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ABSTRACT
This paper deals with a new two-parameter lifetime distribution with increasing,
decreasing and constant hazard rate. This distribution allows the occurrence of zero
values and involves the exponential, linear exponential and other combinations of
Weibull distributions as submodels. Many statistical properties of the distribution
are derived. Maximum likelihood estimation of the parameters is investigated with a
simulation study for performance of the estimators. Two real data sets are analyzed
for illustrative purposes and it is noted that the distribution is a highly alternative
to the gamma, Weibull, Lognormal and exponentiated

exponential distributions.

KEYWORDS
Hazard rate; Two-parameter distributions; Reliability and statistical measures;
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1. Introduction with motivations

In analysis of the lifetime data, monotone hazard rates are common. Such data can be
modelled using the log-normal, Weibull and gamma distributions. The Weibull distri-
bution is more popular than log-normal and gamma because the survival and hazard
rate functions of the last two distributions have not a closed form and hence numerical
integrations are required. Gupta and Kundu [6] introduced the exponentiated expo-
nential (EE) distribution as an extension to the exponential distribution and also as
an alternative to the gamma distribution. Further developments on the exponentiated
exponential distribution can be seen in [7].

In many practical applications, continuous probability models that allow occurrence
of zero values have vast importance, for example in forecast models when we observe
the monthly rainfall precipitation, it is common in dry periods the non occurrence
of precipitation, therefore the occurrence of zero values can be observed in different
measures, such as the average, maximum and minimum. In survival analysis, we may
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observe data with instantaneous failure due construction problem. Another example
of zero occurrence is the hydrologic data in arid and semiarid regions, like annual peak
flow discharges. Moreover, zero occurrence can be met in many areas, e.g. manufac-
turing defects, medical consultations, hydrology, ecology and econometrics.

The above four distributions (log-normal, Weibull, gamma and exponentiated expo-
nential) do not provide the characteristic of zero occurrence. Therefore, we introduce
a new continuous probability model that allows occurrence of zero values and it shall
be called Polynomial-exponential (PE) distribution. This model represents a powerful
alternative to the mentioned distributions above and also an extension to exponential,
linear exponential and other combinations of Weibull distributions as it shall be seen
later. The model is specified in terms of the cumulative distribution function (cdf) as:

F (x) = 1− e−λx
xα−1

x−1 , x ∈ (0,+∞)\{1},

where α > 0, λ > 0 (and F (x) = 0 if x < 0) and Figure 1 presents plots of the cdf
for different values of α and λ = 2. Note that, there is a discontinuity when x = 1, to
avoid that we can considered the continuous extension for x = 1 given by

F (x) =

{
1− e−λx

xα−1

x−1 , x ∈ (0,+∞)\{1},
1− e−λα, x = 1.

(1)

Moreover, a significant account of mathematical properties for the new distribution are
provided and the hazard rate function has constant, increasing or decreasing shape,
which making the PE distribution an alternative to the mentioned distributions above.
Another attractive feature of the PE distribution is that it has closed form expressions
for its cdf and hazard rate function, which is not the case, for the log-normal and
gamma distributions. Further, the distribution has several particular sub-models. For
α = 1, the PE distribution gives the exponential and when α = 2, it reduces to the
one parameter linear exponential distribution. Also, when α is an integer, we can

express F (x) as F (x) = 1− exp

(
−λ

α∑
k=1

xk
)

, x > 0, and hence the survival function

S(x) = 1 − F (x) of the PE distribution is the product of the survival functions of
Weibull distributions with parameters (λ, 1), (λ, 2), ..., and (λ, α) with respect to value
of k, which means the distribution has an exponential general polynomial.

Also, we can note F (x) given by (1) has the form:

F (x) = G(H(x)),

where G(x) is the cdf associated to the exponential distribution with parameter λ > 0
and H(x) = xx

α−1
x−1 (with H(1) = α) is a positive increasing function with H(0) = 0

and limx→+∞H(x) = +∞.
The inferential procedure for the parameters of PE distribution is presented using

the maximum likelihood estimation. It is shown that one of the estimators can be
obtained in closed-form and this allows us to obtain the estimates solving a simple
one non-linear equation. The performance of the MLEs are compared using extensive
numerical simulations.

The paper is organized as follows. In Section 2 we introduce the PE distribution.
Section 3 is devoted to some of its mathematical properties. Estimations of the param-
eters via the maximum likelihood method are investigated in Section 4. A simulation
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analysis is given in Section 5. In Section 6 we apply our proposed model in two real
data sets. Finally in Section 7 we conclude the paper.
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Figure 1. Cumulative density function shapes for PE distribution considering different values of α and fixed

λ = 2.

2. Polynomial-exponential distribution

The associated probability density function (pdf) of the cdf given by the equation (1)
is

f(x) = λ
αxα+1 − (α+ 1)xα + 1

(x− 1)2 e−λx
xα−1

x−1 , x ∈ (0,+∞)\{1}, (2)

with the continuous extension for x = 1: f(1) = λα(α+1)
2 e−λα. Figure 2 presents some

plot of the PE distribution for different values of α and λ, and showing various shapes
of the density function with left skewness.
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Figure 2. Density function shapes for PE distribution considering different values of α and λ.

As we know, many distributions such as log-normal, Weibull, gamma and exponen-
tiated exponential, to list a few, do not allow occurrence of zero values. In this regard,
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the following remark shows that the PE distribution can be used as a model with
occurrence of zero values.

Let us observe that f(0) = λ > 0 for all α > 0 and λ > 0. Further, it follows from
equation (3) that f(x) ∼ λαxα−1e−λx

α

as x→∞. Therefore, the upper tail behavior
of the pdf is a product of a polynomial power and an exponential polynomial power
decay, both of them depend only on α. Obviously, larger values of α lead to faster
decay of the upper tail, which interprets α as a shape parameter.

