of end-diastolic pressure and volume were used as end-point for inflation depending
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Algorithm 1 Cardiac Mechanics Solve.

1: Given: reference state U 0.
2: Compute K = ∇U R(U 0), K−1.
3:

4: for (n = 1 : N ) do
5: Set k = 0, U n,k

= U n−1.
6: Compute R(U n,k), r = c∥R(U n,k)∥.
7:

8: while (r > T O L) do
9: Compute ∆U = −K−1R(U n,k).

10: Find r̃ = min

∥R(U n,k+1)∥, U n,k+1

= U n,k
+ α ∆U, α ∈ [0, 1]


.

11: if (r̃ > γ r or k > I T E R) then
12: Compute K = ∇U R(U n,k+1), K−1.

13: Set r = r̃ , k = k + 1.
14:

15: Set U n
= U n,k .

on the formulation of the endocardial boundary conditions. The passive parameter values were chosen to provide
physiological pressure–volume response over diastole.

5.2. In vivo LV models

In order to verify the applicability of the method to in vivo data, six models were built using volunteer and patient
MR images, following the workflow described in Fig. 4. Specifically, we processed three datasets from healthy
volunteers (V1–V3), and three datasets from patients (P1–P3) diagnosed with moderate dilated cardiomyopathy
(DCM). DCM is associated with LV remodeling, giving the chamber a more spherical shape and higher volume.
In addition, deterioration of LV function is observed in DCM. These models provide a diverse set of geometries and
modes of function for testing the boundary energy potential terms introduced.

For each case the (non-invasively) acquired images included short-axis and long-axis 2-, 3- and 4-chamber view
CINE images, which were then used to create a combined segmentation of the truncated LV at end diastole. An atlas-
based meshing strategy [62] was employed for the construction of personalized tetrahedral end-diastolic meshes.
Basic mesh characteristics are given in Table 4. In addition, the LV/RV junction region was defined through manual
segmentation of end-diastolic short-axis CINE images. The segmentation was used to provide the spatial field H in
Eq. (29) on each personalized mesh. Mesh deformations through the cardiac cycle were extracted from 3D tagged
MRI using a non-rigid registration algorithm [27] implemented in Image Registration Toolkit.3

All simulations used the end-systolic (corresponding to the lowest cavity volume) mesh configuration as the
reference state, as discussed in [10]. The volume curve for each case was computed from the data using Eq. (23).

Patient-specific parameters for the constitutive laws were obtained following the estimation procedure described
in [10], based on the best match between the data and the model results. First, in passive parameter estimation we
minimized the relative total displacement error (over the whole LV and all diastolic frames):

J p =


N

n=m
∥u(tn)− ud(tn)∥2 dt

N
n=m

∥ud(tn)∥2 dt


1/2

, (34)

with m and N denoting the end-systolic and end-diastolic time frames respectively. In order to obtain a personalized
active tension curve we also relied on patient-specific LV cavity pressure λl,d(t) through the cycle, obtained from
the normalized curve in [63], and scaled using the E/Ea estimate for the end-diastolic pressure [53] and the peak

3 http://www.doc.ic.ac.uk/˜dr/software.

http://www.doc.ic.ac.uk/%7Edr/software


L. Asner et al. / Comput. Methods Appl. Mech. Engrg. 314 (2017) 269–295 283

Fig. 4. Workflow followed for the development of patient-specific models. CINE, 3D tagged MRI (TMRI), phase contrast MRI (PCMRI) and
CENTRON estimated pressure comprise the key sources of data used in the computational model. CINE and TMRI images were registered
enabling construction of the anatomical model and subsequent motion tracking. PCMRI and TMRI were combined to estimate the E/Ea ratio
and subsequently estimated end diastolic blood pressure. CENTRON estimates were used to get peak systolic pressure, which was subsequently
used to personalize the normalized end diastolic pressure λl,d . Pressure estimates along with motion estimation (and motion derived volumes)
were incorporated into the model through the epicardial boundary condition (BC), moments + relaxed-base BC and endocardial volume BC.
Parametrization was performed by minimizing the difference between the model and data-derived displacements and cavity pressures, producing
the final patient-specific model.

systolic pressure value obtained non-invasively using the CENTRON device.4 Accuracy of the CENTRON estimate
compared to invasive central systolic pressure measures was reported to have a standard deviation of 5.9 mmHg [21],
constituting an error below 10%. Investigating the impact on the activation parameter α, we observed the maximum
value of α changed ±10.3% when the peak CENTRON estimate was modulated by ±10%.

