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Optimum topological design of negative permeability dielectric metamaterial using a new binary particle swarm algorithm

Introduction

As the metamaterials have some physical properties not available in nature, they have attracted huge scientific research interest for decades. In fact, many studies have proved that the metamaterials can exhibit some extraordinary electromagnetic properties, like the negative permittivity and permeability, both due to the possibility to obtain the negative refractive index and impedance [START_REF] Silin | On the history of backwards electromagnetic waves in metamaterials[END_REF]. In mechanics, some research works [START_REF] Sigmund | Systematic design of metamaterials by topology optimization[END_REF] have shown the possibility to obtain negative Poisson's coefficient with metamaterials.

In general, the metamaterials have a periodic form [START_REF] Sihvola | Metamaterials in electromagnetics[END_REF]. Each unit cell is composed of a background material, along with another material which is included in the background. Even if the two materials are not extraordinary, the inclusion of the second one in the background material exhibits the physical properties of the metamaterial [START_REF] Liu | Periodic waves in nonlinear metamaterials[END_REF] when it is impacted by a periodic wave. The possibility to obtain these extraordinary electromagnetic properties was first proposed by Veselago [START_REF] Veselago | The electrodynamics of substances with simultaneously negative values of permittivity and permeability[END_REF] in 1968. He demonstrated that an original arrangement of the materials in a periodic sequence could exhibit the negative permeability and permittivity. Later, Pendry et al. [START_REF] Pendry | Magnetism from conductors and enhanced nonlinear phenomena, Microwave Theory and Techniques[END_REF] and Smith et al. [START_REF] Smith | Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[END_REF] [START_REF] Smith | Electromagnetic parameter retrieval from inhomogeneous metamaterials[END_REF] showed that arrangements of split-ring resonators and metalic wires can exhibit a negative refraction index at a certain frequency. They have also stated that the permeability and the permittivity can be determined knowing the scattering parameters. Furthermore, the possibility to obtain simultaneously negative permittivity and permeability by new types of metamaterials that utilize the magnetic and electric resonance phenomena of dielectric materials, rather than effects primarly derived from metallic inclusions as been shown in [START_REF] Zhao | Mie resonance-based dielectric metamaterials[END_REF] [10] [START_REF] Vendik | Artificial double negative (dng) media composed by two different dielectric sphere lattices embedded in a dielectric matrix[END_REF] [START_REF] Ahmadi | Physical configuration and performance modeling of all-dielectric metamaterials[END_REF]. As they are isotropic, and made of dielectric materials, these new types of metamaterials could be very effective, and could be used easily in engineering systems. Holloway et al. [START_REF] Holloway | A double negative (dng) composite medium composed of magnetodielectric spherical particles embedded in a matrix, Antennas and Propagation[END_REF] showed theoretically that designed dielectric spheres embedded in a host material can achieved negative effective permeability and negative effective permittivity simultaneously. Therefore, more practical structures have been proposed, such as spheres with with different radii [START_REF] Vendik | Artificial double negative (dng) media composed by two different dielectric sphere lattices embedded in a dielectric matrix[END_REF] , structures using spheres with the same radii, but with different dielectric parameters [START_REF] Ahmadi | Physical configuration and performance modeling of all-dielectric metamaterials[END_REF], and structures using cylindrical dielectric materials embedded in a host material [START_REF] Semouchkina | Fdtd study of resonance processes in metamaterials, Microwave Theory and Techniques[END_REF]. Experimental results proposed in Zhao et al. [START_REF] Zhao | Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite[END_REF], Peng et al. [START_REF] Peng | Experimental observation of left-handed behavior in an array of standard dielectric resonators[END_REF] and Shibuya et al. [START_REF] Shibuya | Terahertz metamaterials composed of tio2 cube arrays[END_REF] have confirmed the obtaining of the negative effective permeability and permittivity. Therefore, Chen et al. [START_REF] Chen | Robust method to retrieve the constitutive effective parameters of metamaterials[END_REF], Cotuk [START_REF] Cotuk | Scattering from multi-layered metamaterials using wave matrices[END_REF], Smith et al. [START_REF] Smith | Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[END_REF], Feng [START_REF] Feng | Extracting material constitutive parameters from scattering parameters, Master's thesis[END_REF] and Hasar et al. [START_REF] Hasar | Differential uncertainty analysis for evaluating the accuracy of s-parameters retrieval method for electromagnetic properties of metamaterial slabs[END_REF] developed the efficient matrix methods to retrieve the effective parameters of the complete metamaterial from the scattering parameters, which can be easily be implemented.

