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ABSTRACT

Cardiometabolic disease, comprising cardiovascular diseases, type 2 diabetes, and their associated risk factors includingmetabolic syndrome and obesity, is

the leading cause of death worldwide. Plant foods are rich sources of different groups of bioactive compounds, which might not be essential throughout

life but promote health and well-being by reducing the risk of age-related chronic diseases. However, heterogeneity in the responsiveness to bioactive

compounds can obscure associations between their intakes and health outcomes, resulting in the hiding of health benefits for specific population groups

and thereby limiting our knowledge of the exact role of the different bioactive compounds for health. The heterogeneity in response suggests that some

individuals may benefit more than others from the health effects of these bioactive compounds. However, to date, this interindividual variation after

habitual intake of plant bioactive compounds has been little explored. The aim of this review is to provide an overview of the existing research that has

revealed interindividual variability in the responsiveness to plant-food bioactive compound consumption regarding cardiometabolic outcomes, focusing

on polyphenols, caffeine and plant sterols, and the identified potential determinants involved. Adv Nutr 2017;8:558–70.

Keywords: plant-food bioactives, interindividual variability, cardiometabolic health, determinants of interindividual variability, biological responsiveness

Introduction: Plant-Food Bioactive Compounds
and Cardiometabolic Health
Cardiometabolic diseases encompass a cluster of cardiovascular,
metabolic, prothrombotic, and inflammatory abnormalities that

are recognized as disease states by the American Society of
Endocrinology, the National Cholesterol Education Program,
and the WHO (1). Food intake plays a key role in reducing
the risk of cardiometabolic diseases, with data suggesting
that >30% of all deaths could be prevented through dietary
changes, particularly by increased consumption of plant-
based foods (2). Plant foods are rich sources of fiber and es-
sential micronutrients, such as vitamins and minerals. They
are also sources of a large group of bioactive compounds,
which might not be essential throughout life or cause clini-
cally manifested deficiencies, but when consumed with the
diet, these phytochemicals may promote health and well-
being in adulthood and the elderly population by reducing
the risk of age-related chronic diseases (3). The major cate-
gories of dietary phytochemicals include polyphenols, such
as flavonoids or phenolic acids, carotenoids, or plant sterols.

Abbreviations used: ABC, ATP-binding cassette heterodimeric transporter; ADME, absorption, dis-

tribution, metabolism, and excretion; AIX, augmentation index; CF, cocoa flavanol; CAD, coronary

artery disease; COMT, catechol-O-methyltransferase; CRP, C-reactive protein; CVD, cardiovascular

disease; CYP1A2, cytochrome P450 1A2; CYP7A1, cholesterol 7 a-hydroxylase; DBP, diastolic blood
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Growing evidence from mechanistic studies, clinical trials,
and prospective cohort studies suggest that these bioactive
compounds may help in promoting health when consumed
as part of the habitual diet. Polyphenols are secondary metab-
olites of plants and are found in fruits, vegetables, and their
products (4). Carotenoids, including b-carotene, lycopene,
lutein, and zeaxanthin, are phytochemicals found in many
fruits and vegetables and account for the brilliant colors of
these foods (5). Phytosterols are cholesterol-like molecules
found in all plant foods, with the highest concentrations oc-
curring in vegetable oils, but they can also be found in nuts,
breads, or whole vegetables (6). Furthermore, caffeine ranks
as one of the most commonly consumed dietary micronutri-
ents; it is found in coffee beans, cacao beans, kola nuts, gua-
rana berries, and tea leaves including yerba mate (7).

Accumulating evidence from cohort studies suggests that an
increased intake of polyphenols, which are the most abundant
category of phytochemicals present in our foods, may reduce
the risk of cardiovascular diseases (CVDs) (8). This evidence
is supported by animal and clinical studies that have reported
beneficial effects of the intake of polyphenol-rich foods or pu-
rified compounds on intermediate risk factors for CVD, in-
cluding LDL cholesterol, blood pressure, and endothelial
function (9–12). The most convincing clinical evidence for
the cardioprotective benefits of the consumption of dietary
polyphenols relates to their observed beneficial effect on endo-
thelial function (13, 14). Health-protective effects have also
been described for other phytochemicals. For example, the
consumption of suitable doses of plant sterols has repeatedly
been shown in randomized controlled trials (RCTs) to re-
duce LDL cholesterol concentrations and thus reduce risk
of subsequent CVD (15). Another phytochemical-rich source
is coffee, one of the most widely consumed beverages world-
wide. Coffee consumption may reduce the risk of type 2 dia-
betes mellitus and hypertension, as well as other conditions
associated with cardiovascular risk (16), and epidemiological
studies suggest that regular coffee drinkers have reduced mor-
tality, predominantly as a result of their reduced risk of devel-
oping CVD (17).

The bioavailability and tissue distribution of phytochemicals
in humans are key factors that need to be clearly established and
associated with their biological effects. The fate of phytochem-
icals in the body, including absorption, metabolism, and distri-
bution, may vary according to the categories of phytochemicals.
Ingested polyphenols can be absorbed from the stomach or the
small intestine and can undergo conjugation in the intestine and
liver to give methyl, glucuronide, and sulfate derivatives (phase
II metabolites) (11). Native polyphenols can also break down,
producing smaller phenolic acid derivatives, such as protocate-
chuic, vanillic, or ferulic acid. These phenolic acids can also un-
dergo phase I and phase II metabolism in the liver (18). The
bioavailability of plant-food bioactive compounds is complex
and presents interindividual variation (19, 20); however, the ex-
tent of such variability and the major determinants involved are
currently not established. An example of interindividual varia-
tion in themetabolism of plant bioactive compounds is the con-
version by the gut microbiota of the soy isoflavone precursors,