At each time frame tn the value of the active tension α(tn) was computed as the minimizer of the combined relative
displacement and cavity pressure error functional:

Ja(tn) = 0.5
∥u(tn)− ud(tn)∥

∥ud(tn)∥
+ 0.5

|λl(tn)− λl,d(tn)|

|λl,d(tn)|
. (35)

In addition to providing the basis for model personalization, the error functionals J p and Ja allow quantification of
the accuracy of the model results over the whole truncated LV.

For a detailed description of the acquired data, image processing pipeline and the specifics of the estimation process,
as well as the reasoning behind it we refer to previous work [37,10].

6. Analysis of base plane conditions

Truncation of the heart geometry near the base plane is often applied in the literature [13,4,8,64]. As mentioned
in Section 3.1, this leads to an artificial surface over which some boundary condition must be applied. To assess the

4 http://www.centrondiagnostics.com.

http://www.centrondiagnostics.com
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Fig. 5. Boxplot of the base plane traction force magnitudes |λb,T | at node points for different base plane boundary conditions showing the mean,
standard deviation and outliers. Each simulation was inflated from reference volume to double the reference volume, with the table below each
boxplot providing the corresponding lv lumen pressure λl . a(εla , εsa) = 10−6 using displacements ud = 0 as data, b(εla , εsa) = 0 using no
penalty variable, c(εla , εsa) = 10−6, and d (εla , εsa) = 10−6 using the fixed-in-plane displacements as data ud .

common base plane conditions, outlined in Table 1, an idealized heart model was passively inflated to an end diastolic
volume (EDV). Ab

t was selected based on the applied condition as discussed in Section 3.1. Inflation was driven by
volume and no epicardial conditions were applied. For comparison, data on the base was assumed ud = 0 except in
comparisons with the fix-in-plane approach.

Fig. 5 illustrates the applied base plane tractions and the applied endocardial pressure. Fixed-base(0) required
the highest average boundary tractions as well as larger endocardial inflation pressures to achieve EDV, followed
closely by fixed-endo-ring which has the highest individual values but lower average. Relaxed-base conditions using
(εla, εsa) = (10−6, 10−6) produced a reduction in forces and endocardial pressure. This was also observed in the
pure moments (εla, εsa) = (0, 0) and moments + relaxed-base (εla, εsa) = (10−6, 10−6) conditions, which exhibited
a reduced range of forces. Interestingly, the endocardial inflation pressures increased partially, however, this can be
explained by the increased freedom allowing more in-plane dilation.

The fixed-in-plane condition produced the lowest forces and endocardial filling pressures, though still producing a
significant range in tractions due to the requirement of planarity. This was expected as the condition does not restrict
short-axis motion. Using the general dilation observed as a template for motion (ud ), moments + relaxed-base were
further able to reduce the boundary energies and tighten the range of observed forces. We note that this examination
cannot confirm which models are more or less correct, as each prescribes conditions using different assumptions.
However, it does underscore the significance this condition can have in assessing the mechanics of the heart. In
particular, these boundary tractions directly reflect the impact of these assumptions on tissue stresses, including fiber
stress which is often a quantity of interest in modeling studies.

