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Abstract—Tractograms are mathematical representations of
the main paths of axons within the white matter of the brain,
from diffusion MRI data. Such representations are in the form
of polylines, called streamlines, and one streamline approximates
the common path of tens of thousands of axons. The analysis
of tractograms is a task of interest in multiple fields, like
neurosurgery and neurology. A basic building block of many
pipelines of analysis is the definition of a distance function
between streamlines. Multiple distance functions have been
proposed in the literature, and different authors use different
distances, usually without a specific reason other than invoking
the “common practice”. To this end, in this work we want to
test such common practices, in order to obtain factual reasons
for choosing one distance over another. For these reason, in this
work we compare many streamline distance functions available
in the literature. We focus on the common task of automatic
bundle segmentation and we adopt the recent approach of
supervised segmentation from expert-based examples. Using the
HCP dataset, we compare several distances obtaining guidelines
on the choice of which distance function one should use for
supervised bundle segmentation.

Index Terms—diffusion MRI ; tractography ; streamline dis-
tances ; supervised segmentation

I. INTRODUCTION

Current diffusion magnetic resonance imaging (dMRI) tech-
niques, together with tractography algorithms, allow the in-
vivo reconstruction of the main white matter pathways of
the brain at the millimiter scale, see [1]. The most common
representation of the white matter is in terms of 3D polylines,
called streamlines, where one streamline approximates the
path of tens of thousands of axons sharing a similar path.
The whole set of streamlines of a brain is called tractogram
and it is usually composed of 105 − 106 streamlines.

In multiple applications, like neurosurgical planning and
the study of neurological disorders, tractograms are manip-
ulated by algorithms to support navigation, quantification and
virtual dissection, performed by experts, see [2]. During the
virtual dissection of a tractogram, a given anatomical bundle
of interest is segmented by identifying the streamlines that
approximate it best. Such segmentation can be manual, e.g. by
manually defining regions of interest (ROIs) crossed by those
streamlines, or fully automated, like in the case of unsupervi-
sed clustering [3] or supervised segmentation [4], [5].

The research was funded by the Autonomous Province of Trento, Call
”Grandi Progetti 2012”, project ”Characterizing and improving brain mecha-
nisms of attention - ATTEND”.

A common basic building block for such algorithms is
the definition of a streamline-streamline distance function, to
quantify the relative displacements between streamlines. The
idea is that streamlines belonging to the same anatomical
structure lie at small distances, while streamlines belonging
to different anatomical structures lie at greater distances. The
specific distance function defines the result of nearest neighbor
algorithm applied to a streamline. Such algorithm is used in
supervised bundle segmentation, see [4], where an example
bundle of a subject is provided in order to learn how to
segment the same bundle in the tractogram of another subject.

In the literature, several streamline-streamline distance func-
tions have been proposed. The most common distances rely
on streamlines parametrized as sequences of 3D points, even
though other parametrizations exist such as B-splines [6] or
Fourier descriptors [7]. This kind of distances can then be
separated into two main groups: those based on a point-
to-point correspondence between streamlines, i.e. minimum-
average direct flip (MDF) [8], and those not requiring that
(i.e. Hausdorff, currents [9]).

Even though each group of distances has a distinct technical
motivation, little has been said to guide the choice of the
practitioner when choosing a distance for a specific task. To
the best of our knowledge, only in the case of unsupervised
bundle segmentation, by means of clustering, some results are
available about comparing distances. In [10], four different
distances were compared to see the impact on various indexes
for clustering of streamlines. In [11], for the task of clustering
of streamlines, three distances have been compared, obtaining
some evidence that the point density model (PDM) distance
should be preferred for that task.

In this work, we propose to address the gap in the literature
by providing guidelines for the choice of the streamline-
streamline distance function for the specific task of supervised
bundle segmentation. Following the ideas in [4], [5], [12],
we adopt the supervised segmentation framework, where the
desired bundle is automatically segmented from a tractogram
starting from an example of that bundle segmented by an
expert on a different subject.

We computed the supervised segmentations of 9 bundles
with the nearest neighbor algorithm using 8 different distance
functions. We compared the obtained bundles first against a
ground truth, and then one against each other.

Our results show that the quality of segmented bundles does
not significantly change when changing the distance function,
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despite the large differences in computational cost. At the
same time, we observe that, at the streamline level, different
distances result in a different nearest neighbor.

In the following, we first briefly introduce the notation, the
streamline distances and the the approximate nearest neighbor
algorithms used in this work. In Section III, we describe the
details of the experimental setup and provide the results. In
Section IV, we discuss the results and draw the conclusions.