In the field of electromagnetic applications, the metamaterials are generally impacted by an electromagnetic field, and react modifying the field lines path. In fact, with a negative refraction index, and a negative impedance, the impacting field lines are able to get around the metamaterial, as can be seen in Figure 1. Kanellopoulos et al. [START_REF] Kanellopous | A numerical study of vector absorbing boundary conditions for the finiteelement solution of maxwell's equations[END_REF] and N'Guessan [START_REF] N'guessan | Méthode des éléments finis mixtes et conditions aux limites absorbantes pour la modélisation des phénomènes électromagnétiques hyperfréquences[END_REF] demonstrated that the finite element method can be adapted and used for the electromagnetic problems at high frequencies. The aim of their work was to determine an adapted numerical modeling, a method to discretize the Maxwell laws in two and three dimensions, and the precise definition of the boundary conditions to be used. In fact, three typical techniques for the truncation of the finite element computational domain [START_REF] Jin | Finite element analysis of complex antennas and arrays[END_REF] have been developed and used:

-First, the absorbing boundary conditions (ABC) [START_REF] Kanellopous | A numerical study of vector absorbing boundary conditions for the finiteelement solution of maxwell's equations[END_REF] have been proposed to truncate the computational domain in the nonperiodic directions of electromagnetic structures [START_REF] Petersson | Analysis of periodic structures via a time-domain finite-element formulation with a floquet abc[END_REF]. This formulation is efficient and applicable both for scattering and radiation analysis, and can be used for the numerical implementations of infinitely periodic structures models.

-Secondly, a perfectly matched layer has been developed to absorb without reflection the electromagnetic waves in a structure modeled with the finite-difference time-domain method [25] [26] [27] [START_REF] Jiao | Time-domain finite-element simulation of three-dimensional scattering and radiation problems using perfectly matched layers[END_REF]. The perfectly matched layers have been used as some absorbing boundary conditions in the finite-element method [START_REF] Sacks | A perfectly matched anisotropic absorber for use as an absorbing boundary condition[END_REF] to solve the three-dimensional electromagnetic scattering problems.

-And thirdly, the boundary integral equations which can provide a truly perfect reflectionless boundary condition for mesh truncation at higher computational cost have been developed [START_REF] Petersson | Analysis of periodic structures via a time-domain finite-element formulation with a floquet abc[END_REF]. This method was originally implemented to truncate the computational domain [30] [31] [32] [START_REF] Botha | On the variational formulation of hybrid finite element-boundary integral techniques for electromagnetic analysis[END_REF] and provided exact results, although the computational cost was significantly increased. A preconditioner was also presented to accelerate the convergence to solve the equations obtained from the application of the hybrid finiteelement boundary-integral (FE-BI) method to three-dimensional electromagnetic scattering problems [START_REF] Liu | A highly effective preconditionner for solving the finite element-boundary integral matrix equation of 3d scattering[END_REF]. In the developed model, the Perfectly Matched Layers (PML) elements have been used to decrease the computational cost, and obtain some the approximative results of the scattering parameters. In this way, many applications have been proposed to benefit from the extraordinary physical properties of metamaterials, such as cloaking devices [START_REF] Wood | Metamaterials and invisibility[END_REF], waveguides [START_REF] Kim | Effective material property extraction of a metamaterial by taking boundary effects into account at te/tm polarized incident[END_REF], leaky wave antennas [START_REF] Ueda | Dielectric-resonator-based composite right/lefthanded transmission lines and their application to leaky wave antenna, Microwave Theory and Techniques[END_REF], acoustic cloaking devices [START_REF] Li | Double-negative acoustic metamaterial[END_REF], and mechanical applications [START_REF] Ding | Metamaterial with simultaneously negative bulk modulus and mass density[END_REF]. Then, the research focused on the possibility to optimize the metamaterials in order to obtain the best physical properties. First, Zhou et al. [START_REF] Zhou | A level-set procedure for the design of electromagnetic metamaterials[END_REF] used a level set method for the design of electromagnetic metamaterials, by a topology optimization. The objective of the work was to obtain some double negative metamaterials, with both negative permeability and permittivity, finding an optimized layout of metallic inclusions. In this case, the objective function was formulated using current flow. Subsequently, Zhou et al. [START_REF] Zhou | Topology optimization for negative permeability metamaterials using level-set algorithm[END_REF] proposed a second level-set-based method to optimize the electromagnetic properties of metamaterials. The aim was to express the permeability of the studied metamaterial in function of the scattering parameters, and then be able to use the permeability as the objective function in the optimization process. Therefore, Otomori et al. [START_REF] Otomori | A topology optimization method based on the level set method for the design of negative permeability dielectric metamaterials[END_REF] applied the level-set method to the topology optimization of a metamaterial, in order to obtain the best electromagnetic properties. The aim of their research was to optimize especially the negative permeability of dielectric metamaterials. They used the scattering parameters to determine the effective permeability and then, the imaginary part of the effective permeability was minimized. Secondly, using the obtained results during the first optimization process, the real part of the effective permeability was minimized.

Moreover, in the work of Boltasseva et al. [START_REF] Boltasseva | Fabrication of optical negative-index metamaterials: recent advances and outlook[END_REF], some fabrication methods of optical negative-index metamaterials were developed. Combining the works concerning the optimization of metamaterials, and the work of Boltasseva et al. [START_REF] Boltasseva | Fabrication of optical negative-index metamaterials: recent advances and outlook[END_REF], one can think about the possibility to use the metaheuristic methods to optimize the physical properties of electromagnetic metamaterials, such as the effective permeability.