To provide insight into base plane motion, tracking data ud extracted from the images was analyzed in all of the in
vivo cases (see Fig. 6). Significant motion was observed in the long-axis direction across both patients and volunteers
(E[Ula] ± σ(Ula) = 10.14 ± 0.66 mm). Motion was not only translatory. Stretch was also significant in the plane in
volunteers E[ℓ/ℓ0]±σ(ℓ/ℓ0) = 1.53±0.08 and in patients E[ℓ/ℓ0]±σ(ℓ/ℓ0) = 1.40±0.04. These results indicate
that non-trivial motion is present and must be integrated with the LV mechanical model.

Based on the observed motion, fixed-base(u), relaxed-base and moments + relaxed-base all provide viable
approaches to encapsulate base plane motion into the model. As both relaxed-base and moments + relaxed-base
approach fixed-base(u) as (εla, εsa) → (0, 0), we focus our attention on comparing these two methods for a range of
(εla, εsa) parameters. Table 5 presents relative error between model displacement and data for the two approaches as
well as measures of the total boundary traction for different parameter values. In this case, the diastolic phase (inflating
the heart from its end-systolic reference) for V1 was simulated for varying penalty parameters. Ab

t was selected based
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Fig. 6. Illustration of motion from ES to ED across patients/volunteers as well as quantitative measures of base plane motion. |θ | is the angular
rotation of the base plane, computed from the complex conjugate eigenvalues of F = A + I, where A is the best fit affine transformation found
by analyzing the moments {0, 0}, {1, 0}, {0, 1}. ∆A/A0 = |AE D − AE S |/AE S denotes the relative difference in area scaled by the reference.
Ula = ud · nb denotes the displacement in the base normal direction. ℓ/ℓ0 denotes the base plane stretch computed as the maximum eigenvalue ofC =FTF.

Table 5

(Left) L2(Γ b
0 ) norm difference between simulation (ur )/experiment (ud ) using relaxed-base conditions relative to simulation (umr )/experiment

(ud ) difference using moments and relaxation conditions (for V1). Relative norms are provided over a range of long-axis (εla ) and short-axis (εsa )
relaxation parameters. (Right) L2(Γ b

0 ) norm of the total base boundary traction (λr
b,T ) for relaxed (X = r ) and moments and relaxed (X = mr )

conditions for equal relaxation parameters.

∥ur
− ud∥0,Γ0

b
/∥umr

− ud∥0,Γ0
b

∥λX
b,T ∥0,Γb

0
|Γ b

0 |
−1/2

εsa \ εla 10−3 10−4 10−5 10−6 10−7 10−8 εsa , εla r mr

10−3 – – 3.45 1.57 1.52 1.52 10−3 – 530

10−4 – 13.06 3.43 1.50 1.45 1.45 10−4 155 531

10−5 18.51 11.90 3.73 1.28 1.19 1.18 10−5 384 553

10−6 23.27 17.22 6.22 1.54 1.05 1.04 10−6 712 750

10−7 26.90 20.56 8.12 2.65 1.22 1.02 10−7 1050 1056

10−8 26.77 20.61 8.19 2.73 1.61 1.09 10−8 1557 1558

on the applied condition as discussed in Section 3.1. Inflation was driven by volume and epicardial conditions were
applied.

From Table 5, we observe that as (εla, εsa) → (0, 0) the relative performance of relaxed-base and moments
+ relaxed-base approaches converge (relative error goes to 1), and the measure of tractions also converge. We note
that moments + relaxed-base always exhibits lower error and higher traction for a given penalty parameter combi-
nation. While low penalty parameters reduce errors between model and data, this comes at the expense of increased
boundary traction, which grows by a factor of 3. Moreover, the spatial coherence of the boundary traction is lost (see
Fig. 7(E)), giving large (seemingly random) variations in the applied basal traction – likely due to noise in the extracted
motion field ud . Using more relaxed (high penalty) values, extremely high errors are observed in the relaxed-base con-
dition. These are largely due to εla , which must be sufficiently low in this approach to avoid large error in the long-axis
location of the base plane. This issue is not observed in the moments + relaxed-base approach where average errors
were always <1.4 mm. Moments + relaxed-base thus enables a good match to the data without requiring low penalty
parameter values, providing greater robustness to noisy data as well as data that is potentially incomplete or sparse.