II. METHODS

Let s = {x1, . . . ,xn} be a streamline, i.e. a sequence of
points, where xi = [xi, yi, zi] ∈ R3, ∀i. Let T = {s1, . . . , sN}
be a tractogram and let b ⊂ T represent the set of stream-
lines corresponding to an anatomical bundle of interest, e.g.
the arcuate fasciculus. Usually, n differs from streamline to
streamline, assuming values in the order of 101 − 102. We
indicate the number of points of a streamline s with |s|. N is
usually in the order to 105−106, depending on the parameters
of acquisistion of dMRI data and on reconstruction/tracking
algorithms.

A. Streamline distances
Here we define the streamline distances that are frequently

used in the literature and that are compared in this work.
• Mean of closest distances [15]:

dMC(sa, sb) =
dm(sa, sb) + dm(sb, sa)

2
(1)

where dm(sa, sb) =
1
|sa|
∑

xi∈sa minxj∈sb ||xi − xj ||2
• Shorter mean of closest distances [15]:

dSC(sa, sb) = min(dm(sa, sb), dm(sb, sa)) (2)

• Longer mean of closest distances [15]:

dLC(sa, sb) = max(dm(sa, sb), dm(sb, sa)) (3)

• After re-sampling each streamline to a given number
of points m, such as sa = {xa1 , . . . ,xam} and sb =
{xb1, . . . ,xbm}, the MDF distance, see [8] is defined as:

dMDF,m(sa, sb) = min(ddirect(sa, sb), dflipped(sa, sb))
(4)

where ddirect(sa, sb) = 1
m

∑m
i=1 ||xai − xbi ||2 and

dflipped(sa, sb) =
1
m

∑m
i=1 ||xai − xbm−i+1||2

• Point Density Model (PDM, see [11]):

d2PDM(sa, sb) = 〈sa, sa〉pdm + 〈sb, sb〉pdm − 2〈sa, sb〉pdm
(5)

where

〈sa, sb〉pdm =
1

|sa||sb|

|sa|∑
i=1

|sb|∑
j=1

Kσ(x
a
i ,x

b
j) (6)

and Kσ(x
a
i ,x

b
j) = exp

(
− ||x

a
i−x

b
j ||

2
2

σ2

)
is a Gaussian

kernel between the two 3D points.
• Varifolds distance (see [16]) is the non-oriented version

of the currents [9] distance, namely it does not need
streamlines a and b to have a consistent orientation.

d2varifolds(sa, sb) = 〈sa, sa〉var + 〈sb, sb〉var − 2〈sa, sb〉var
(7)

where

〈sa, sb〉var =
|sa|−1∑
i=1

|sb|−1∑
j=1

Kσ(p
a
i ,p

b
j)Kn(n

a
i ,n

b
j)|nai |2|nbj |2

(8)

with Kn(n
a
i ,n

b
j) =

(
(na

i )
Tnb

j

|na
i |2|nb

j |2

)2

where pai (resp. pbj)

and nai (resp. nbj) are the center and tangent vector of
segment i (resp. j) of streamline a (resp. b). The end-
points of segment i are xi and xi+1 for i ∈ [1, ..., n−1].

B. Supervised Segmentation of Bundles

As in [4], [5], we segment a bundle of interest in the
tractogram of a given (target) subject using a supervised
procedure. This means that we leverage the segmentation
of the same bundle in the tractogram of another subject,
as an example. Assuming that the tractograms of the two
subjects are registered in the same space, e.g. see [8], a
simple supervised segmentation method is based on the nearest
neighbor algorithm: we define the segmented bundle as the set
of streamlines of the target subject that are nearest neighbor
of the streamlines of the example bundle.

More formally, let TAexample and TBtarget be the tractograms of
two different subjects, A and B. Let bAexample ⊂ TAexample be an
example of the bundle of interest, segmented by an expert.
Let bBtarget ⊂ TBtarget be the (unknown) corresponding bundle we
want to approximate using automatic supervised segmentation,
via nearest neighbor. Under the assumptions that TAexample and
TBtarget are co-registered, the approximate bundle b̂Btarget ⊂ TBtarget
is such that

b̂Btarget = {NN(sAe , T
B
target),∀sAe ∈ bAexample} (9)

where sAe is a streamline of the example tract of subject A
and NN(sAe , T

B
target) = argminsB∈TB

target
d(sAe , s

B) its nearest
neighbor streamline in TBtarget, i.e. the one having minimum
distance from sAe .

The notion of streamline-streamline distance can be im-
plemented in multiple ways, such as those listed above,
in Section II-A. For this reason, different distances induce
different segmentations.