daidzin and daidzein, to themicrobial-derivedmetabolite equol.
After a soy challenge, 20–30% of Western (21) and 50–60%
of Asian populations (22) produce equol. The bacteria involved
in the conversion have been identified, but the determinants
that govern the daidzein-metabolizing phenotype still have
not been fully elucidated. The gut microbiota has also a key
role in the metabolism of other plant-food bioactive com-
pounds, such as lignans and ellagitannins (23, 24). Genetic
polymorphisms can also contribute to the interindividual
variation in bioavailability. For example, the role of genetic
polymorphisms in the interindividual variability in bioa-
vailability of caffeine was demonstrated. Caffeine is mainly
metabolized by cytochrome P450 1A2 (CYP1A2) in the
liver, and subjects with the CYP1A2*1F allele variant (asso-
ciated with a low enzyme inducibility) are considered slow
caffeine metabolizers compared with the rapid caffeine me-
tabolizers carrying the wild-type allele (25). Other factors
such as age, sex, and dietary habits may affect the bioavail-
ability of plant-food bioactive compounds. For example,
sex differences in the glucuronidation of resveratrol, a poly-
phenol present in grapes and wine, have recently been
observed, which may be explained by sex-specific uridine
59-diphospho–glucuronosyltransferase isoenzyme expres-
sion profiles regulated by sex hormones (26).

The existence of an interindividual variability in the bioa-
vailability of plant-food bioactive compounds suggests that
there could also exist an interindividual variability in biological
response to the consumption of these compounds. Heteroge-
neity in the responsiveness to plant bioactive compounds can
obscure associations between habitual intakes and health out-
comes, resulting in a potential masking of health benefits for
specific population groups and thereby limiting our knowledge
of the role of the different bioactives for health. Improving our
knowledge of the factors, both genetic and nongenetic [such as
age, sex, or (epi)genotype], that influence whether plant-food
bioactive compounds are more or less effective in individuals
will be invaluable to progress in the development of effective
and innovative solutions leading to health improvements
(27). However, to date, this interindividual variation in efficacy
of plant-food bioactive compounds to modulate physiological
outcomes has been little explored. The aim of this review is to
provide an overview of the existing studies, both prospective
and clinical trials, that has revealed interindividual variability
in the responsiveness to the consumption of major plant-
food bioactive compounds present in our diet: polyphenols,
caffeine, and plant sterols. This review focuses on interindivid-
ual variability regarding cardiometabolic outcomes and dis-
closes the potential determinants involved.

Interindividual Variability in Biomarkers of
Cardiometabolic Health and Underlying
Determinants after the Consumption of
Plant-Food Bioactive Compounds Identified
from Prospective Studies
We identified 6 prospective studies addressing the impact of
interindividual variability in biomarkers of cardiometabolic
health after habitual intake of a range of different plant
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bioactive compounds, including coffee and soy (Table 1).
One area of particular interest relates to the microbially de-
rived soy isoflavone metabolite, equol. In one prospective
study, which examined associations between urinary equol
excretion, serum lipids, and carotid intima thickness
(IMT) in 572 Chinese participants, 25% were equol ex-
creters on their usual diet. In relation to other characteris-
tics, the number of equol producers was similar between
men and women, and there was no significant difference be-
tween equol-producer phenotype and age, dietary intakes,
blood pressure, or BMI (in kg/m2). Equol excreters had sig-
nificantly lower TG and IMT levels compared to non-equol
excreters (46). Although there was no association between
soy isoflavone intake and serum lipids or IMT in the non–
equol excreters, equol excreters within the highest quartile
of intake (>5.4 mg/d) had significantly lower IMT and
higher HDL cholesterol concentrations than those in the
lowest quartile of soy intake. Although this was an Asian
population, habitual intakes of isoflavones were low,
with a mean intake of 13 mg/d in both the equol- and
non–equol-producer groups (46). The findings are therefore
intriguing because data from the extensive literature on soy-
intervention studies suggest that an isoflavone intake
>25 mg/d is required for any biological or clinical effect (47).
The lack of an effect of isoflavone intake on CVD risk in
women from the EPIC (European Prospective Investigation
into Cancer and Nutrition) population was therefore not sur-
prising, given that the median intake of isoflavones was only
0.4 mg/d. This study did not assess equol-producer status,
and there was no difference in the association between habit-
ual isoflavone intake and CVD risk when stratified by smok-
ing (ever compared with never), BMI, hormone replacement
therapy use, age at intake, and hypercholesterolemia (48).
This prospective study also examined associations between
habitual lignan intakes and CVD risk in women and observed
no association with intake (median intake was low, 1 mg/d),
although the authors suggested a decreased risk of developing
CVD in participants who were past smokers and had a higher
habitual lignan intake. Therefore, available data on soy and
the microbially derived metabolite equol are very limited.
The impact of the equol-producer phenotype requires further
investigation in population groups in which there is a wide
variability in intakes in order to more carefully examine the
magnitude of interindividual variability in response to bio-
markers of cardiometabolic health and particularly the im-
portance of the microbially derived metabolite equol.