To better understand the behavior of the introduced moments + relaxed-base constraint, Fig. 7 shows the errors for
different penalty values along with plots of the boundary traction magnitude for equal εla, εsa . As mentioned, errors
remain below 1.4 mm for all parameters. Observing the trend as the penalty parameters are reduced, we see both
amplification and incoherence of the boundary traction. Additionally, maximal traction forces for E–F exceed 50 kPa
and are significantly larger than those seen in A–D. For high penalty, we note that the distribution of basal forces
is minimal, while in C–D a general transmural trend becomes dominant, which can be explained by the significant
transmural variation in myocardial fiber structure.
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Fig. 7. (Left) Quantification of mean base plane difference between simulation and data for V1 over a range of long-axis (εla ) and short-axis (εsa )
relaxation parameters. (Right) Magnitude of the total boundary traction (λb,T ) for combinations of relaxation parameters (A–F) marked in the box
plot on the left. A variable magnitude was applied to illustrate boundary tractions with (A–C, X = 1), (D–E, X = 2), (F, X = 4).

Based on these results, (εla, εsa) can be used to balance displacement accuracy while maintaining plausible
tractions. We note that the values of (εla, εsa) are relative to the passive stiffness values, which in this case are
∼O(103). This raises interesting questions during the systolic phase, where stiffness increases roughly by two orders
of magnitude due to muscle contraction. As the truncation leads to a cut surface through the myocardial muscle, forces
across the surface are similarly likely to increase during the systolic phase. Hence, we suggest that εla,sa ≈ 10−3/δ(t),
with δ(t) = max{a, a f , α(t)} giving the rough scaling of the dominant myocardial stresses.

7. Accuracy of endocardial boundary conditions

The endocardial boundary conditions introduced in Section 3.2 and summarized in Table 2 were applied and
compared with respect to their accuracy on the in silico and in vivo model problems presented in Section 5. The
methods were compared over passive filling diastolic simulations, whereby the cavity volume of the inflated ventricle
was computed and the Lagrange multiplier λl provided the intraventricular pressure. The accuracy of the simplified
volume inflation (SVI, Eq. (24)), volume rate inflation (VRI, Eq. (26)) and volume inflation (VI, Eq. (28)) boundary
conditions was assessed by comparing their volume and pressure outcomes with the ground truth results of the
commonly used pressure inflation (PI, Eq. (19)) approach.

The in silico tests were used to examine the assumption that the base motion has a negligible effect on cavity volume
calculation. Accordingly, passive inflation simulations were performed having a fixed base as well as imposing a 5 mm
displacement of the basal plane along the long axis direction. In both cases, a zero traction condition was enforced on
the epicardial wall and the base displacement was enforced as a Dirichlet condition.

In the case of the fixed base (Fig. 8) the three approaches behaved in a similar manner, producing equivalent results
to the ground truth PI simulation. In fact, the maximum percentage volume and pressure error was less than 10−4%
for the VI and SVI methods, while the maximum percentage error in volume and pressure was around 0.1% and 1%,
respectively, for the VRI approach. This increase in error in the VRI approach resulted from the temporal discretization
which, unlike the other methods, is an additional source of error. In agreement with the definitions of the SVI and VRI
approaches which are based on the assumption of negligible basal motion, all methods exhibited consistent behavior
over fixed-base inflation simulations. These tests confirmed the equivalence of all approaches under minimal basal
motion, allowing their reliable usage for volume calculation in LV models with negligible base motion.

However, when simulations included basal motion the accuracy of the SVI and VRI deteriorated (Fig. 9).
Specifically, the error in volume increased to 1.3% and 3.7% for the SVI and VRI respectively. Interestingly, the
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Fig. 8. Comparison of the endocardial boundary conditions over diastolic filling model problem with a fixed base. (Left) Pressure–volume plots
of the pressure inflation (PI), simplified volume inflation (SVI), volume rate inflation (VRI), and volume inflation (VI) simulations. Error between
(Top right) volume and (Bottom right) pressure (λl ) of the SVI, VRI, VI and ground truth PI simulations over time.