The hazard rate function (hrf) is given by

h(x) = λ
αxα+1 − (α+ 1)xα + 1

(x− 1)2 , x ∈ (0,+∞)\{1},

with the continuous extension for x = 1 given by h(1) = λα(α+1)
2 .

The study of the behavior of the hazard function is not an easy task. Glaser’s [5]
lemma is difficult to be implemented since η(t) = − d

dt log(f(t)) does not has a simple
form. However, from graphical analysis we observed that the hazard function presents
an decreasing hazard rate for α > 1 and λ > 0, increasing hazard rate for α < 1 and
λ > 0 and constant rate for α = 1, and for this purpose some plots of the hazard
function with various values for the parameters α and λ are presented in Figure 3.
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Figure 3. Hazard function shapes for PF distribution for λ = 2 and considering different values of α.

Moreover, note that, h(x) ∼ λ as x→ 0, and h(x) ∼ λαxα−1 as x→∞. Hence, we
conclude that, the lower tail of the hazard rate function is a constant, while its upper
tail is a polynomial which allows for increasing, decreasing and constant hazard rate
shapes.

Remark 1. Using the indicator function: 1A(x) = 1 if x ∈ A and 0 elsewhere, we
have following analytic expressions for F (x), f(x) and h(x):

F (x) =
(

1− e−λx
xα−1

x−1

)1(0,+∞)\{1}(x) (
1− e−λα

)1{1}(x)
1(0,+∞)(x),
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f(x) =

(
λ
αxα+1 − (α+ 1)xα + 1

(x− 1)2 e−λx
xα−1

x−1

)1(0,+∞)\{1}(x)

× (3)

×
(
λα(α+ 1)

2
e−λα

)1{1}(x)

1(0,+∞)(x),

and

h(x) =

(
λ
αxα+1 − (α+ 1)xα + 1

(x− 1)2

)1(0,+∞)\{1}(x)(
λα(α+ 1)

2

)1{1}(x)

1(0,+∞)(x).

These analytic expressions will be useful in the next.

3. Mathematical properties

3.1. Some useful expansions

The result below presents a polynomial expansion of the cdf F (x) given by (1).

Proposition 3.1. We have the following expansion, for x ∈ (0,+∞)\{1},

F (x) = 1−
∞∑
k=0

k∑
`=0

∞∑
j=0

Ak,`,j

[
(−1)kxk+α`+j1(0,1)(x) + xα`−j1(1,+∞)(x)

]
,

where

Ak,`,j =

(
k

`

)(
−k
j

)
1

k!
(−1)`+jλk.

Proof of Proposition 3.1. First of all, let us now investigate an expansion for

e−λx
xα−1

x−1 by distinguishing the case x ∈ [0, 1) and the case x > 1.

• If x ∈ [0, 1), note that xα−1
x−1 = (1− xα) 1

1−x . The exponential and binomial series
give

e−λx
xα−1

x−1 =

∞∑
k=0

1

k!

(
−λxx

α − 1

x− 1

)k
=

∞∑
k=0

1

k!
(−λ)kxk(1− xα)k

1

(1− x)k

=

∞∑
k=0

k∑
`=0

∞∑
j=0

(
k

`

)(
−k
j

)
1

k!
(−1)`+j(−λ)kxk+α`+j .

• If x > 1, note that xx
α−1
x−1 = −(1− xα) 1

1− 1

x

. It follows from the exponential and

binomial series that

e−λx
xα−1

x−1 =

∞∑
k=0

1

k!

(
−λxx

α − 1

x− 1

)k
=

∞∑
k=0

1

k!
λk(1− xα)k

1(
1− 1

x

)k
=

∞∑
k=0

k∑
`=0

∞∑
j=0

(
k

`

)(
−k
j

)
1

k!
(−1)`+jλkxα`−j .
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Hence

e−λx
xα−1

x−1 =

∞∑
k=0

k∑
`=0

∞∑
j=0

Ak,`,j

(
(−1)kxk+α`+j1(0,1)(x) + xα`−j1(1,+∞)(x)

)
.

Therefore

F (x) = 1− e−λx
xα−1

x−1 = 1−
∞∑
k=0

k∑
`=0

∞∑
j=0

Ak,`,j

(
(−1)kxk+α`+j1(0,1)(x) + xα`−j1(1,+∞)(x)

)
.

This complete the proof of Proposition 3.1.

The result below presents an expansion of the pdf f(x) given by (2) via polynomial
and the exponential function e−λx, which will be important to ensure the permutation
of sum and integral in several probabilistic quantities.

Proposition 3.2. We have the following expansion, for x ∈ (0,+∞)\{1},

f(x) =

∞∑
k=0

k∑
`=0

∞∑
j=0

Bk,`,j

[
(−1)kRk,`,j(x)1(0,1)(x) + Sk,`,j(x)1(1,+∞)(x)

]
e−λx,

where

Bk,`,j =

(
k

`

)(
−k − 2

j

)
1

k!
(−1)`+jλk+1, (4)

Rk,`,j(x) = αx2k+(α−1)`+j+α+1 − (α+ 1)x2k+(α−1)`+j+α + x2k+(α−1)`+j

and

Sk,`,j(x) = αxk+(α−1)`−j+α−1 − (α+ 1)xk+(α−1)`−j−2+α + xk+(α−1)`−j−2.

Proof of Proposition 3.2. Let us observe that

λx
xα − 1

x− 1
= λx

(
xα − 1

x− 1
− 1

)
+ λx = λx2x

α−1 − 1

x− 1
+ λx.