In fact, for many optimization problems, there are no deterministic methods reliable enough to obtain the satisfying results. Indeed, these optimization methods can converge to local optima, calculating the sensibilities. So, even if there is no mathematical proof of the global convergence of the metaheuristic methods, they can be used to very efficiently solve the difficult optimization problems [START_REF] Khemka | Exploratory toolkit for evolutionary and swarm-based optimization[END_REF].

The population-based metaheuristic methods (such as PSO and the genetic algorithms) have the ability to converge to the global optimum, because they consider a population of potential solutions, instead of just one solution. As they use some stochastic parameters, these methods can avoid the combinatorial explosion of the number of solutions. These methods are inspired by physical or biological phenomena. For example, the Ant Colony Optimization [START_REF] Dorigo | Ant colony optimization[END_REF] draws its inspiration from the foraging behavior of some ant species. The genetic algorithms mimic the process of natural evolution, using processes such as inheritance, mutation, selection and crossover. In this work, the Particle Swarm Optimization (PSO) is considered to optimize a metamaterial model. This method is due to the observation of some flocks of birds by Reynolds [START_REF] Reynolds | Flocks, herds and schools: A distributed behavioral model[END_REF] in 1987, and has been developed by Keneddy and Eberhart in 1995 [START_REF] Eberhart | A new optimizer using particle swarm theory[END_REF]. Understanding how the birds can achieve their complex and optimal motion, a new optimization method which could use a swarm of potential solutions has been proposed. Due to stochastic parameters, these solutions can follow the best particles and converge together to the global optimum. To optimize the metamaterials, a modified binary PSO algorithm is developed, that adapts the concept of genotype-phenotype representation [START_REF] Luh | A binary particle swarm optimization for continuum structural topology optimization[END_REF] presented by Luh et al. in 2011. In the devel-oped method used to solve the optimization problem, the governing equations are solved by the Finite Element Method (FEM) with the software ANSYS R ⃝which calculates also the scattering parameters.

The optimization problem is solved by the developed PSO algorithm using MATLAB R ⃝. The software programs have been interfaced to efficiently solve the problem.

In this paper, a binary particle swarm optimization algorithm is developed for negative permeability dielectric metamaterials topology optimization. Section 2 gives the governing equations of the electromagnetic problem, as well as the statement of the problem. In section 3, the optimization problem to solve is formulated. Section 4 describes the developed methods, such as the binary algorithm of the particle swarm optimization, previously proposed by Luh et al. [START_REF] Luh | A binary particle swarm optimization for continuum structural topology optimization[END_REF], and the interfacing method between ANSYS R ⃝and MATLAB R ⃝developed to perform the efficient calculations. Section 5 presents the parameters used and the results obtained with both the FEM using ANSYS R ⃝and the PSO using MATLAB R ⃝. These results confirm the validity of the possibility to apply the binary PSO to the topology optimization of the negative permeability dielectric metamaterials. This paper is based upon Di Cesare et al. [START_REF] Di Cesare | A binary particle swarm based topology optimization for the design of negative permeability dielectric metamaterials[END_REF], but the current paper includes more informations about the research, especially concerning the mathematical and physical background on the electromagnetic metamaterials.

Governing equations

Definition of metamaterial and boundary conditions

Most electromagnetic metamaterials have a periodic structure. Then, a macroscale model can be proposed by assembling some identical unit cells composed of a layer dielectric material, with or without metallic inclusions. The periodicity of the structure can be seen in Figure 2. The individual unit cell does not exhibit the extraordinary electromagnetic properties which are exhibited globally by the metamaterial. The physical behaviour of a unit cell can be studied, but some special boundary conditions have to be implemented to specify the periodicity of the structure. Then, a numerical model of the unit cell was developed, and can be seen in Excitation ports define the excitation source which impacts the metamaterial. To model and perform a scattering analysis of a periodic structure, a plane wave port is used. The impacted electric field is E = E 0 y and normal incident angle is (ϕ,θ)=(0,0). Finally, the PML and security elements are not present in the design domain. These elements are just elaborated to define the design domain and correctly establish all the boundary conditions on this domain.

Governing equations

The electric permittivity defines how an electromagnetic environment reacts to an electric field. If the electric displacement field D [C/m 2 ] represents how the electric field E [V/m] influences the organization of the electric charges in this environment, the following constitutive law can be established

D = ϵ E (1) 
where ϵ [C/Vm] is the dielectric permittivity of the material.

The magnetic permeability defines how this material modifies a magnetic field B [T], that is its capacity to change the magnetic lines path defined by the magnetizing field H [A/m]. Then, the following constitutive law can be written

B = µ H (2) 
where µ[H/m] is the magnetic permeability of the material.

The permittivity and the permeability are generally used with their relative form, that is

ϵ = ϵ 0 ϵ r (3) 
and

µ = µ 0 µ r ( 4 
)
where µ r and ϵ r are, respectively, the relative magnetic permeability and the relative dielectric permittivity of the studied material. The coefficients µ 0 and ϵ 0 are, respectively, the magnetic permeability in vacuum and the dielectric permittivity in vacuum, and are given by the following constants ϵ 0 = 8, 854187 10 -6 pF µm -1 and µ 0 = 4 × π 10 -25 T H µm -1 .