Fig. 9. Comparison of the endocardial boundary conditions over diastolic filling model problem, with the base moving along the long axis direction.
(Left) Pressure–volume plots of the pressure inflation (PI), simplified volume inflation (SVI), volume rate inflation (VRI), and volume inflation
(VI) simulations. Error between (Top right) volume and (Bottom right) pressure (λl ) of the SVI, VRI, VI and ground truth PI simulations over time.

effect on pressure was even more pronounced, with errors of 10.3% and 33% for the SVI and VRI boundary conditions
respectively. Nevertheless, the accuracy of the VI approach was preserved, producing errors smaller than 10−4% in
both volume and pressure. The relatively small basal motion (5 mm) imposed in these tests was adequate to cause a
substantial difference in accuracy between the methods. Considering that this motion was modest compared to basal
motion observed in vivo (Fig. 6), the inaccuracies introduced by the SVI and VRI in pressure and volume are likely to
be amplified in vivo.
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Fig. 10. Accuracy of endocardial boundary conditions in an in vivo test using data from V3. (Left) Pressure–volume plots of the pressure inflation
(PI), simplified volume inflation (SVI), volume rate inflation (VRI), and volume inflation (VI) simulations. Error between (Top right) volume and
(Bottom right) pressure (λl ) of the SVI, VRI, VI and ground truth PI simulations over time.

In order to assess the actual impact of these inaccuracies in vivo – where the basal motion is typically not only more
substantial but also non-axisymmetric as discussed in Section 6 – the endocardial boundary conditions were applied
on a test using in vivo data from case V3 (Section 5.2). Within these simulations the prescribed volume was derived
from tracked 3D tagged MRI data and the cavity pressure was assumed to be known. In addition, the base motion was
imposed through a relaxed constraint (Eq. (14)) and an RV-epicardial boundary condition (Eq. (29)) was applied.

Based on Fig. 10 the base motion has a significant effect on the LV volume computation, leading the SVI and
VRI boundary conditions – which consider this effect to be negligible – to introduce large volume errors (maximum
percentage error 7.2% and 12.2%, respectively). Inaccuracies in volumes were also propagated in the intraventricular
pressure, with errors of 50% and 93% for the SVI and VRI. It is worth noting the amplification in both volume and
pressure errors compared to the in silico tests, which likely resulted from incorporating patient-specific geometry and
motion as opposed to the idealized geometry and axisymmetric motion in the in silico problem.

The in silico and in vivo tests performed highlight that the base motion has a significant effect on the overall
volume calculation, leading to marked volume errors when neglected. In addition, volume errors lead to notable errors
in cavity pressure and are also likely to introduce bias in other metrics including stiffness estimates and wall stresses.
Considering the substantial base motion (Fig. 6) observed in in vivo cases, the VI approach should be taken to ensure
accurate cavity volumes and physiological model outcomes.

8. Significance of epicardial boundary conditions

Left-ventricular mechanics models commonly consider an isolated LV, neglecting the effect of the RV on
myocardial motion and dynamics, as mentioned in Section 3.3. However, preliminary in vivo tests which assumed
no epicardial tractions produced relative large displacement errors (Fig. 11). When compared against CINE images,
all in vivo models exhibited a tendency to shift away from the RV during diastolic filling (representative example in
Fig. 11). This consistency in model behavior and deviation from images provided evidence of non-negligible forces
acting on the epicardial wall. Although these forces are potentially caused from multiple sources as discussed in
Section 3.3, the RV is likely producing a traction on the region of attachment to the LV.