Notice that, in principle, computing the nearest neighbors of
the streamlines in TBtarget is expensive, in terms of computations.
The most basic algorithm would require the computation of
|bAexample| × |TBtarget| distances, which is usually in the order
of 107 − 109. According to the timings in Table II, a single
nearest neighbors segmentation may require over 24 hours of
computation, in case of a large bundle.

C. Efficient Computation of Nearest Neighbor

Based on the results in [17], we adopt a simple procedure
to efficiently compute the approximate nearest neighbor of
a streamline, that reduces the amount of computations of
several orders of magnitudes with respect to the standard
algorithm. The procedure is the following: first, we trans-
form each streamline in Ttarget into an d-dimensional vector,
using an Euclidean embedding technique called dissimilarity
representation [18]. For lack of space, we refer the reader



to [17] for all the details. Second, we put all vectors in a k-
d tree [19], which is a space partitioning data structure that
provides efficient 1-nearest neighbor search, which requires
only O(logN) steps, N = |Ttarget|. Then, for each streamline
in bexample, we transform it into a vector using again the
dissimilarity representation step above and we compute its
nearest neighbor in Ttarget through the k-d tree.

III. EXPERIMENTS

We conducted multiple experiments on the the Human
Connectome Project (HCP) dMRI datasets, see [13], [20], (90
gradients; b = 1000; voxel size = (1.25 x 1.25 x 1.25 mm3)).
The reconstruction step was performed using the constrained
spherical deconvolution (CSD) algorithm [21] and the tracking
step using the Euler Delta Crossing (EuDX) algorithm [3]
with 106 seeds. We adopted the white matter query language
(WMQL) [14] to obtain 9 segmented bundles for 10 random
subjects, which we considered as ground truth. We selected
the bundles reproducing the selection in [12], where they
aimed to avoid extreme variability of the same bundle across
subjects, due to the limitations of WMQL. The selected
bundles are reported in the first column of Table I. Each pair
of tractograms was co-registered using the streamline linear
registration (SLR) algorithm [8].

As explained in Section II-C, we represented the streamlines
into a vectorial space, in order to obtain fast nearest neighbor
queries. We considered 8 different distance functions, de-
scribed in Section II: dMC, dSC, dLC, dMDF,12, dMDF,20, dMDF,32,
dPDM and dvarifolds. For dPDM and dvarifolds we set σ = 42mm,
according to [11]. For each subject and distance function,
we computed the dissimilarity representation of the (target)
tractogram TBtarget. According to [17], we selected 40 prototypes
with the subset farthest first (SFF) policy. Then we built the
k-d tree of each TBtarget. For each possible example bundle
bAexample, we first computed its dissimilarity representation with
the prototypes of TBtarget, then segmented the target bundle b̂Btarget
by querying the k-d tree.

Following the common practice, see [8], as accuracy of the
estimation, we measured the degree of overlap between b̂Btarget
and the true target bundle bBtarget, through the dice similarity co-

efficient (DSC) at the voxel-level: DSC = 2
|v(b̂Btarget)∩v(b

B
target)|

|v(b̂Btarget)|+|v(bBtarget)|
where v(b) is the set of voxels crossed by the streamlines of
bundle b and |v(b)| is the number of voxels of v(b).

The experiments were developed in Python code, on top
of DiPy1. The code of all experiments is available un-
der a Free/OpenSource license at http://github.com/emanuele/
prni2017 comparison of distances.

A. Results

In Table I, we report the degree of overlap, as mean DSC,
obtained with the nearest neighbor supervised segmentation,
across the different tracts and the 8 different distance func-
tions considered. The mean is computed over all 90 pairs
(bAexample, T

B
target), obtained from the 10 subjects. For each

bundle and distance function, we observed a standard deviation

1http://nipy.org/dipy, [22].

TABLE I
MEAN DSC VOXEL TABLE

dMC dSC dLC dMDF,12 dMDF,20 dMDF,32 dPDM dvarifolds

cg.left 0.61 0.60 0.59 0.59 0.59 0.59 0.59 0.56
cg.right 0.60 0.59 0.58 0.58 0.57 0.58 0.57 0.55
ifof.left 0.49 0.48 0.47 0.48 0.48 0.47 0.48 0.49
ifof.right 0.47 0.46 0.45 0.45 0.45 0.45 0.46 0.44
uf.left 0.52 0.54 0.55 0.52 0.52 0.53 0.57 0.60
uf.right 0.49 0.52 0.51 0.49 0.49 0.49 0.52 0.56
cc 7 0.58 0.56 0.61 0.64 0.63 0.63 0.59 0.67
cc 2 0.49 0.50 0.52 0.53 0.53 0.54 0.57 0.59
af.left 0.51 0.49 0.51 0.51 0.50 0.50 0.52 0.50
means 0.53 0.53 0.53 0.53 0.53 0.53 0.54 0.55

of DSC of approximately 0.10 2. Such value includes the
variances due to: the anatomical variability across subjects,
the limitations of the WMQL segmentation used as ground
truth and, in minor part, the approximation introduced by the
dissimilarity representation3.