The propagation of the electromagnetic field in the metamaterials is a wave phenomenon and is governed by the Helmholtz wave equation. Then, the following wave propagation equation is derived from Maxwell's laws, and from the Helmholtz equation in which the state variable is the electric field

E. ∇ × (∇ × E) -k 0 2 ϵ r × E = 0 (5) 
with

E = E i + E r
where E i is the impacted field defined by the plane wave port on the design domain, E is the total electric field, and E r is the reflected field, k 0 = ω √ ϵ 0 .µ 0 is the wave number and ω is the angular frequency.

The boundary conditions are described as follows

n × (∇ × E) -j k 0 n × (E × n) = -2 j k 0 E i (6) 
on the boundary where the impacted field is defined by the plane wave port. The second member of the equation represents the impacted field.

The following equation

n × (∇ × E) -j k 0 n × (E × n) = 0 (7)
is valid on the boundary where the field goes out the domain. There is no term in the second member, because there is not any excitation on this boundary.

On the boundaries defined as the Perfect Electric Conductors, the following equation must be satisfied

n × E = 0 (8)
And on the boundaries defined as Perfect magnetic Conductors, the following equation is stated

n × H = 0 (9) 
In these equations, n is the normal vector to the considered surface, E is the electric field, and H is the magnetic field.

The Finite Element Method is used to calculate the scattering parameters (S-parameters) of electromagnetic high frequency devices. The calculations have been performed according to the weak formulation given in the literature [START_REF] Otomori | A topology optimization method based on the level set method for the design of negative permeability dielectric metamaterials[END_REF] [50] as follows

∫ D (∇ × E) • (∇ × E) dΩ -k 2 0 ∫ D ϵ r E • E dΩ +j k 0 ∫ D (n × E) • (n × E) dΓ = 2 j k 0 ∫ Γ 1 E • E i dΓ ( 10 
)
where E is a test function. It is noted that the boundary integrals of the boundaries Γ P M C becomes zero, because of the intrinsic definition of the Perfect Magnetic Conductor boundaries.

Calculation of the effective permeability

The aim of this work is to minimize the effective permeability of a metamaterial at a given frequency.

So, the effective permeability of the studied metamaterial has to be calculated numerically.

The various approaches can be used to determine the effective permeability. The first approach was proposed by Bensoussan et al. [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF] and Sanchez-Palencia et al. [START_REF] Sánchez-Palencia | Non-homogeneous media and vibration theory[END_REF], and consists in a method based on the asymptotic expansion, and can be used only when the unit cell dimensions can be considered as infinitely small compared to the wavelength. The second approach proposed by Smith et al. [START_REF] Smith | Homogenization of metamaterials by field averaging[END_REF] is to average the electric and the magnetic fields in a unit cell. It has been proved that this approach becomes less efficient when the complexity of the metamaterial increases. The third approach is to compute numerically the effective S-parameters, which are the complex transmission and reflexion coefficients [START_REF] Smith | Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[END_REF] [17] [54] [START_REF] Smith | Electromagnetic parameter retrieval from inhomogeneous metamaterials[END_REF].

This approach can be calculated easily with the Finite Elements Method, and then it is really adapted for the solving of the topology optimization problem of metamaterials [START_REF] Yuan | Three-dimensional electromagnetic scattering from inhomogeneous objects by the hybrid moment and finite element method[END_REF].

The S-parameters-based approach to calculate the effective permeability was first proposed by Smith et al. [START_REF] Smith | Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[END_REF]. Then, an extended approach was developed by Smith et al. to be able to deal with inhomogeneous cases [START_REF] Smith | Electromagnetic parameter retrieval from inhomogeneous metamaterials[END_REF]. As the optimized metamaterial in this work has an inhomogeneous structure, the extended method is used to calculate the effective permeability.

The reflexion coefficient R is the complex proportion between the amplitude of the reflected wave and the amplitude of the incident wave, and is given in the following equation

R = ∥E r ∥ ∥E i ∥ (11)
The transmission coefficient T is the complex proportion between the amplitude of the transmitted wave and the amplitude of the incident wave, and is given as follows

T = ∥E t ∥ ∥E i ∥ ( 12 
)
where E i is the incident electromagnetic field, E r is the reflected electromagnetic field and E t is the transmitted electromagnetic field.

As these three fields are complex values, the scattering parameters can be calculated with the following formulas

S 11 = ∫ Γ1 (E -E i ) dΓ ∫ Γ1 E i dΓ = ∫ Γ1 (E -E i ) E i dΓ ∫ Γ1 E i • E i dΓ ( 13 
)
S 21 = ∫ Γ1 (E • E i ) dΓ ∫ Γ1 E i • E i dΓ ( 14 
)
S 22 = ∫ Γ1 (E -E i ) E i dΓ ∫ Γ1 E i • E i dΓ ( 15 
)
where E i is the complex conjugate of the field E i .