In order to account for the traction the RV is exerting on the LV/RV junction during diastole, the RV epicardial
boundary condition in Eq. (29) was employed in in vivo diastolic simulations. To assess the significance of considering
these forces, diastolic simulations were performed for all cases with and without the RV epicardial boundary condition.
Throughout these tests the LV was inflated to the end-diastolic volume using the VI approach and base motion was
applied using moments + relaxed-base approach.
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Fig. 11. (Top) Tracked (white mesh lines) and simulated end-diastolic state with (blue mesh volume) and without (red mesh lines) an RV epicardial
boundary condition (RV BC) for V3, in long-axis and short-axis views. (Bottom) Relative total displacement error in diastole J p for simulations
with and without the RV BC. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 6
Relative total errors in diastole and systole for the in vivo models, illustrating the accuracy of the
simulations as compared to the deformations extracted from 3D tagged images and the pressures based
on the scaled empirical curve [63].

V1 V2 V3 P1 P2 P3

J p , % 22 29 23 33 26 18
minsystole Ja(t), % 11 9 12 16 14 12
maxsystole Ja(t), % 19 17 19 21 18 13

Based on the notable reduction in relative displacement errors in Fig. 11 (the average error decreased from
approximately 48% to 25%) we can deduce the significant improvement in model accuracy when the RV forces are
considered. Direct comparisons of simulated results on CINE MRI images (Fig. 11) suggest that the forces exerted
on the LV/RV junction when employing the RV epicardial boundary condition restrict the simulated deformation on a
more anatomically accurate position in space, leading to the substantial reduction in model error observed.

The proposed epicardial boundary condition is relatively easy to impose, not requiring additional data or
introducing further assumptions about the RV function or other organs, yet it is capable of reducing model errors
to approximately half of the original values.

9. Patient-specific full-cycle simulations using in vivo data

As a verification of the model’s utility applied to in vivo data, we simulated the full cardiac cycle for six volunteer
and patient cases. The boundary conditions were chosen so that a good combination of accuracy in displacements
and physiological pressures in the tissue was achieved. Specifically, the moments + relaxed-base condition with
(εla, εsa) = (10−6, 10−6) in the passive stage were applied on Γ b

0 , the volume inflation based on VV I was prescribed
on Γ l

0, and the epicardial condition was used with εe = 5 · 10−6 in the passive stage. The values of the relaxation
parameters were scaled consistently with the active tension, as suggested in Section 6: εla = εsa = 10−3/δ(t) and
εe = 5 · 10−3/δ(t), where δ(t) = max{103, α(t)}. The results were obtained using the passive parameters and active
tension curves presented in Fig. 12.
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Fig. 12. Patient-specific inputs for the idealized (IM) and the in vivo models, obtained from minimizing total relative errors between the data and
the model. (Left) Numeric values for passive and active parameters: a and a f are the isotropic and the fiber stiffnesses in the passive constitutive
law, α̂ = maxt α(t) is the peak active tension, and τ̂ = arg maxα(t) · H R/60 is the normalized time in the cycle where this peak is achieved, H R
being the heart rate in a given case. The remaining parameters of the reduced Holzapfel–Ogden law b = b f = 5.0 were chosen to match empirical
data on diastolic pressure–volume behavior [37]. (Right) Full-cycle patient-specific active tension curves α(τ) linearly interpolated between the
image frames available. All cycles are normalized to 1 s duration with τ = t · H R/60. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 13. Illustration of simulated deformation over the cardiac cycle for V3. Mesh volume is colored based on the magnitude of the displacement
error which is given in meters. The blue circle on the PV loop in each image corresponds to the presented cardiac phase. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Mesh deformations over the full cycle are shown together with short-axis cine images for one of the cases, V3, in
Fig. 13. The values of the relative error functionals for all cases are given in Table 6, with diastolic metrics varying
around 20%–30%, and systolic metrics around 10%–20%. In Fig. 14 we compare the pressure–volume loops extracted
from the data to those obtained from the simulations.