Four prospective studies have examined the impact of
several factors in explaining the association between coffee
intake and CVD risk (19, 49, 50). Whether polymorphism
in the CYP1A2 gene, coding for the main enzyme responsi-
ble for the metabolism of caffeine, modulates the association
between coffee intake and risk of CVD and related bio-
markers was addressed in 3 studies. In one study, the risk
of hypertension associated with coffee intake was shown
to vary according to CYP1A2 genotype, with carriers of
the slow-metabolism *1F allele (59% of the 323 young, hy-
pertensive participants, aged 18–45 y) at increased risk with

higher coffee intake but not participants with the fast-
metabolism *1A/*1A genotype (50). In a more recent study
from this same hypertensive cohort, the association between
coffee intake and impaired fasting glucose was stronger in
carriers of the *1F variant, with the highest risk in heavy
drinkers [$4 cups/d (400 mL/d)] (51). In relation to myo-
cardial infarction, in a case-control study coffee intake was
only associated with an increased risk of nonfatal myocardial
infarction among participants with slow-caffeine metabo-
lism (*1F variant) (19). Only one study examined whether
the relation between coffee intake and incident of coronary
artery disease (CAD) is dependent on the metabolism of cat-
echolamines, specifically polymorphisms of the catechol-O-
methyltransferase (COMT) gene. In a cohort of 773 men,
the relation between consumption of caffeinated coffee
and the incidence of fatal and nonfatal CAD was dependent
on COMT genotype. In men who were either homozygous
for the high-activity COMT allele or heterozygous, substan-
tial coffee intake did not increase the incidence of acute cor-
onary events. However, for those who were homozygous for
the low-activity COMT allele, heavy coffee consumption
(median intake, 0.94 L/d) was associated with a higher inci-
dence of acute coronary events, and the relative CAD inci-
dence was >200% higher among drinkers of >6.5 cups of
coffee/d (815.5 mL coffee/d) after multivariable adjustment
(49). Taken together, these few prospective studies have
shown that there is interindividual variability in response
to the consumption of plant-food bioactive compounds
and that individuals do not equally benefit from the con-
sumption of these phytochemicals. Different determinants,
such as gut microbiota, genetic polymorphism, or smoking,
have been suggested to be involved in these between-subject
variations. It should also be noted that coffee is a source of
not only caffeine, the amount of which can vary depending
on brewing (52), but also of other micronutrients, such as
chlorogenic acid, which has been shown to mediate the
blood pressure rise caused by coffee intake (35).

Determinants of Interindividual Variability in
Biomarkers of Cardiometabolic Health after the
Consumption of Plant-Food Bioactive
Compounds Identified from Clinical Trials
Impact of age on effects of plant-food bioactive
compounds
Age is the strongest independent cardiovascular risk factor
for CVD, as indicated in most methods of risk scoring,
such as the Framingham risk score or the European Society
of Cardiology SCORE (Systematic Coronary Risk Evalua-
tion) system (29, 53). Aging is also associated with increased
vascular stiffness, endothelial dysfunction, and isolated sys-
tolic hypertension (28, 31, 54). All these age-associated
changes in the vascular system are known to have an effect
on the bioactivity of some drugs, such as verapamil, albu-
terol, or benzodiazepines (32), and potentially could also
have an effect on the bioactivity of plant-food bioactives,
which undergo the same conjugation pathways when
absorbed.
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To date, few studies have examined the effects of age on the
cardiometabolic effects of food bioactive compounds (30, 55,
56) (Table 1). Three studies have investigated age-dependent
effects of cocoa flavanols (CFs) on vascular function (30, 34,
56), with conflicting results. However, only one of them
was a controlled study specifically designed to investigate the
effects of flavanols in the context of the aged cardiovascular sys-
tem. A double-blind RCT (56) demonstrated that consumption
of a flavanol-rich drink (450 mg CF) 2 times/d for 2 wk re-
versed age-related increases in blood pressure together with
vascular stiffness in healthy elderly men. CF-intake–associated
improvements in the compliance of large arteries were comple-
mented by a decrease in pulse wave velocity (PWV) and aortic
augmentation of systolic blood pressure (SBP). Endothelial
function in large conduit arteries was also significantly im-
proved in healthy young and elderly individuals. These benefi-
cial effects were associated with an improved dilatory capacity
of resistance arteries, lower diastolic blood pressure (DBP), and
increases in microcirculatory perfusion and RBC deformabi-
lity. Cardiac output was not affected by CFs. Importantly, de-
spite age-dependent differences in baseline flow-mediated
dilatation (FMD), PWV, and DBP, the magnitude of the
changes in the vascular response to CFs was not significantly
different between the young and the elderly. In contrast, flava-
nol consumption improved only SBP and the augmentation in-
dex (AIX) in the elderly group (changes of SBP of26 mm Hg
and AIX of 27%). This is probably because SBP is slightly
higher in the elderly, mainly caused by stiffer arteries. Plasma
concentrations of flavanol metabolites were not significantly
different between young and elderly individuals, suggesting
that differences in bioavailability could not explain the differ-
ences observed in biological responses. Of note, endothelial
dysfunction is a well-established response to cardiovascular
risk factors and precedes the development of atherosclero-
sis. The measurement of ultrasound-based endothelium-
dependent FMD in the brachial artery is the more widely
used noninvasive measure of endothelial function and
constitutes a clinical surrogate marker of vascular health
(33). This technique consists of assessing the change in the di-
ameter of the brachial artery after the increase in shear stress
induced by a reactive hyperemia, with the degree of dilatation
reflecting arterial endothelial NO release (40). The aortic AIX is
closely related to wave reflections and constitutes a surrogate
marker of arterial stiffness (39). A heightened aortic AIX is as-
sociated with an elevated risk of cardiovascular events.

In agreement with previous data, a recent study showed that
the absorption, distribution, metabolism, and excretion
(ADME) of CFs was not significantly different between young
and elderly healthy subjects (mean 6 SD age, 26 6 6 and
70 6 4 y, respectively; n = 40) after consumption of a similar
amount of CFs (400 mg CFs, 5.3 mg CFs/kg body weight)
(38). However, small but significant differences in metabolism
were reported at a higher intake amount of CFs (800 mg CFs,
10.7 mg CFs/kg body weight), with higher glucuronidation,
lowermethylsulfation, and lower urinary excretion of gut micro-
bial g-valerolactone metabolites observed in the elderly. This
observation suggests that dose-response studies covering the

amounts of bioactive intake that can be achievable through a
normal diet are necessary when investigating the interindividual
variability in the ADME of plant-food bioactive compounds.