Therefore, we can express the pdf f(x) as

f(x) = λ(αxα+1 − (α+ 1)xα + 1)e−λx × 1

(x− 1)2
e−λx

2 x
α−1−1

x−1 .

Let us now investigate an expansion for 1
(x−1)2 e

−λx2 x
α−1−1

x−1 by distinguishing x ∈ [0, 1)

and x > 1.
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• If x ∈ [0, 1), it follows from the exponential and binomial series that

1

(x− 1)2
e−λx

2 x
α−1−1

x−1 =

∞∑
k=0

1

k!

1

(x− 1)2

(
−λx2x

α−1 − 1

x− 1

)k
=

∞∑
k=0

1

k!
(−λ)kx2k(1− xα−1)k

1

(1− x)k+2

=

∞∑
k=0

k∑
`=0

∞∑
j=0

(
k

`

)(
−k − 2

j

)
1

k!
(−1)`+j(−λ)kx2k+(α−1)`+j .

• If x > 1, exponential and binomial series give

1

(x− 1)2
e−λx

2 x
α−1−1

x−1 =

∞∑
k=0

1

k!

1

(x− 1)2

(
−λx2x

α−1 − 1

x− 1

)k
=

∞∑
k=0

1

k!
λkxk(1− xα−1)kx−2 1(

1− 1
x

)k+2

=

∞∑
k=0

k∑
`=0

∞∑
j=0

(
k

`

)(
−k − 2

j

)
1

k!
(−1)`+jλkxk+(α−1)`−j−2.

Hence

1

(x− 1)2
e−λx

xα−1

x−1 =

∞∑
k=0

k∑
`=0

∞∑
j=0

(
k

`

)(
−k − 2

j

)
1

k!
(−1)`+jλk

×
[
(−1)kx2k+(α−1)`+j1(0,1)(x) + xk+(α−1)`−j−21(1,+∞)(x)

]
.

Owing to this equality, we obtain the desired expansion:

f(x) =

∞∑
k=0

k∑
`=0

∞∑
j=0

Bk,`,j

[
(−1)kx2k+(α−1)`+j1(0,1)(x) + xk+(α−1)`−j−21(1,+∞)(x)

]
×

(
αxα+1 − (α+ 1)xα + 1

)
e−λx

=

∞∑
k=0

k∑
`=0

∞∑
j=0

Bk,`,j

(
(−1)kRk,`,j(x)1(0,1)(x) + Sk,`,j(x)1(1,+∞)(x)

)
e−λx.

This ends the proof of Proposition 3.2.

3.2. Moments and moment generating function

Here and after, we consider a random variable X following the PE(α, λ) distribution
with α > 0 and λ > 0.

We define the upper incomplete gamma function as Γ(s, x) =
∫ +∞
x ts−1e−tdt and

the lower incomplete gamma function as γ(s, x) =
∫ x

0 t
s−1e−tdt, s > 0, x ≥ 0.
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Let r ≥ 0. Using the notations and the result of Proposition 3.2, the r-moments of
X is given by

E(Xr) =

∫ ∞
−∞

xrf(x)dx =

∞∑
k=0

k∑
`=0

∞∑
j=0

Bk,`,j

(
(−1)kUk,`,j,r + Vk,`,j,r

)
,

where Uk,`,j,r =
∫ 1

0 x
rRk,`,j(x)e−λxdx and Vk,`,j,r =

∫ +∞
1 xrSk,`,j(x)e−λxdx. We have

Uk,`,j,r = α

∫ 1

0
xr+2k+(α−1)`+j+α+1e−λxdx− (α+ 1)

∫ 1

0
xr+2k+(α−1)`+j+αe−λxdx

+

∫ 1

0
xr+2k+(α−1)`+je−λxdx

= α
γ(r + 2k + (α− 1)`+ j + α+ 2, λ)

λr+2k+(α−1)`+j+α+2
− (α+ 1)

γ(r + 2k + (α− 1)`+ j + α+ 1, λ)

λr+2k+(α−1)`+j+α+1

+
γ(r + 2k + (α− 1)`+ j + 1, λ)

λr+2k+(α−1)`+j+1
.

On the other hand, we have

Vk,`,j,r = α

∫ +∞

1
xr+k+(α−1)`−j+α−1e−λxdx− (α+ 1)

∫ +∞

1
xr+k+(α−1)`−j−2+αe−λxdx

+

∫ +∞

1
xr+k+(α−1)`−j−2e−λxdx

= α
Γ(r + k + (α− 1)`− j + α, λ)

λr+k+(α−1)`−j+α − (α+ 1)
Γ(r + k + (α− 1)`− j − 1 + α, λ)

λr+k+(α−1)`−j−1+α

+
Γ(r + k + (α− 1)`− j − 1, λ)

λr+k+(α−1)`−j−1
.