The effective refractive index n ef f and the effective impedance z ef f can be calculated by the following equations

z ef f = √ (1 + S 11 )(1 + S 22 -S 2 21 (1 -S 11 )(1 -S 22 ) -S 2 21 ( 16 
)
n ef f = arccos ( 1 + S 11 S 22 -S 2 21 2 S 21 ) • ( λ 2πd ) ( 17 
)
where λ is the wavelength, and d is the unit cell length.

Knowing the effective impedance and the refractive index, the effective permeability can be obtained by the following relationship

µ ef f = z ef f • n ef f (18)
Then, the effective permeability calculation has to be established in several steps, as follows:

1. Numerical calculation of the S-parameters.

2. Calculation of the effective refractive index and impedance.

3. Calculation of the effective permeability.

Numerically, the S-parameters are computed by sequencing through a series of harmonic solutions with different port excitation over the desired frequency range.

Optimization Problem

The aim of the topology optimization of negative permeability dielectric metamaterials is to obtain highly negative permeability values. The objective of the optimization problem is also to find a distribution of dielectric material in the design domain that exhibits these values of permeability.

Topology optimization

Topology optimization is a mathematical approach that optimizes material layout within a given design space, for a given set of loads and boundary conditions such that the resulting layout meets a prescribed set of performance targets. Using topology optimization, engineers can find the best design concept that meets the design requirements. Topology optimization has been developed through the use of the FEM for the analysis, and optimization techniques based on the method of moving asymptotes, genetic algorithms, optimality criteria method, level set methods, and topological derivatives. Topology optimization allows the control of not only the geometry but also of topology of a structure. It involves the determination of the type of structural elements (location, number, shape of holes) and their connectivity within the design space available when the loads and the boundary conditions are supposed known. Indeed, its flexibility leads to original and innovative solutions to engineering problems. Topology optimization really increases the performance of structures. For traditional problems, the gain in the objective functions could be very significant compared to size and shape optimization.

Formulation of the optimization problem

The aim of this section is to formulate the optimization problem. As the effective permeability has to be minimized, the purpose of the optimization problem is to minimize the real and the imaginary parts of the effective permeability given by

µ ef f = µ ′ + j × µ ′′ (19)
where µ ef f is the effective permeability, µ ′ represents its real part, while µ ′′ is its imaginary part.

Otomori et al. [START_REF] Otomori | A topology optimization method based on the level set method for the design of negative permeability dielectric metamaterials[END_REF] showed that, as the real part of the effective permeability exhibits an anti resonance point and the imaginary part does not, the minimization process has to be divided into two stages.

During the first one, the imaginary part is minimized. During the second one, the real part is minimized, and the final state of the obtained topology during the first step is used as an initial state. The typical evolution of the real part and the imaginary part are respectively shown in Figure 4. Boundary conditions in eq. ( 6)

-(9) (20) 
The optimization process of the second stage of the optimization process is described as follows min µ ′

Subject to Governing equations of the problem in eq. (1) -(5)

Boundary conditions in eq. ( 6)

-(9) (21) 
There is no constraint on the objective function because the global minimal value is searched. Moreover, one can note that these two stages are completely independent and applied one after the other.

The resulting topology of the first stage is used as an initial topology for the second stage.

Developed method to solve the problem: Adapted Particle Swarm Optimization

Standard Particle Swarm Optimization

The population-based metaheuristic optimization methods are very useful to solve the problems called "difficult to solve". Using a population of potential solutions instead of just one, these methods have the ability to converge to the global optimum. In this work, the method used to solve the optimization problem is the Particle Swarm Optimization (PSO) algorithm. This method was first developed by

Reynolds [START_REF] Reynolds | Flocks, herds and schools: A distributed behavioral model[END_REF] at the end of the 1980's. Observing the bird flocks, he determined the way these animals influence their trajectories, without determining a leader. Then, they have the ability to quickly and naturally converge to the best direction for their survival.

Thus, the PSO method is a numerical transformation of these observations. In fact, Reynolds thought that the animals must have some memory capacities to converge like that: each individual can evaluate the quality of its position, and memorize its own best performance. Then, each individual can ask and follow some of the individuals in its neighborhood. At each time step, each individual chooses the best performance it has in its memory, and modifies its trajectory according to the performances he had memorized. Then, based on these observations, the PSO algorithm defines several particles. Each particle is a potential solution of the optimization problem, and moves in the solution space to follow the best particle, and finally converge to the best solution.

Then, in the standard version of PSO, the position of a particle n o i at iteration t + 1, noted X t+1 i is given as a function of :

• X t i : The position of the particle at the iteration t,

• V t i : The velocity of the particle i at the iteration t,

• G t best : The position of the best particle found so far by the algorithm at iteration t,

• P t i,best : The position of the best personal performance of the particle found at the iteration t.