In Table II, we report the time required by a modern desktop
computer to compute 90000 streamline-streamline distances
using the 8 distance functions considered in this study. The
differences in time are due to both the different computational
cost of the formulas in Section II and their implementation.
dMC, dSC, dLC and dMDF, available from DiPy, were imple-
mented in Cython. dPDM and dvarifolds were implemented by us
in Python and NumPy4.

TABLE II
COMPUTATIONAL TIME FOR 90000 PAIRS OF STREAMLINES.

dMC dSC dLC dMDF,12 dMDF,20 dMDF,32 dPDM dvarifolds

time(s) 0.5 0.5 0.5 0.03 0.04 0.05 16 28

In order to collect more insight on the results of Table I, we
investigated in Figure 1 whether different distance functions
returned the same nearest neighbor streamlines. We expect
that distance functions, that are based on different geometric
principles, have a different nearest neighbor. In Figure 1,
each entry represents the frequency with which two distance
functions returned the same nearest neighbor of a given
streamline. Such frequency is computed over all streamlines of
all tracts of all pairs of subjects considered in the experiments,
i.e. approximately 200000 nearest neighbor computations.

IV. DISCUSSION AND CONCLUSION

The results reported in Table I clearly show that there are no
major differences in the accuracy of the supervised segmented
bundles, measured as DSC, when using different distance
functions. The highest mean DSC value, i.e. 0.55 for dvarifolds,
is not significantly higher than the other values. This is partly
different from the results reported in [11] but, as mentioned in
Section I, that work investigated segmentation as unsupervised
clustering of streamlines, while we focus on supervised bundle
segmentation. The supervised approach is example-based, thus
directly driven by anatomy, while clustering is not. For this

2Which correspond to a standard deviation of the mean of 0.01.
3Via bootstrap, we estimated an average contribution of 0.015 to the value

of the standard deviation of DSC.
4http://www.numpy.org
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Fig. 1. Frequency with which two distance
functions selected the same nearest neighbor
of a streamline during all our experiments.

Fig. 2. Example of segmented arcuate fasciculus left with NN using (a) dLC (DSC=0.64) (b) dMDF,20

(DSC=0.69) and (c) dvarifolds (DSC=0.71). (d) Ground truth arcuate fasciculus left. True positive
streamlines in red and false positives in blue. Subject A: HCP ID 201111, subject B: HCP ID 124422.

reason, differences in the results of the two approaches are to
be expected.

The results in Figure 1 show that different distance functions
often result in different nearest neighbor of a streamline,
with some exceptions. Expectedly, all MDF distance functions
frequently select the same nearest neighbor, ≈65% of the
times. Surprisingly, dLC agrees with them ≈45% of the times.
In all other cases the agreement is very low, between 5% and
25%.

Why do different nearest neighbors lead to a similar quality
of segmentation? The potential disagreement between the
results in Table I and Figure 1 can be explained by the
following argument. At the local level, different distances
clearly have a geometrically different concept of proximity,
frequently leading to different nearest neighbors. Nevertheless,
we observed that such different neighbors do not lie far apart
from each other so, at a higher/aggregated level of bundle, it
should not be a surprise that they lead to a comparable quality
of segmentation. This can also be seen in Figure 2, where
the false positives of the bundles segmented with different
distances are almost the same, while the false negatives are
different. Moreover, Table I presents a voxel measure of
bundle overlap, while Figure 1 presents a streamline measure.
A voxel-based measure of bundle overlap is inherently less
sensitive than a streamline-based measure, because different
proximal streamlines usually have many voxels in common. So
when two distance functions lead to different (but proximal)
nearest neighbors, they will positively contribute in terms of
voxel overlap, but not in terms of streamline overlap.

Furthermore, we observe in Table II that the computational
times of the distance functions can be very different. For
instance, there are more than two orders of magnitude between
the computational time of dMDF and the one of dvarifolds. To
conclude, for the supervised segmentation task based on a
voxel-based measure, we suggest that practitioners prefer fast
distance functions, such as dMDF, dMC, dSC or dLC, over slower
ones, like dPDM and dvarifolds.
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