The moment generating function of X is given by, for t < λ,

M(t) = E(etX) =

∫ ∞
−∞

etxf(x)dx =

∞∑
k=0

k∑
`=0

∞∑
j=0

Bk,`,j

(
(−1)kU∗k,`,j(t) + V ∗k,`,j(t)

)
,

where U∗k,`,j(t) =
∫ 1

0 e
txRk,`,j(x)e−λxdx and V ∗k,`,j(t) =

∫ +∞
1 etxSk,`,j(x)e−λxdx. We

have

U∗k,`,j(t) = α

∫ 1

0
x2k+(α−1)`+j+α+1e−(λ−t)xdx− (α+ 1)

∫ 1

0
x2k+(α−1)`+j+αe−(λ−t)xdx

+

∫ 1

0
x2k+(α−1)`+je−(λ−t)xdx

= α
γ(2k + (α− 1)`+ j + α+ 2, λ− t)

(λ− t)2k+(α−1)`+j+α+2
− (α+ 1)

γ(2k + (α− 1)`+ j + α+ 1, λ− t)
(λ− t)2k+(α−1)`+j+α+1

+
γ(2k + (α− 1)`+ j + 1, λ− t)

(λ− t)2k+(α−1)`+j+1
.
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On the other hand, we have

V ∗k,`,j(t) = α

∫ +∞

1
xk+(α−1)`−j+α−1e−(λ−t)xdx− (α+ 1)

∫ +∞

1
xk+(α−1)`−j−2+αe−(t−λ)xdx

+

∫ +∞

1
xk+(α−1)`−j−2e−(λ−t)xdx

= α
Γ(k + (α− 1)`− j + α, λ− t)

(λ− t)k+(α−1)`−j+α − (α+ 1)
Γ(k + (α− 1)`− j − 1 + α, λ− t)

(λ− t)k+(α−1)`−j−1+α

+
Γ(k + (α− 1)`− j − 1, λ− t)

(λ− t)k+(α−1)`−j−1
.

3.3. On other means and moments

The following result proposes an expansion of the primitive
∫ t

0 x
rf(x)dx, with t > 0.

It will be useful in the next.

Proposition 3.3. For any r ≥ 0 and t > 0, we have

∫ t

0
xrf(x)dx =

∞∑
k=0

k∑
`=0

∞∑
j=0

Bk,`,j

(
(−1)kU◦k,`,j,r(t) + V ◦k,`,j,r(t)1[1,+∞)(t)

)
, (5)

where Bk,`,j is defined by (4),

U◦k,`,j,r(t) = α
γ(r + 2k + (α− 1)`+ j + α+ 2, λmin(t, 1))

λr+2k+(α−1)`+j+α+2

− (α+ 1)
γ(r + 2k + (α− 1)`+ j + α+ 1, λmin(t, 1))

λr+2k+(α−1)`+j+α+1

+
γ(r + 2k + (α− 1)`+ j + 1, λmin(t, 1))

λr+2k+(α−1)`+j+1

and

V ◦k,`,j,r(t) = α
Γ(r + k + (α− 1)`− j + α, λt)

λr+k+(α−1)`−j+α − (α+ 1)
Γ(r + k + (α− 1)`− j − 1 + α, λt)

λr+k+(α−1)`−j−1+α

+
Γ(r + k + (α− 1)`− j − 1, λt)

λr+k+(α−1)`−j−1
.

The proof of Proposition 3.3 follows from Proposition 3.2 with U◦k,`,j,r(t) =∫ min(t,1)
0 xrRk,`,j(x)e−λxdx and V ◦k,`,j,r(t) =

∫ t
1 x

rSk,`,j(x)e−λxdx. The expressions of
these integrals in terms of upper incomplete gamma function and the lower incom-
plete gamma function is obtained proceeding as Subsection 3.2.

Several crucial conditional moments use the integral
∫ t

0 x
rf(x)dx for various values

of r. The most useful of them are presented below. For any t > 0,

• The r-th conditional moments of X is given by,

E(Xr | X > t) =
1

1− F (t)

∫ +∞

t
xrf(x)dx =

1

1− F (t)

(
E(Xr)−

∫ t

0
xrf(x)dx

)
.
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• The r-th reversed moments of X is given by

E(Xr | X ≤ t) =
1

F (t)

∫ t

0
xrf(x)dx.

Let µ = E(X).

• The mean deviations of X about µ is given by

δ = E(|X − µ|) = 2µF (µ)− 2

∫ µ

0
xf(x)dx

• The mean deviations of X about the median M is given by

η = E(|X −M |) = µ− 2

∫ M

0
xf(x)dx.

Residual life parameters can be also determined using E(Xr) and
∫ t

0 x
rf(x)dx for

several values of r. In particular,

• The mean residual life is defined as

K(t) = E(X − t | X > t) =
1

S(t)

(
E(X)−

∫ t

0
xf(x)dx

)
− t

and the variance residual life is given by

V (t) = V ar(X−t | X > t) =
1

S(t)

(
E(X2)−

∫ t

0
x2f(x)dx

)
−t2−2tK(t)−[K(t)]2.

• The mean reversed residual life is defined as

L(t) = E(t−X | X ≤ t) = t− 1

F (t)

∫ t

0
xf(x)dx

and the variance reversed residual life is given by

W (t) = V ar(t−X | X ≤ t) = 2tL(t)− [L(t)]2 − t2 +
1

F (t)

∫ t

0
x2f(x)dx.

3.4. Stress-strength reliability

Let X be a random variable following the PE(α, λ1) distribution with pdf denoted
by fX(x) and Y be a random variable following the PE(α, λ2) distribution with cdf
denoted by FY (x), with α > 0, λ1 > 0 and λ2 > 0. Then the stress-strength reliability
is defined by R = P (X > Y ). Since the integral on (0,+∞) of the pdf (2) with
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parameters (α, λ1 + λ2) denoted by f∗(x) is equal to one, we have

R = P (X > Y ) =

∫ +∞

0
fX(x)FY (x)dx

= 1−
∫ +∞

0
λ1
αxα+1 − (α+ 1)xα + 1

(x− 1)2 e−(λ1+λ2)x x
α−1

x−1 dx

= 1− λ1

λ1 + λ2

∫ +∞

0
f∗(x)dx =

λ2

λ1 + λ2
.