A study also investigated whether the consumption of a
flavanol-rich cocoa drink (821 mg CFs) could improve blood
pressure and endothelial function in healthy young and elderly
men (age 31 6 2.7 and 61 6 1.9 y, respectively) (55). No
changes in blood pressure or endothelial function (measured
by peripheral arterial tonometry) were observed in any group
after 4–6 d of daily CF consumption. However, an effect on the
last day of the study was seen in both groups after 90–180 min
of CF consumption, and when compared with baseline values
of day 1, the effect was higher for the elderly volunteers. Pulse
wave analysis showed a similar pattern, with higher vascular
responses in the elderly after acute consumption. The authors
attributed these effects to an increase in NO production be-
cause responses to the endothelial NO synthase inhibitor
L-nitroarginine-methyl-ester were also greater in the elderly.
Nevertheless, the relevance of comparing changes in vascular
function after acute consumption on days 4–6 with baseline
levels on day 1 remains to be established.

An additional RCT reported age-dependent effects of quer-
cetin on blood pressure (30). Supplementation of 150mg quer-
cetin/d for 6 wk resulted in a decrease in SBP by 2.6 mmHg in
the entire study group, by 2.9 mm Hg in the subgroup of hy-
pertensive subjects, and by 3.7 mm Hg in the subgroup of
younger adults aged 25–50 y. These observations suggest that
the blood pressure-lowering effects of quercetin may be greater
in younger than in older people. The authors hypothesized that
improved endothelial function may be affecting younger and
middle-aged individuals, and because with increasing age the
arteries become stiffer, the potential to improve vascular func-
tion by nutrients and bioactive compounds decreased. How-
ever, differences between young and elderly subjects were not
reported in this work, inwhich only differences between the to-
tal number of subjects and a younger subgroup were given, so
these findings need to be confirmed in a study specifically de-
signed to investigate those age groups.

In summary, there is currently very limited evidence to
suggest that the cardiometabolic response to food bioactive
compounds is age dependent. From the 3 studies that have
been identified, only 2 were specifically designed to test
age-dependent effects of food bioactive compounds, with
only one being controlled and showing significant effects
on CVD risk biomarkers both acutely and after short-term
supplementation (56). These authors concluded that some
of the beneficial effects of flavanols are age dependent and
others not, with FMD, PWV, and DBP showing similar ef-
fects in both young and elderly subjects, whereas SBP and
AIX improved only in the elderly. Taken together, it could
be suggested that age is one factor affecting the variability
in the vascular response to plant-food bioactive compounds.

Impact of sex on the effects of plant-food
bioactive compounds
We identified 3 studies looking at differences between men and
women in their response to CF intake (42, 43, 45) (Table 1).
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Ostertag et al. (42) reported differences in the responses to the
flavanol-containing chocolate compared with white chocolate
between men and women. Platelet aggregation was signifi-
cantly decreased in men but not in women 2 h after consump-
tion of dark or flavanol-enriched dark chocolate and 6 h after
flavanol-enriched dark chocolate compared with white choco-
late. Sex differences in the effects of the chocolate on markers
of platelet activation were also observed: platelet P-selectin ex-
pression was decreased only in men 2 h after consumption of
flavanol-rich dark and white chocolate compared with stan-
dard dark chocolate; fibrinogen-binding was increased only
in women 2 h after consumption of flavanol-enriched dark
chocolate compared with white chocolate. The sex differences
highlighted in this study are interesting, but their interpretation
is somewhat problematic because of the absence of an appro-
priate control group matched for flavanols. For example, a sig-
nificant effect of white chocolate compared with standard dark
chocolate was observed on platelet activation and ex vivo
bleeding time in men only. Because white chocolate does not
contain flavanols, the observed effect must be due to other com-
ponents in the white chocolate that are probably also found
in dark chocolate, somewhat compromising its use as a suit-
able control for determining the effects of CFs. Cocoa itself
is complex and contains many other potentially bioactive
compounds in addition to flavanols, again compromising
interpretation of the effects and differences between sex.

West et al. (43) reported the effects of dark chocolate and
cocoa-beverage consumption on markers of endothelial
function on 30 middle-aged overweight adults. The CF in-
tervention caused significant increases in basal diameter
and peak diameter of the brachial artery and basal blood
flow volume in both men and women. However, significant
reductions in peripheral arterial stiffness in response to the
cocoa treatment were observed only in women, evidenced as
substantial decreases in the AIX (83%). The effects of cocoa
treatment in men were small and nonsignificant. However, it
should be noted that the women had substantially higher
AIX values at baseline, and this probably related to the dif-
ferences in response between men and women.

Finally, Ibero-Baraibar et al. (45) reported that men
derived a greater benefit from consuming a cocoa-
supplemented diet than did women, although this effect
was observed only for changes in oxidized LDL (oxLDL).
Improvements in many of the variables assessed were dem-
onstrated between baseline and the end of the study, such as
blood pressure and anthropometric or body composition var-
iables, which was to be expected in response to the 15% ca-
loric restriction provided by both diets. oxLDL in the cocoa
group was significantly lower than in the control group. Af-
ter adjusting the data for weight and total and LDL choles-
terol, it was shown that cocoa consumption significantly
affected the change in oxLDL in men but not in women.
To explain this difference, the authors refer to a previously
reported difference in the antioxidant status between men
and women, with men exhibiting poorer antioxidant status
(i.e., men have a higher oxidation status than women), mak-
ing them more susceptible than women to an antioxidant

effect of the flavanols (44). However, the physiological rele-
vance of a change in oxLDL is unknown because this variable
is not an established surrogate marker of CVD risk (41).

In summary, a sex effect in response to plant-food bioac-
tive compounds has been reported in very few studies, and
all of those focused on flavanols. From the 3 articles identi-
fied to date, differences in the response between men and
women were observed in the AIX and antioxidant status.