The position change of each particle iof the swarm is given in the following manner [START_REF] Eberhart | A new optimizer using particle swarm theory[END_REF] [48]:

   V t+1 i = ω × V t i + c 1 × rand 1 × (P t+1 i,best -X t i ) + c 2 × rand 2 × (G t+1 i,best -X t i ) X t+1 i = X t i + V t+1 i ( 22 
)
where c 1 and c 2 are acceleration factors, ω is the inertia weight defined to control the influence of the previous velocity on the next one [START_REF] Luh | A binary particle swarm optimization for continuum structural topology optimization[END_REF], and rand 1 and rand 2 are some random real numbers distributed in [0, 1].

The speed of the particles has to be constrained for the calculaton to converge. The speed of the particles in then defined in [-V max ; V max ] where V max depends on the solution domain, such as V max = X max where X max is the maximum position of the particles in the domain.

Discretization to switch from standard PSO to topology optimization

As the finite element method is used to calculate the S-parameters, the design domain is discretized in elements. Each element can have the material defined as the background material, or the material defined as the dielectric material.

Then, the topology optimization consists in the modification of the material distribution in the design domain. In two dimensions, and on a very simple problem, a particle could be the mesh represented in Figure 5. Blue elements represent the elements where there is the dielectric material. White elements represent the elements where there is the background material. (which corresponds to the absence of dielectric material). Each time, each particle is defined in the solutions-space by the following information:

• Its position in the solutions space.

• Its speed.

• The value of the objective function for its actual position.

Particles displacements

Each particle is linked with some particles, considered as the neighborhood, which are:

• Itself.

• Two of the other particles (this is the famous LBEST population topology developed by Eberhart et al. [START_REF] Eberhart | A new optimizer using particle swarm theory[END_REF] [55] [START_REF] Mendes | Watch thy neighbor or how the swarm can learn from its environment[END_REF]),

• The best particle found so far since the beginning of the calculation (this particle of the neighborhood has to be updated at each iteration of the algorithm).

At each iteration of the PSO algorithm, each particle calculates its speed and its future position in the solutions space, in terms of the values given by the particles linked with it. The moving behaviour of each particle combining the known positions, such as its best performance and the best performance of the neighborhood, is illustrated in Figure 6. The sum of the concerning terms used in the calculation of the new position of the particle is represented in this figure by the red vector sum.

Actual position

To my best personal performance

Actual speed

To the best performance of my neighborhood

New position

New speed

Figure 6: Moving of the particles in the solutions space

Increment formulas

To increment the topologies from an iteration to the following, Luh et al. [START_REF] Luh | A binary particle swarm optimization for continuum structural topology optimization[END_REF] proposed an algorithm to switch from the continuous variables of standard PSO, to the discrete binary variables of the topology optimization. To adapt the PSO algorithm to our solutions space, that is a space with particles discretized in binary elements, the variables known as genotypic, and the variables known as phenotypic have to be distinguished from each others.

In genetic studies, the genotypic character corresponds to coding of the visible characters. Thus, a gene, which is a sequence of nitrogenous bases in a precise order, is the coding : it is the genotypic character. Then, this gene implies a physical character, such as eye color : it is the phenotypic character.

In the same way, each particle has a genotypic character and a visible phenotypic character. The genotype corresponds to the binary coding of the materials in the elements of each particle. The phenotype corresponds to the values of the objective function and the speed of the particle at each moment. Thus, to modify the phenotype, the genotype has to be modified as well, transforming the genotypic speed in a phenotypic speed. This phenotypic speed is, in fact, a probability of each element to change its position following the information of the neighborhood.

Then, the variables associated at each particle are the following:

• X k p,i .
The phenotypic position of the particle n • i at the iteration n • k: That is the value of the objective function of this particle at the iteration n • k.

• V k p,i :
The phenotypic speed of the particle n • i at the iteration n • k.

• G k p,best : The best phenotypic position found by the neighborhood particles. That is the best value of the objective function since the beginning of the calculation.

• P k p,best,i : The best phenotypic position known of the particle n • i at the iteration n • k. That is the best value of the objective function known for this particle.

• proba: The genotypic speed of the particle n • i at the iteration k. It is a probabilistic translation of the genotypic speed which allows the probability of each element to change its genotype.

• V p,min : The minimum phenotypic speed possible for a particle.

• V p,max : The maximum phenotypic speed possible for a particle.

• X k g,i :
The genotypic position of each element of the particle n • i at the iteration n • k. That is the best binary vector defining the materials distribution on the elements of the particle's mesh.

• P k g,best,i : The best genotypic position of the particle n • i at the iteration n • k. That is the binary vector defining the materials distribution in the elements of the particle's mesh.

• G k g,best : The best genotypic position found since the beginning of the calculation. That is the binary vector defining the materials distribution in the elements of the best particle's mesh.

And the constants of the algorithm are defined as following:

• The maximum phenotypic speed which could be reached by the particles V max .

• The minimum phenotypic speed which could be reached by the particles V min .

• The inertia of the particles w, that is their capacity to follow their own path.

• The maximum number of iterations.

As explained above, it is important to note that the phenotypic parameters are scalars, not vectors.