This result is of interest in a parametric estimation context; only λ1 and λ2 need to
be estimated to have an estimation of R (the maximum likelihood estimators for λ1

and λ2 yield the maximum likelihood estimator for R by the plug-in method).

3.5. Order statistics distributions

We now introduce order statistics and present some of their properties in our
mathematical framework (general results can be found, for instance, in [4]). Let
X1, X2, . . . , Xn be n i.i.d. random variables following the PE(α, λ) distribution with
α > 0 and λ > 0. Let us consider its order statistics as X1:n, X2:n, . . . , Xn:n,
i.e., for any i ∈ {1, . . . , n}, Xi:n ∈ {X1, . . . , Xn} with X1:n ≤ . . . ≤ Xn:n (so
X1:n = X(1) = inf(X1, . . . , Xn) and Xn:n = X(n) = sup(X1, . . . , Xn)). Let us now
present some important distributions related to X1:n, X2:n, . . . , Xn:n. Some important
of them involving our distribution are presented below. The general expression of the
cdf of Xi:n is given by

FXi:n(x) =
n!

(i− 1)! (n− i)!

n−i∑
k=0

(
n− i
k

)
(−1)k

i+ k
[F (x)]i+k , x ∈ R.

Hence, for any x ∈ (0,+∞)/{1}, we have

FXi:n(x) =
n!

(i− 1)! (n− i)!

n−i∑
k=0

(
n− i
k

)
(−1)k

i+ k

[
1− e−λx

xα−1

x−1

]i+k
.

For the case x = 1, we have

FXi:n(1) =
n!

(i− 1)! (n− i)!

n−i∑
k=0

(
n− i
k

)
(−1)k

i+ k

[
1− e−λα

]i+k
.

The general expression of the pdf of Xi:n is given by

fXi:n(x) =
n!

(i− 1)! (n− i)!
[F (x)]i−1[1− F (x)]n−if(x), x ∈ R.

Thus, for any x ∈ (0,+∞)/{1}, we have

fXi:n(x) =
n!

(i− 1)! (n− i)!
λ
[
1− e−λx

xα−1

x−1

]i−1 αxα+1 − (α+ 1)xα + 1

(x− 1)2 e−λ(n−i+1)x x
α−1

x−1 .
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For the case x = 1, we have

fXi:n(1) =
n!

(i− 1)! (n− i)!

[
1− e−λα

]i−1 λα(α+ 1)

2
e−λα(n−i+1).

As in Remark 1, one can express fXi:n(x) in a one form using 1(0,+∞)\{1}(x) and
1{1}(x).

For i < j and xi < xj , the general expression of the joint pdf of (Xi:n, Xj:n) is given
by

f(Xi:n,Xj:n)(xi, xj) =
n!

(i− 1)! (n− j)! (j − i− 1)
[F (xi)]

i−1[F (xj)− F (xi)]
j−i−1 ×

×[1− F (xj)]
n−jf(xi)f(xj).

For the case (xi, xj) ∈ (0,+∞)2/{(1, 1)}, we have

f(Xi:n,Xj:n)(xi, xj) =

n!

(i− 1)! (n− j)! (j − i− 1)
λ2

[
1− e−λxi

xαi −1

xi−1

]i−1 [
e
−λxi

xαi −1

xi−1 − e−λxj
xαj −1

xj−1

]j−i−1

×
(αxα+1

i − (α+ 1)xαi + 1)(αxα+1
j − (α+ 1)xαj + 1)

(xi − 1)2 (xj − 1)2 e
−λxi

xαi −1

xi−1
−λ(n−j+1)xj

xαj −1

xj−1 .

The expression of f(Xi:n,Xj:n)(xi, xj) for (xi, xj) 6∈ (0,+∞)2/{(1, 1)} can be set in a
similar manner, using the values of F (1) and f(1).

In the following proposition, we provide the asymptotic distributions of the extreme
values X1:n and Xn:n, and show that they are exponential and Gumbel distributions,
respectively, which adapt the standards of the asymptotic distribution of extremes.

Proposition 3.4. Let (Xn)n≥1 be a sequence of i.i.d. random variables following the
PE(α, λ) distribution, then

•
(
nX(1)

)
n≥1

converges in distribution to a random variable X having the expo-

nential distribution of parameter λ.

•
(
Xα

(n) −
log(n)
λ

)
n≥1

converges in distribution to a random variable X having the

Gumbel distribution of parameters 0 and 1
λ .

Proof of Proposition 3.4. Let us prove the two points in turn.

• Since X1, . . . , Xn are i.i.d., using standard mathematical arguments, for x ∈
(0,+∞)/{n}, the cdf of nX(1) is given by

FnX(1)
(x) = 1−

(
1− F

(x
n

))n
= 1− e−λx

( xn )α−1

x
n
−1 .

So limn→+∞ FnX(1)
(x) = 1−e−λx = FX(x). This ends the proof of the first point.

• Again, since X1, . . . , Xn are i.i.d., using standard mathematical arguments, for
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x ∈
(
− log(n)

λ ,+∞
)
/
{

1− log(n)
λ

}
, the cdf of Xα

(n) −
log(n)
λ is given by

FXα
(n)−

log(n)

λ

(x) =

(
F

((
x+

log(n)

λ

) 1

α

))n
=

1− e
−λ(x+ log(n)

λ )
1
α

x+
log(n)
λ
−1

(x+ log(n)
λ )

1
α −1


n

.

Therefore, when n→ +∞, several equivalences give

FXα
(n)−

log(n)

λ

(x) ∼ en log
(

1− e−λx
n

)
∼ e−e−λx .

Hence limn→+∞ FXα
(n)−

log(n)

λ

(x) = e−e
−λx

= FX(x). The second point is proved.