In addition to qualitative assessment of the results, such as that provided by a specific cut plane in Fig. 11, the
proposed approach allows a meaningful direct comparison between the data and the simulation results over the whole
of the truncated LV domain. The boundary conditions ensure that the motion of the model is not simplified to the
extent that it can no longer be related to patient data: e.g. the base plane does not remain stationary and cut through
the ventricle or the atrium, and the ventricle does not relax away from the RV and outside the pericardium. The
one-to-one comparison that we perform is not commonly seen in modeling results, but its wider use would provide
a quantitative measure of model accuracy which can serve as basis for comparison between cases and inform model
selection process.

An important feature of the proposed model is its robustness to the data. Figs. 6 and 14 illustrate some of the vari-
ability observed in vivo: even within the cohorts (healthy volunteers vs DCM patients) the differences can be dramatic.
These are often overlooked in idealized models, and some of the challenges simply do not arise before multiple real
cases are processed. As an example, subjects V2 and P1 do not exhibit any rotation of the base between end systole and
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(a) Volunteers. (b) Patients.

Fig. 14. (LV cavity) pressure–volume loops for the in vivo models illustrating model behavior over most of the duration of the cardiac cycle. The
data is represented by solid lines—the loops are not complete due to the fact that (prospectively ECG triggered) 3D tagged images usually do not
cover the whole cardiac cycle. The dashed lines connect the last and the first available data points.

end diastole, but disallowing it in the model would introduce a bias in simulation results for V3 and P2. The range of
cavity volumes and cardiac outputs (differences between end-diastolic and end-systolic volumes) as well as anatomical
features such as wall thickness and ventricle shape (which is significantly different in DCM compared to health) have
a strong effect on simulation results and performance, as well as the errors Ja and J p. Our ability to produce consis-
tently operational models for all of these cases is an important step in taking modeling further towards translation.

These results illustrate the capacity to develop high-fidelity computational models with dynamics that closely
follow the motion observed from medical images. The result is a diagnostic model, capable of providing or inferring
a link between observed motion and the kinetics active in a patients heart. Quantities such as stiffness, active
contraction and work – all of which have potential clinical significance – can be quantified from such models. Another
important scope is for prognostic models which not only characterize what is, but provide an estimate of what will
be. Specifically, prognostic models are desirable in the process of therapy planning and device assessment. Beyond
requiring a model with sufficient robustness to provide some predictive insight, prognostic models have the added
challenge of requiring appropriate boundary conditions that can adapt to reflect the change in function observed
in the heart. While acute changes may be more closely related to observed motion characteristics, these may be
inappropriate long-term. For example, prescribing transient LV lumen volume may be inappropriate when considering
therapy response. Use of Windkessel models (for example in [8]) addresses this by allowing for adaptability in the
predicted volumetric transient. However, these predictions are often acute and may neglect cardiovascular regulatory
mechanisms necessary for gauging long-term response. Proper development and assessment of predictive boundary
conditions remains an important and only partially addressed challenge.

10. Conclusions

This work investigates the role of boundary conditions in personalized models of left-ventricular mechanics and
introduces new data-driven boundary energy terms. The proposed boundary conditions are devised so that accuracy of
simulation results as compared to the data is balanced with coherence in tractions on the surfaces of the myocardium.
The evaluation of the boundary conditions is performed using an idealized in silico model as well as six in vivo models
of healthy and diseased hearts. The use of data-derived motion in prescribing base and epicardial conditions allows
a significant improvement in model accuracy, while relaxation needs to be applied to prevent the associated forces
from becoming non-physiological. Endocardial conditions are shown to be sensitive to the assumptions regarding
base motion, which need to be considered in the context of realistic cardiac behavior. In vivo, model fidelity is
assessed via L2-norms of displacement errors between simulation results and data from non-invasive imaging. Full-
cycle simulations of the in vivo cases that employ the model with the proposed boundary conditions show quantitative
behavior observed in the data, and account for non-trivial differences between cases due to anatomy, motion and
function.
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Appendix A. Function spaces for the cardiac mechanical system

In this section, we briefly outline the spaces used for describing the variables used in the energy potential
minimization as well as the FEM weak form. U and P denote the space of admissible displacement and pressure
solutions at any instant in time t ∈ [0, T ] ensuring the internal energy potential Π int

t : U × P → R (at each point
in time t ∈ [0, T ]) and its directional derivatives are bounded. Considering the internal energy potential defined in
Eq. (5), we see that