Impact of genetic polymorphism on the effects of
plant-food bioactive compounds
Eight studies have reported the impact of genetic polymor-
phisms on the cardiometabolic health effects of green tea
(57, 58), coffee or caffeine (59–61), and plant sterols (62–64)
(Table 1). The beneficial effects of green tea catechins may
be predisposed by polymorphisms in genes encoding phase
II metabolism enzymes during and after the consumption.
The missense mutation rs4680 (G to A) in the COMT gene,
coding for methylation enzyme, results in a 40% decrease in
enzyme activity. In a pilot study performed by Miller et al.
(58), 20 subjects (10 homozygous COMT GG or 10 AA gen-
otype) were given green tea extract capsules (836 mg green tea
catechins) in a fasted state and with a high-carbohydrate
breakfast. The modification in digital volume pulse (DVP)
stiffness index from baseline was observed to be different be-
tween genotype groups at 120 and 240 min, with a lower stiff-
ness index in the GG individuals. The alteration in blood
pressure from baseline was also observed to be different be-
tween genotype groups, with a bigger increase in SBP and
DBP at 120 min in the GG group. It was observed that the
AA group had a greater increase in plasma insulin concen-
trations at 120 and 180 min compared with baseline, al-
though the glucose profiles were similar. No differences
were observed in vascular reactivity evaluated by using
laser-Doppler iontophoresis, total nitrite, plasma lipids, to-
tal antioxidant capacity, or markers of inflammation.

The same investigators assessed the effect of theCOMT gen-
otype on the heterogeneity in response to green tea catechins
regarding vascular reactivity and blood pressure in a study
with 50 volunteers instead of 20 as in previous study (57).
These subjects (25 with AA and 25 with GG COMT
rs4680 genotype) completed a randomized, double-blind,
crossover study. Peripheral arterial tonometry, DVP, and blood
pressure were evaluated at baseline and 90 min after intake of
1.06 g green tea extract or placebo. A genotype-treatment inter-
action was shown for the DVP reflection index with green tea
extract in the AA COMT group. A genotypic effect was de-
scribed for urinary methylated epigallocatechin during the first
5.5 h, with the GG COMT group having higher concentrations
(57). Taken together, these 2 studies suggest that differences in
small-vessel tone according to COMT genotype are evident
after the acute administration of green tea extract.

The response in serum cholesterol to diet may be modu-
lated by the APOE, 32/33/34 alleles, which is also a predictor
of variation in the risk of CAD and CAD death. Strandhagen
et al. (61) tested the hypothesis that the APOE polymorphism
may affect the cholesterol-raising effect of coffee. One
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hundred twenty-one healthy, nonsmoking men (22%) and
women (78%) aged 29–65 y were provided with 0.6 L filter-
brewed coffee/d for 4 wk. APOE 32-positive volunteers
presented significantly lower total cholesterol (TC) concentra-
tions at baseline, but the cholesterol-raising effect of coffee was
not significantly influenced by APOE allele carrier status. These
results suggest that theAPOE 32 allele is associated with a lower
serum cholesterol concentration, but it does not seem to affect
the cholesterol-raising effect of coffee.

In a study with a similar design and similar study popu-
lation, the hypothesis that methylenetetrahydrofolate reduc-
tase gene polymorphism, known to influence plasma total
homocysteine (tHcy), is associated with the effect of coffee
on plasma homocysteine-raising effect has been investigated
(60). The authors examined the impact of consumption of
0.6 L coffee/d supplemented or not with 200 mg folic acid
on tHcy with respect to the methylenetetrahydrofolate re-
ductase C677T and A1298C polymorphisms. tHcy, at base-
line, was higher in the 677TT genotype group than in the
677CC genotype group, and this group had a higher increase
in tHcy on coffee exposure than did the 677CC and 677CT
genotype groups. Supplementation with 200 mg folic acid,
when compared with the placebo, decreased the tHcy-
increasing effect of coffee in the 677TT genotype group.
The A1298C polymorphism did not modulate tHcy concen-
tration. Therefore, it was suggested that the homocysteine-
increasing impact of coffee is especially obvious in individuals
with the homozygous 677TT genotype (60).

Renda et al. (59) evaluated acute blood pressure responses
to caffeine and evaluated whether they are affected by candi-
date gene variants affecting caffeine metabolism: CYP1A2,
adenosine metabolism (adenosine A2a receptor and a-2B ad-
renergic receptor), or catecholamine receptors. In this study,
110 healthy male subjects with moderate coffee consumption
underwent ambulatory blood pressure monitoring at 6-min
intervals for 2 h. Each volunteer was given, in a double-
blind design, 0.04 L of either a decaffeinated coffee prepara-
tion plus 3 mg caffeine/kg or the corresponding vehicle
(decaffeinated). Compared with decaffeinated coffee, caffeine
significantly increased both SBP and DBP. Plasma caffeine
and adrenaline increased after caffeine but not after decaffein-
ated coffee. Of the 11 gene polymorphisms analyzed, an asso-
ciation was detected between the adenosine A2a receptor TT
variant and the a-2B adrenergic receptor I variant and the
change in SBP in responses to caffeine (59). This study sug-
gests that the variability in the acute blood pressure response
to coffee may be due to the genetic polymorphisms of the
adenosine A2A receptors and the a2-adrenergic receptors.