3.6. Stochastic ordering

The ordering mechanism in life time distributions can be illustrate by the concept of
stochastic ordering. See, for instance, [10]. This subsection presents the basic of this
concept, with a result using the proposed distribution. A random variable X is said
to be stochastically smaller than a random variable Y in the

• stochastic order (X ≤st Y ) if the associated cdfs satisfy: FX(x) ≥ FY (x) for all
x.
• hazard rate order (X ≤hr Y ) if the associated hrfs satisfy: hX(x) ≥ hY (x) for

all x.
• likelihood ratio order (X ≤lr Y ) if the ratio of the associated pdfs given by fX(x)

fY (x)

decreases in x.

Important equivalences exist; when the supports of X and Y have a common finite
left end-point, then we have: X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y .

Proposition 3.5. Let X be a random variable following the PE(α, λ1) distribution
with pdf denoted by fX(x) and Y be a random variable following the PE(α, λ2) distri-
bution with pdf denoted by fY (x), with α > 0, λ1 > 0 and λ2 > 0. If λ1 > λ2, then we
have X ≤lr Y .

Proof of Proposition 3.5. For any x ∈ (0,+∞)/{1}, we have

fX(x)

fY (x)
=
λ1

λ2
e(λ2−λ1)x x

α−1

x−1

and fX(1)
fY (1) = λ1

λ2
e(λ2−λ1)α. As mentioned in Introduction, the function H(x) = xx

α−1
x−1

is increasing function of x. Indeed, we have H ′(x) = 1+αxα+1−(1+α)xα

(x−1)2 and a study of

function shows that 1 +αxα+1− (1 +α)xα ≥ 0 for any α > 0. Hence, if λ1 > λ2, fX(x)
fY (x)

decreases in x and X ≤lr Y . Proposition 3.5 is proved.

Remark 2. One can prove that λ1 > λ2 implies that X ≤hr Y,which follows im-
mediately from the definition (2): for any x ∈ (0,+∞)/{1}, we have hX(x) =
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λ1
αxα+1−(α+1)xα+1

(x−1)2
≥ λ2

αxα+1−(α+1)xα+1

(x−1)2
= hY (x), and for x = 1, we have hX(1) =

λ1α(α+1)
2 ≥ λ2α(α+1)

2 = hY (1).

3.7. Record values distributions

Let us now focus our attention on record values and present some of their properties
in our mathematical context (general results can be found, for instance, in [2]). Let
X1, X2, . . . , Xn be n i.i.d. random variables following the PE(α, λ) distribution with
α > 0 and λ > 0. We define a sequence of record times U(n) as follows: U(1) = 1,
U(n) = min{j; j > U(n − 1), Xj > XU(n−1)} for n ≥ 2. We define the i-th upper
record value by Ri = XU(i), with R1 = X1. The general expression of the cdf of Ri is
given by

FRi(x) = 1− (1− F (x))

i−1∑
k=0

[− log(1− F (x))]k

k!
, x ∈ R.

Hence, for any x ∈ (0,+∞)/{1}, we have

FRi(x) = 1− e−λx
xα−1

x−1

i−1∑
k=0

1

k!

[
λx
xα − 1

x− 1

]k
.

For the case x = 1, we have

FRi(1) = 1− e−λα
i−1∑
k=0

(λα)k

k!
.

The general expression of the pdf of Ri is given by

fRi(x) =
[− log(1− F (x))]i−1

(i− 1)!
f(x), x ∈ R.

Hence, for any x ∈ (0,+∞)/{1}, we have

fRi(x) =
1

(i− 1)!
λi
xi−1(xα − 1)i−1(αxα+1 − (α+ 1)xα + 1)

(x− 1)i+1
e−λx

xα−1

x−1 .

Note that, for x = 1, we have

fRi(1) =
1

(i− 1)!
(λα)i

α+ 1

2
e−λα.

The general expression of the joint pdf of (R1, . . . , Rn) is given by, for (x1, . . . , xn) ∈ Rn
with x1 < . . . < xn,

f(R1,...,Rn)(x1, . . . , xn) = f(xn)

n−1∏
k=1

h(xk).
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For the case (x1, . . . , xn) ∈ (0,+∞)n/{(1, . . . , 1)}, we have

f(R1,...,Rn)(x1, . . . , xn) = λn+1αx
α+1
n − (α+ 1)xαn + 1

(xn − 1)2 e−λxn
xαn−1

xn−1

n−1∏
k=1

αxα+1
k − (α+ 1)xαk + 1

(xk − 1)2 .

The expression of f(R1,...,Rn)(x1, . . . , xn) for (x1, . . . , xn) 6∈ (0,+∞)n/{(1, . . . , 1)} can
be set in a similar manner, using the values of f(1) and h(1).

For i < j and xi < xj , the general expression of the joint pdf of (Ri, Rj) is given by

f(Ri,Rj)(xi, xj) =
[− log(1− F (xi))]

i−1

(i− 1)!

[
log
(

1−F (xi)
1−F (xj)

)]j−i−1

(j − i− 1)!
h(xi)f(xj).

For the case (xi, xj) ∈ (0,+∞)2/{(1, 1)}, we have

f(Ri,Rj)(xi, xj) =
[− log(1− F (xi))]

i−1

(i− 1)!

[
log
(

1−F (xi)
1−F (xj)

)]j−i−1

(j − i− 1)!
h(xi)f(xj)

=
1

(i− 1)!
λj
[
xi
xαi − 1

xi − 1

]i−1 1

(j − i− 1)!