Then, the phenotypic speed is the same scalar for all the elements of a particle, but the binary values of elements are different, because of the transformation of the speed into a probability.

The translation of the phenotypic speed in the genotypic speed transposes the displacement of a particle to the state changing of the elements which are in the particle. The developed PSO method is then a double-PSO-method: The following scheme shows that the two steps fit into each other, as one can see in algorithm 1.

Algorithm 1 Fitting of the two-steps-algorithms

Random generation of particles positions: that is topologies.

Calculation of the objective function using the FEM and the S-parameters.

for each particle do 1) Calculation of the new speed :

-Random generation of r 1 and r 2

-V k+1 p,i = w V k p,i + c 1 r 1 • (P k p,best,i -X k p,i ) + c 2 r 2 (G k p,best -X k p,i ) 2)
Transformation of the phenotypic speed in a genotypic speed : Changing of the genotypic state of the element :

proba = V k p,i -V p,min Vp,max-V p,min
-X k+1 g,i = X k g,i if 0 < proba < a 5 -X k+1 g,i = 1 if a 5 < proba ≤ a and b ≤ proba -X k+1 g,i = 0 if a 5 < proba ≤ a and b > proba -X k+1 g,i = P k g,best,i if a < proba ≤ 1+a 2 -X k+1 g,i = G g,best k if 1+a 2 < proba ≤ 1 end for
Calculation of the objective function with the FEM and the S-parameters.

end for

The constants c 1 and c 2 represent trust parameters indicating how much confidence the current particle has in itself and how much confidence it has in the swarm, respectively. These acceleration constants c 1 and c 2 indicate the stochastic acceleration terms which pull each particle towards the best position attained by the particle or the best position attained by the swarm.

The role of inertia weight ω is considered important for the convergence behavior of PSO algorithm.

The inertia weight is employed to control the impact of the previous history of velocities on the current velocity. Thus, the parameter ω regulates the tradeoff between the global and the local exploration abilities of the swarm. A proper value for the inertia weight provides balance between the global and local exploration ability of the swarm, and, thus results in better solutions. Then, a low value of ω allows the particles to stay in the same area, and favors the exploitation capacities of the swarm, while a high value pulls the particles in the solutions space to discover new areas. The material parameters are detailed in Table 1.

Numerical implementations

Background material Dielectric material Permeability 1 1

Permittivity 100-i 1 The impacted electric field is E = E 0 • y and normal incident angle (ϕ, θ) = (0, 0), and E 0 = 1. The element used to model the system is a high-frequency tetrahedral element which models 3-D electromagnetic fields and waves governed by the full set of Maxwell's equations in linear media, such as the metamaterials. It is based on a full-wave formulation of Maxwell's equations in terms of the time-harmonic electric field F (exponent jωt dependence assumed). It is defined by up to ten geometric nodes with AX degree of freedom (DOF) on element edges and faces. The physical meaning of the AX DOF in the element is a projection of the electric field E on the edges and faces of the element (for more details about this element, which is the only one developed in ANSYS based on the Maxwell's equations, please refer to [57] [58]). Figure 7 shows the geometry and the nodes of this element.

There are some remarks about the units used for the modelling of the numerical model. The frequencies for which the calculations of the S-parameters are done are given in terms of the geometric dimensions of the model. Then, let a be a geometric dimension of the model. The frequencies, discretized from f req 1 to f req 2 by f req inc , are given by the formulas ( 23) -( 28). 

λ 2 = a 1.1 (24) 
λ inc = a 0.05 ( 25)

f req 1 = 1e9 λ 1 (26) 
f req 2 = 1e9 λ 2 (27) 
f req inc = 1e9

λ inc 2 (28) 
Then, as the unit systems are not well defined in the FEM software ANSYS, it is important to be coherent with the used units. We chose a = 60µm, and the frequencies are thus given in table Then, as the dimension a is defined as 60 without any unit, it is implicit in the software that a is given in µm and the frequency is then given in THz.

Numerical examples

Effective permeability minimization, targeting 10 THz

Because of the presence of the anti-resonance point on the evolution of the real part of the effective permeability, the optimization process has to be implemented in two steps. During the first one, the imaginary part of the effective permeability is minimized, and during the second one, the real part of the effective permeability is minimized. The parameters of the PSO algorithm are detailed in Table 3.

PSO parameters

Number of particles 10

Minimum speed of the particles -10

Maximum speed of the particles 10

Inertia of the particles w 0.8

Parameter c 1 4

Parameter c 2 4

Maximum number of iterations 100 Minimizing the imaginary part of the effective permeability, the convergence history of the objective function, that is the imaginary part of the effective permeability, is given in Figure 8. Then, the evolution of the permeability, calculated from the S-parameters is given in Figure 9. Minimizing the real part of the effective permeability, the convergence history of the objective function, that is the real part of the effective permeability, is given in Figure 10. Then, the evolution of the permeability, calculated from the S-parameters is given in Figure 11. The obtained results are detailed in Table 4. The topology of the optimal design domain is given in Figure 12. 