The impact of plant sterol consumption on plasma choles-
terol is highly variable. The ATP-binding cassette heterodimeric
transporters G5 and G8 (ABCG5 and ABCG8) were assumed
to mediate intestinal cholesterol efflux, whereas Niemann-
Pick C1 Like 1 (NPC1L1) protein is believed to be important
for intestinal cholesterol influx. Individual or combined genetic
polymorphism of these genes could explain interindividual
variations in plasma cholesterol response after the consump-
tion of plant sterols. Zhao et al. (64) investigated the association

between ABCG5/ABCG8 andNPC1L1 single nuclear polymor-
phisms and sterol absorption and corresponding plasma con-
centrations. The trial was a 4-wk crossover study with 82
hypercholesterolemic men presenting high compared with
low basal plasma plant sterol concentrations who consumed
spreads with or without 2 g plant sterols/d. For the ABCG8
1289 C>A (T400 K) polymorphism, the carriers of the A allele
with high basal plasma plant sterol concentrations presented a
390% higher reduction in serum LDL cholesterol than did
their low basal plasma counterparts. For the NPC1L1 haplo-
type of 872 C>G (L272L) and 3929 G>A (Y1291Y), volunteers
carrying mutant alleles presented a 240% decrease in LDL cho-
lesterol concentrations compared with the volunteers with the
wild-type allele (64). The results demonstrate that genetic and
metabolic biomarkers may predict interindividual lipid con-
centration responsiveness to plant sterol intervention and
might be important in developing individualized cholesterol-
lowering approaches.

Plant sterol esters decrease serum TC and LDL cholesterol
but with important interindividual variability. In a random-
ized, double-blind, controlled study, hypercholesterolemic
subjects consumed a reduced saturated-fat and cholesterol
diet for 4 wk followed by a 5-wk intervention during which
they consumed a control spread (n = 87) or a spread with
plant sterol esters (1.1 or 2.2 g plant sterols/d; n = 120)
(63). During sterol consumption, TC, LDL cholesterol, and
apoB concentrations and the ratios of TC to LDL cholesterol
and LDL to HDL were observed to be lower only in subjects
carrying e2 or e3 allele of apoE gene, and serum TG decreased
only in subjects carrying e2 allele. Thus, responses to plant
sterols diverge depending on apoE genotype and might be
of small important in apoE4 carriers.

Plant sterols may disrupt the micellar solubilization of
cholesterol by the bile acid pool, thus influencing intestinal
cholesterol absorption. Plasma lipid variation relates to the
promoter variant2204A>C (rs3808607) of the cholesterol
7 a-hydroxylase (CYP7A1) gene encoding for a-hydroxylase,
an enzyme for bile acid synthesis. De Castro-Orós et al. (62)
hypothesized that this polymorphism could be linked with
the interindividual variation in responses to plant sterol con-
sumption. They investigated 67 volunteers (31 AA and 36
AC+CC) with lipid responses to plant sterols documented in
2 studies. Compared with AA subjects, C-allele carriers pre-
sented higher decreases in TC and increases in ratios of lathos-
terol to cholesterol. These studies suggest that the 2204A>C
variant is associated with greater CYP7A1 activity. Increased in-
testinal bile acids and the resulting enhanced efficient of choles-
terol absorption could elucidate why C-allele carriers present
enhanced cholesterol-lowering and increased feedback choles-
terol synthesis to plant sterol intervention.

Impact of pathophysiological status on the effects
of plant-food bioactives
The metabolic status of subjects has been proposed as the
factor that predicts the response of plasma cholesterol to
an intervention with plant sterols (Table 1). Rideout et al.
(65) highlighted between-subject differences in LDL
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responsiveness to plant sterols that could compromise the
overall conclusion on their efficacy. They observed that,
in a pooled study population of 113 subjects (from 3 differ-
ent RCTs), 4 wk of a controlled diet supplemented with 2 g
plant sterols/d led to a mean decrease in LDL cholesterol
concentrations of 7.3%. After this observation, the authors
stratified the population cohort into responders (mean re-
duction of 15.2%) and nonresponders (mean reduction of
3.7%) and proposed the basal cholesterol fractional synthe-
sis rate (FSR) as the determinant of the response based
on 1) a correlation of FSR with the percentage of change
in LDL cholesterol (r = 0.22, P = 0.02), 2) 23% higher basal
FSR values in nonresponders compared with the values of
the responders group, 3) after stratification based on basal
FSR, subjects in the first quartile showed the best response,
with a mean decrease of 12.4% compared with the control
period, whereas for those in the last quartile, the decrease
was only 3.17%.

The same authors have proposed the ratio of lathosterol to
cholesterol (L:C), a surrogate marker of endogenous choles-
terol synthesis, as the predictor of the effects of plant sterols
on cholesterol concentrations (36). In this randomized,
single-blind, crossover, placebo-controlled trial, mildly hyper-
cholesterolemic adults were preselected based on their base-
line L:C. The participant cohort of 63 individuals consisted
of 24 subjects with high endogenous cholesterol synthesis
(HECS) and 39 subjects with low endogenous cholesterol
synthesis (LECS). In addition to the L:C values, the 2 sub-
groups were significantly different in terms of body weight,
BMI, and HDL cholesterol and TG concentrations, as well
as the ratios of plasma phytosterols (sitosterol, cholestanol,
and desmosterol) to cholesterol. After daily consumption
of a diet enriched with 2 g plant sterols for 28 d, significant
decreases in TG concentrations of 0.40 6 0.07 and 0.09 6
0.09 mmol/L were found in the HECS and LECS groups, re-
spectively, compared with the placebo group, while the de-
creases in LDL concentrations were 0.29 6 0.05 and 0.05 6
0.07 mmol/L in the HECS and LECS groups, respectively.
This work suggests that participants in the HECS group
were 3 times more likely to respond to plant sterol supple-
mentation than those in the LECS group. Finally, there
was a positive correlation between the L:S and the overall de-
crease in TGs but not in LDL cholesterol (r = 0.24, P < 0.05).
From these observations the authors suggested that the link
between high L:S and the metabolic syndrome indicates
that subjects with the metabolic syndrome are responsive to
plant sterols. Neither of these 2 articles reported genetic poly-
morphism as a putative determinant of variation, although it
is known that it can influence basal cholesterol synthesis as
discussed above.