[
xj
xαj − 1

xj − 1
− xi

xαi − 1

xi − 1

]j−i−1

×
(αxα+1

i − (α+ 1)xαi + 1)(αxα+1
j − (α+ 1)xαj + 1)

(xi − 1)2 (xj − 1)2 e
−λxj

xαj −1

xj−1 .

The expression of f(Ri,Rj)(xi, xj) for (xi, xj) 6∈ (0,+∞)2/{(1, 1)} can be set in a similar
manner, using the values of F (1), f(1) and h(1).

4. Maximum likelihood estimation

Let X1, X2, . . . , Xn be a random sample with common distribution the PE(α, λ) distri-
bution with α > 0 and λ > 0. Let θ = (α, λ) be the parameter vector and x1, x2, . . . , xn
be the observed values. Then the likelihood function associated to x1, . . . , xn is given
by

L(θ) =

n∏
i=1

(
λ
αxα+1

i − (α+ 1)xαi + 1

(xi − 1)2 e
−λxi

xαi −1

xi−1

)1(0,+∞)\{1}(xi)(
λα(α+ 1)

2
e−λα

)1{1}(xi)

.

For the set of simplicity, let us set ui = 1(0,+∞)\{1}(xi), vi = 1{1}(xi), and
n∑
i=1

ui +

n∑
i=1

vi = n. The log-likelihood function can be expressed as

`(θ) = log(λ)

n∑
i=1

ui +

n∑
i=1

ui log

(
αxα+1

i − (α+ 1)xαi + 1

(xi − 1)2

)

− λ
n∑
i=1

uixi
xαi − 1

xi − 1
+

n∑
i=1

vi (log(λ) + log(α) + log(α+ 1)− log(2)) .
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The nonlinear log-likelihood equations ∂`(θ)
∂θ = 0 are given by

∂`(θ)

∂α
=

n∑
i=1

uix
α
i

(xi − 1)[1 + α log(xi)]− log(xi)

αxα+1
i − (α+ 1)xαi + 1

− λ
n∑
i=1

uixi
xαi

xi − 1
log(xi)

+

(
1

α
+

1

α+ 1

) n∑
i=1

vi = 0,

(6)

and

∂`(θ)

∂λ
=
n

λ
−

n∑
i=1

uixi
xαi − 1

xi − 1
= 0. (7)

Note that after some algebraic manipulations in (7) we have that

λ =
n∑n

i=1 uixi
xαi −1
xi−1

. (8)

Replacing (8) in (6) the maximum likelihood estimates of α and λ are determined
by solving the one linear equation (6). Since it does not admit any explicit solution,
numerical procedures can be used. Under mild conditions the maximum likelihood
estimators are asymptotically normal, with an asymptotic variance-covariance matrix
depending on the Fisher information matrix. Crucial quantities to determine the en-
tries of this matrix are the second partial derivatives of the log-likelihood function
given by

∂`2(θ)

∂α2
=

n∑
i=1

uix
α
i

log(xi)((xi − 1)[2 + α log(xi)]− log(xi))(αx
α+1
i − (α+ 1)xαi + 1)

(αxα+1
i − (α+ 1)xαi + 1)2

−
n∑
i=1

uix
α
i

xαi [(xi − 1)[1 + α log(xi)]− log(xi)]
2

(αxα+1
i − (α+ 1)xαi + 1)2

− λ

n∑
i=1

uixi
xαi

xi − 1
(log(xi))

2 −
(

1

α2
+

1

(α+ 1)2

) n∑
i=1

vi,

and

∂`2(θ)

∂λ2
= − n

λ2
,

∂2`(θ)

∂λ∂α
= −

n∑
i=1

uixi
xαi

xi − 1
log(xi).

5. Simulation analysis

In this section a simulation study is presented to compare the efficiency of the maxi-
mum likelihood method. The comparison is performed by computing the Bias and the
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mean square errors (MSE) given by

Bias(αi) =
1

N

N∑
i=1

α̂i − α , MSE(αi) =
1

N

N∑
j=1

(α̂i − α)2,

Bias(λi) =
1

N

N∑
i=1

λ̂i − λ , MSE(λi) =
1

N

N∑
j=1

(λ̂i − λ)2,

where N is the number of estimates obtained through the MLE. The 95% coverage
probability of the asymptotic confidence intervals are also evaluated. Here we expect
that the most efficient estimation method returns both Bias and MSE closer to zero.
Additionally, for a large number of experiments, using a 95% confidence level, the
frequencies of intervals that covered the true values of α and λ should be closer to 95%.
The programs can be obtained, upon request. The values of the PE were generated
considering the following algorithm:

(1) Generate Ui ∼ Uniform(0, 1), i = 1, . . . , n;
(2) Find xi from the solution of F (xi)− ui = 0 , i = 1, . . . , n;

The simulation study is performed under the assumption (0.5, 2) and (4, 2), N =
100, 000 and n = (20, 35, . . ., 460). The chosen values allow us to obtain data with
both increasing (α < 1) and decreasing (α > 1) hazard rate. It is important to point
out that, the results of this simulation study were similar for different choices of α and
λ. Figures 4 and 5 present the Bias, the MSE and the coverage probability with a 95%
confidence level of the estimates obtained through the MLE for different samples of
size.
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Figure 4. Bias, MSEs related from the estimates of α = 3 and λ = 2 for N simulated samples under the
MLE.

From the obtained results, we can conclude that as there is an increase of n both
Bias and MSE tend to zero, i.e., the estimator are asymptotic efficiency. Moreover,
the coverage probability of the confidence levels tend to the nominal value assumed
0.95. Therefore, the MLE showed to be a good estimator for the parameters of the PE
distribution.
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Figure 5. Bias, MSEs related from the estimates of α = 0.9 and λ = 0.1 for N simulated samples under the

MLE.