Effective permeability minimization, targeting 15THz

To examine a case where the target frequency is higher than that of the anti-resonance point of the initial configuration, the target frequency is now set to 15THz in this second optimization problem.

The numerical model of the metamaterial and the numerical parameters of the PSO method are the same as in the first optimization case. Minimizing the imaginary part of the effective permeability, the convergence history of the objective function, that is the imaginary part of the effective permeability, is given in Figure 13. The evolution of the permeability, calculated from the S-parameters is given in Figure 14. Minimizing the real part of the effective permeability, the convergence history of the objective function, that is the real part of the effective permeability, is presented in Figure 15. Then, the evolution of the permeability, calculated from the S-parameters is given in Figure 16. The obtained results are detailed in Table 5 and the topology of the optimized design domain is shown in Figure 17. One can see that both the imaginary and real parts of the effective permeability have been minimized, and are negative. The optimization process using PSO has been efficient finding in the two test cases, the topology that exhibits the expected results that minimizes the effective permeability of the considered metamaterial to a high negative value, at a given frequency. The obtained results can be successfully compared, in a qualitative way, to the results of Zhou [START_REF] Zhou | Topology optimization for negative permeability metamaterials using level-set algorithm[END_REF] and Otomori [START_REF] Otomori | A topology optimization method based on the level set method for the design of negative permeability dielectric metamaterials[END_REF]. The optimal topology configurations are not smooth because the developed method is based on the binary PSO approach and the element used in ANSYS to model the electromagnetic field is a tetrahedral element. The obtained topologies are not manufacturable in their present form. But this work is a first attempt to test the performances of the binary version of PSO in topology optimization of electromagnetic metamaterials. The future work could concern the using of a more refined mesh with ANSYS or using a smoothing algorithm to obtain manufacturable topologies.

The main advantage of this work is the possibility to adapt quickly a version of PSO (or other population-based metaheuristic optimization method) to topology optimization. To swith from the continuous equations to the binary repartition of the materials in the domain, only the six equations defined in Algorithm 1 are added. Moreover, the optimization calculation is quiet quick (even if the Finite Element simulation can be expensive in terms of CPU time), and the results are good.

The future work could also consist in the development of a continuous approach based on a levelset-method interfaced with the PSO algorithm. Moreover, a multiobjective optimization process will be applied on the problem to optimize simultaneously the real and imaginary parts of the effective permeability.

Figure 1 :

 1 Figure 1: The field lines deviated from their original path by an electromagnetic metamaterial

Figure 3 .

 3 The unit cell is repeated in the E and H directions. The boundaries Γ 1 and Γ 2 are defined as Perfect Electric Conductors (PEC). A Perfect Electric Conductor boundary (or Electric Wall) is a surface on which the tangential component of the vector electric field E vanishes. The cell sidewalls are assigned as master and slave boundaries, and they are bound together by the periodic boundary conditions. The slave and master boundaries are defined as Perfect Magnetic Conductors (PMC). A perfect magnetic conductor boundary is a surface where the tangential component of the magnetic field H vanishes. The electromagnetic wave in the periodic volume radiates into infinity or is absorbed in the k direction. For this reason, Perfect Matched Layers (PML) elements are used to truncate the open space.
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 23 Figure 2: Periodicity of the model
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 4 Figure 4: Typical evolution of the real and imaginary part of the effective permeability, in terms of the frequency

Figure 5 :

 5 Figure 5: A particle is a material distribution in the elements of the mesh

3 )

 3 Generation of the new swarm : for each particle's element do Random generation of a and b, where (a, b) ∈ [0; 1] 2

5. 1 .

 1 Generalities about the model The numerical calculations of the S-parameters have been realized with the finite element method, implemented in the software ANSYS Classic R ⃝. The model developed is detailed in Figure 3. The dimensions of the global model are a × a × 405µm, where a = 60 is a parameter defining both the geometric dimensions of the global model and the frequencies of the impacted electromagnetic waves, as one can see in the remarks below. The dimensions of the design domain are 40 × 40 × 100µm. The thicknesses of the PML zones are 87 µm. The thicknesses of the security zones are 65 µm.
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 7 Figure 7: Geometry of the element used to model the metamaterial
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 891011412 Figure 8: Convergence history of objective function of first optimization stage for effective permeability minimization problem, targeting 10THz
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 13141516 Figure 13: Convergence history of objective function of first optimization stage for effective permeability minimization problem, targeting 15THz

Table 5 :Figure 17 :

 517 Figure 17: Topology of the optimal design domain, targeting 15THz: (left) front view and (right) perspective view

Table 1 :

 1 Material parameters

Table 2 :

 2 2. Calculation of the used frequencies

	Parameter	Value	With correct units
	a	6.00E -5	60 µm
	λ 1	2.00E -4	200 µm
	λ 2	5.45E -5	54.5 µm
	λ inc	1.20E -3	1200 µm
	f req 1	5.00E + 12	5 T Hz
	f req 2	1.83E + 13	18.3 T Hz
	f req inc	4.17E + 11	0.41 T Hz

Table 3 :

 3 PSO parameters for the optimization process