The effects of an 8-wk consumption of soy nuts (provid-
ing 110 mg isoflavones/d) on anthropometric variables,
blood pressure, lipid concentrations, and inflammatory
markers in postmenopausal women were evaluated based
on the stratification by metabolic syndrome status (66). Par-
ticipants included 60 women, 49 without metabolic syn-
drome and 11 with metabolic syndrome. In healthy

volunteers, the isoflavone-enriched diet, compared with
the placebo diet, resulted in a significant decrease in both
SBP and DPB, and C-reactive protein (CRP). In contrast,
in the group of women with the metabolic syndrome the
supplemented diet significantly decreased DBP and CRP,
as well as the circulating concentrations of TGs and intercel-
lular adhesion molecule 1. Further stratification of the sub-
jects on the ability to produce equol indicated that in women
without the metabolic syndrome the changes in SBP were
more pronounced in equol producers. Similarly, the DBP
decrease was significant only in the equol-producer group.
In response to the isoflavone-enriched diet, a significant de-
crease of CRP was observed only in equol producers. In
women with the metabolic syndrome, the observed effects
were significant only in the equol-producer group (7 of 11
subjects). As a final conclusion, the authors commented
that soy consumption induced more pronounced beneficial
effects on biomarkers of CVD in women with metabolic
syndrome than in healthy women and that the magnitude
of the responsiveness was tightly dependent on their ability
to produce equol and thereby on the composition of their
gut microbiota. However, the low number of subjects, espe-
cially after the stratification to equol producers and nonpro-
ducers with the metabolic syndrome, with 7 and 4 subjects,
respectively, makes the conclusion strictly exploratory.

The interindividual variation in response to dietary poly-
phenol intake depending on the pathophysiological status
was also reported. In a crossover, randomized, placebo-
controlled study, Egert et al. (30) evaluated the effects of a
6-wk quercetin supplementation (150 mg/d) on blood pres-
sure, lipid concentrations, and inflammatory markers in 93
subjects with central obesity and elevated plasma concentra-
tions of TGs and CRP. In the entire study population, SBP
and pulse pressure were significantly lower after quercetin
supplementation compared with the baseline values. After
subgroup analysis, no effects on either of these variables
were observed in the group of normotensive subjects,
whereas in the group of (pre)hypertensive subjects quercetin
supplementation resulted in a significant decrease in SBP.
Similarly, the pulse pressure was significantly lower after
quercetin treatment compared with baseline without signif-
icant effects on both variables after the placebo period.

The influence of medication used on the response to cat-
echins has also been reported (37). A double-blind, parallel-
design, randomized controlled study investigated the effects
of a 12-wk consumption of catechin-enriched green tea,
providing 582.8 mg catechin/d, or green tea, providing
96.3 mg catechin/d, in 43 subjects with type 2 diabetes
(not on insulin therapy). In comparison with the effects of
standard green tea, catechin-enriched green tea induced a
significant decrease in waist circumference and TC concen-
tration and an increase in insulin concentration in the entire
population. Further stratification of both groups based on
the use of insulinotropic agents as antidiabetic therapy, in-
cluding either oral sulfonylureas or glinidines, showed that
the effect of catechin-enriched green tea on insulin concen-
trations and glycated hemoglobin was significant only in a
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subgroup of patients receiving insulinotropic therapy and
not in subjects with another type of medication. Both results
indicate the potential of catechins to act synergistically with
the therapeutics regarding their insulinotropic action, with
the ultimate beneficial effects on protein glycation. It should
be noted that the number of patients receiving insulino-
tropic therapy was 17 of 23 in the test group and 16 of 20
in the control group, thus the lack of the effect in the group
with noninsulinotropic therapeutics could be because of the
low number of participants.

Taken together, these few studies suggest that metabolic
or disease-related traits of volunteers enrolled in clinical
trials can lead to interindividual variation in response to
plant-food bioactive intake.

Impact of bioavailability on the effects of plant-food
bioactive compounds
Besides the factors discussed above, the bioavailability of
plant-food bioactive compounds could be an important fac-
tor in determining the interindividual variability in response
to their consumption. It could be expected that individuals
presenting a higher capacity of absorption and metabolism
of these compounds, thus achieving higher concentration
of bioactive metabolites in the circulation, would gain greater
benefits compared with low absorbers and metabolizers.
However, this assumption has been poorly documented so
far. Indeed, some studies highlighted in the present review
suggest that this is not always the case; for example, age-
dependent differences in vascular response were seen despite
no age-dependent differences in plasma concentrations of
metabolites (56).

Another important issue in this context is that it is not
currently known which of the main bioactive metabolites
present in circulation after plant-food consumption are
those responsible for the observed effects and which concen-
trations are required to induce optimal benefits for different
subgroups. A few studies have shown correlations and tem-
poral associations between vascular outcomes and specific
circulating polyphenol metabolites (67–70), which is one
step further in establishing a relation between certain bioac-
tive metabolites and health outcomes. Hence, future clinical
trials with plant foods should measure circulating concen-
trations of individual metabolites, demonstrate the existence
of a correlation between them and their biological impacts,
and report the variabilities in both ADME and biological
responses.

Gut microbiota metabolism of food phytochemicals, and
particularly polyphenols, has been identified as a relevant
source of interindividual variability in ADME (71), and this
can be the result of differences in the microbial ecosystems
that colonize the human gut (72) and to the gut microbiome
richness (73). These differences in gut microbial metabolism
may also affect the health effects of dietary phytochemicals
and be responsible for variability in biological response.