Π int
t (v, q) ≤ ∥ψ(Fv, t)∥0,1 + ∥q∥0,2


∥Jv∥0,2 + |Ω |

1/2

,

while the directional derivative w.r.to D(u,p) can be bounded by,

At (u, p; v, q) ≤


∥∇Fψ(Fu,X, t)∥0,2 + 3∥p∥0,2∥∇F Ju∥0,4


∥v∥1,4 +


∥Ju∥0,2 + |Ω |

1/2


∥q∥0,2.

Hence, we can write the general space of admissible solutions U and P (at each point in time t ∈ [0, T ]),

U =


v ∈ W1,4(Ω0)

 ψ ∈ L1(Ω0), ∇Fψ ∈ [L2(Ω0)]
3×3, Jv ∈ L2(Ω0), ∇F Jv ∈ [L4(Ω0)]

3×3


P = L2(Ω0)

with W1,4(Ω0) = [W 1,4(Ω0)]
3 and L p(Ω0) denoting the usual Sobolev and Banach spaces, respectively [70]. The

final space U depends on the form of the strain energy function ψ , which is often nonlinearly dependent on the
deformation gradient (itself linearly dependent on the displacement gradient).

It remains only to verify that U is sufficient for the boundary terms and to identify the associated spaces for our
Lagrange multipliers and penalty variables. Considering the introduced boundary energy terms, Lagrange multipliers
in Eqs. (18), (22), (30) are largely simple scalar or vectors which are constant over their respective boundaries. We
note that here we assume the area weighted normal ñ in Eq. (23) are given data in L2(Γ l

0).
The exceptions occur with both λb and λe which provide more complex, spatially varying boundary forces. In both

of these cases, the boundary multipliers must be in L2(Γ k
0 ) restricted to their boundaries (k = b or e) owing to the

penalty formulations seen in Eqs. (18) and (30). In this case,

Π b
t (v, {µb}) =


m

µm
b · Mm[v − ud(t)] +


Γ b

0

µb ·


v − ud −

1
2
Σµb


dX

≤


m

Cm
b |µm

b | + ∥µb∥0,Γ b
0


∥v∥0,Γ b

0
+ ∥ud(t)∥0,Γ b

0


+ Cb∥µb∥

2
0,Γ b

0

Π e
t (v,µe) =


Γ e

0

Hµe ·


v − ud(t)−

εe

2
µe


dX

≤ ∥µe∥0,Γ e
0


∥v∥0,Γ e

0
+ ∥ud(t)∥0,Γ e

0


+
εe

2
∥µe∥

2
0,Γ b

0

with Cm
b = |Mm[ωm

]|
1/2 (for m = {0, 0}, {1, 0}, {0, 1}) being the norm of different moment weights and Cb =

1
2 max(εla, εsa) being half the maximum eigenvalue of the penalty matrix Σ . Owing to the Trace theorem, bounded-
ness of these boundary terms is ensured by the space U (which is more regular). A similar inequality can be derived
for Ab

t and Ae
t yielding the same restrictions on the smoothness of U.
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For ease, in this paper we have assumed that the spaces of λb and λe are actually smoother. This is sensible in the
case of λb as the boundary is actually a cut through the myocardium itself. Similarly, the epicardial boundary is also
cut along the LV/RV junction though this can be modeled as discontinuous moving from the junction to the septal
boundary or epicardium. Here, however, we have assumed that as smooth gradation in the traction is present. As a
result, we take both variables from their respective trace spaces, i.e.

γkU = {µk ∈ L2(Γ k
0 )|µk = v on Γ k

0 , for some v ∈ U}.

Extending these spaces into the discrete setting of Section 4, the finite element approximation spaces Uh and Ph

are built in the usual way. Similarly, the trace spaces are designed by selecting representative functions from the
boundaries spaces of Uh .
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