Six clinical studies have examined the role of gut microbiota
metabolism in explaining interindividual variation in response
to the consumption of polyphenols on cardiometabolic disease

biomarkers (blood pressure, endothelial function, and TGs
CRP, soluble intercellular adhesion molecule, or cholesterol
concentrations). These studies are all related to soy isoflavones,
daidzein, the precursor of the microbial-derived metabolite,
and equol, which is known to have a higher bioactivity than
daidzein itself. In a clinical study assessing the effect of soy
intake on cardiovascular health in postmenopausal women
(60–75 y old), it was demonstrated that changes in endothelial
function and blood pressure were not significantly different
between the soy and the placebo groups. In the soy group,
however, stratification by equol-producer status suggested
that endothelial function and blood pressure were improved
only in equol producers (48). Another study on hypercholes-
terolemic men and postmenopausal women (n = 55) showed
that the beneficial effects of soy intake on plasma LDL choles-
terol, HDL, and apo1 concentrations occurred only in equol
producers (n = 30) (74). In women with the metabolic syn-
drome, soy intake only reduced blood pressure, TGs, CRP,
and soluble intercellular adhesion molecules in equol pro-
ducers (72). Thus, these studies suggest that the microbiota
profile responsible for the production of equol is a determi-
nant of the variability in response to the consumption of soy
protein–containing isoflavones.

Several studies have also explored whether equol is the ac-
tive metabolite after soy isoflavone intake by supplying S-equol
orally. Some controversial results were found. Consumption of
S-equol decreased LDL cholesterol and the cardio-ankle vascu-
lar index in overweight or obese Japanese subjects, with the
effects being more prominent in the subgroup of female non-
producers (75). In contrast, a recent study evaluated the effect
of S-equol on prospectively recruited equol and non–equol
producers, and although soy intake improved carotid-
femoral PWV in equol producers, a single dose of S-equol
had no cardiovascular benefits in non–equol producers (76).
This study suggests that the equol-producer phenotype is crit-
ical in explaining the vascular benefits of equol, but more stud-
ies are necessary to confirm these findings.

There is growing evidence that gut microbiota speciation
correlates with the risk of CVD, obesity, and type 2 diabetes
(73, 77–79), and some studies also suggest a relation between
gut microbiota, diet, obesity (80), and atherosclerosis (81).
Interestingly, the equol-producing bacteria identified so far
include species of the genera Adlercreutzia, Eggerthella, Para-
eggerthella, and Slackia, all of them belonging to Coriobacter-
iaceae, a family that has been associated with beneficial
metabolic processes in obesity and diabetes (82). Therefore,
the occurrence of these bacterial species responsible for equol
production can be an indication of a potential beneficial re-
sponse to the consumption of plant-food bioactive com-
pounds regarding cardiometabolic diseases.

It is well established that ellagic acid is converted to uro-
lithins by the colon microbiota, and 3 different and consis-
tent urolithin phenotypes (0, A, and B) were observed in
various clinical intervention studies with ellagitannins, uro-
lithin B being more frequently observed in subjects with
metabolic syndrome (83). Supporting these findings, uroli-
thin Awas inversely correlated with the severity of metabolic
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syndrome and obesity (84, 85). Thus, the correlation of
these phenotypes with cardiovascular health deserves fur-
ther investigation.

Conclusions
In this review, we have highlighted the limited existing data
and summarized the available clinical and prospective
studies that have investigated, to some extent, the interin-
dividual variability in the biological response to the con-
sumption of plant-food bioactive compounds. These
studies suggest that some individuals may benefit more
from the health effects of these bioactives than others,
and genetic and nongenetic factors may be important
ones contributing to the variability in biological effects ob-
served between individuals (Figure 1). Nevertheless, there
are still very few studies robustly assessing determinants of
this between-subject variability, with <25 clinical studies
identified to date (Table 1). Each of them examined differ-
ent biomarkers and different bioactive compounds, which
precludes the pooling of data from available studies. With
such wide heterogeneity in studied food bioactive com-
pounds, cardiometabolic biomarkers, study populations,
and study designs, it is not yet possible to draw conclusions
based on sound scientific results.

Nevertheless, the limited evidence suggest that genetic fac-
tors may be important for the interindividual variability, in
particular, genetic polymorphisms of genes involved in phase
I and phase II metabolism, such as COMT or CYP7A1, and
others, such as the APOE genotype or cholesterol transporters.
The gut microbiota is an emerging key player explaining var-
iability, as evidenced by the differences in biological response
observed between equol and non–equol producers, but also in
the differential effects observed in relation to ellagitannin me-
tabolism. Finally, health and metabolic status seem to be other
factors playing a role, with some evidence suggesting that “at-
risk” participants or patients may be more likely to gain ben-
efits from increased plant bioactive compound intake than

healthy individuals may be. Although some variability accord-
ing to age and sex has been shown, the current evidence is not
strong enough to make any conclusion.

From this review, it clearly appeared that current pub-
lished studies reporting interindividual variability were not
initially designed to study between-subject variation in the re-
sponse. Inmost of these studies, the interindividual variability
was observed post hoc and without adequate a priori defini-
tion of subgroups, planning, and power calculation that result
in low numbers of subjects in subgroups and inadequate
study power for statistical analysis. Therefore, there is a
need for additional controlled-intervention studies specifi-
cally designed to identify the factors affecting the variability
in the response to plant-food bioactive compounds. Future
intervention studies should be suitably powered and random-
ized based on the factor of variability of interest (for example,
young and elderly, male and female volunteers). Furthermore,
it would be important to avoid as much as possible the use of
complex foods as sources of bioactive compounds; indeed,
because of the difficulty of having well-matched controls,
the attribution of the observed effects to the bioactive com-
pounds of interest is questionable. In these studies, it will
also be crucial to systematically measure both biomarkers of
effects and bioavailability variables, including the concentra-
tion and nature of circulating metabolites whose biological
potential may be variable. In the long run, this knowledge
will guide the provision of evidence-based, targeted dietary
recommendations.
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