6. Application to real data

In this section, we illustrate the flexibility of our proposed distribution by considering
two real data sets. The results obtained from the PE distribution are compared with
ones of the Weibull, Gamma, Lognormal and the EE distributions, and nonparametric
survival function

Here, different discrimination criterion are considered based on log likelihood func-
tion. Let k be the number of parameters to be fitted and θ̂ the MLEs of θ, the
discrimination criterion methods are respectively:

• Akaike information criterion AIC = −2l(θ̂;x) + 2k;
• Corrected Akaike information criterion AICC = AIC +(2 k (k + 1))/(n− k − 1);

• Hannan-Quinn information criterion HQIC = −2 l(θ̂;x) + 2 k log (log(n));

• Consistent Akaike information criterion CAIC = −2 l(θ̂;x) + k (log(n) + 1).

The best model is the one which provides the minimum values of these criteria. The
Kolmogorov-Smirnov (KS) test is also considered aiming to check the goodness of the
fit for the models. This procedure is widely known and based on the KS statistic Dn =
supx |Fn(x)− F (x;θ)|, where supx is the supremum of the set of distances, Fn(x) is
the empirical distribution function and F (x;θ) is the cdf of the fitted distribution.
Under a significance level of 5% if the data comes from F (x;θ) (null hypothesis), the
hypothesis is rejected if the P-value is smaller than 0.05.

The next subsections give a description of the used data and their analysis under
the mentioned distributions above.

6.1. Air conditioning system data

The data have been presented by Proschan [9] and further analyzed by Adamidis and
Loukas [1]. Table 1 consists of the number of successive failures of the air conditioning
system of each member of a fleet of 13 Boeing 720 jet airplanes.

Table 2 displays the MLEs, standard-error and 95% confidence intervals for α and
λ. Table 3 presents the results of AIC, AICc, HQIC, CAIC criteria, for the compared
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Table 1. Data set related to the number of successive failures of the air conditioning system of each member

of a fleet of 13 Boeing 720 jet airplanes.

194 15 41 29 33 181 413 14 58 37 100 65
9 169 447 184 36 201 118 34 31 18 18 67
57 62 7 22 34 90 10 60 186 61 49 14
24 56 20 79 84 44 59 29 118 25 156 310
76 26 44 23 62 130 208 70 101 208 74 57
48 29 502 12 70 21 29 386 59 27 153 26
326 55 320 56 104 220 239 47 246 176 182 33
15 104 35 23 261 87 7 120 14 62 47 225
71 246 21 42 20 5 12 120 11 3 14 71
11 14 11 16 90 1 16 52 95 97 51 11
4 141 18 142 68 77 80 1 16 106 206 82
54 31 216 46 111 39 63 18 191 18 163 24
50 44 102 72 22 39 3 15 197 188 79 88
46 5 5 36 22 139 210 97 30 23 13 14
359 9 12 270 603 3 104 2 438 50 254 5
283 35 12 130 493 487 18 100 7 98 5 85
91 43 230 3 130 102 209 14 57 54 32 67
59 134 152 27 14 230 66 61 34

distributions.

Table 2. MLE, Standard-error and 95% confidence intervals for α and λ.

θ MLE S. error CI95%(θ)
α 0.9010 0.01791 (0.7906; 1.0113)
λ 0.0032 0.00003 (0.0076; 0.0282)

Table 3. Results of AIC, AICc, HQIC, CAIC criteria and the p-value for the KS test for the compared
distributions considering the number of successive failures of the air conditioning system of each member of a

fleet of 13 Boeing 720 jet airplanes.

Test PE Weibull Gamma Lognormal EE
AIC 2358.61 2359.17 2360.58 2361.76 2360.81
AICc 2354.67 2355.23 2356.64 2357.82 2356.86
CAIC 2367.34 2367.89 2369.30 2370.48 2369.52
HQIC 2361.33 2361.89 2363.30 2364.470 2363.52

P-value 0.63435 0.61336 0.37719 0.56520 0.33913

In Figure 6, we have the TTT-plot, the survival function adjusted by the compared
distributions and the non-parametric survival function.

Comparing the empirical survival function with the adjusted models we observe a
goodness of the fit for the PE distribution, which is confirmed from different discrimi-
nation criterion methods as the PE distribution has the minimum value for all statistics
and the largest for the P-value. Consequently, we conclude that the data related to
the number of successive failures of the air conditioning system of each member of a
fleet of 13 Boeing 720 jet airplanes can be described by the PE distribution.
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Figure 6. Survival function adjusted by the compared distributions and a non-parametric method considering

the data sets related to the number of successive failures of the air conditioning system of each member of a
fleet of 13 Boeing 720 jet airplanes.

6.2. Monthly rainfall data

In this subsection, we considered the data set firstly presented in Bakouch et al. [3].
The data set is related to the total monthly rainfall during September at São Carlos
located in southeastern Brazil. Such city has an active industrial profile and high
agricultural importance where the study of the behavior of dry and wet periods has
proved to be strategic and economically significant its development. Table 4 presents
the data related to the total monthly rainfall (mm) during September at São Carlos.

Table 4. The data set related to the total monthly (mm) rainfall during September at São Carlos.

26.40 12.50 1.00 44.80 0.00 74.20 179.50 76.70 269.50
49.00 306.80 102.70 73.50 35.20 72.70 28.80 49.30 132.00
151.50 39.70 136.20 112.00 17.70 11.60 225.20 102.60 27.10
17.50 6.70 82.20 40.70 54.60 115.50 89.50 0.00 17.00
127.40 41.70 43.10 84.70 102.50 120.90 80.10 18.10 5.30
59.50 26.80 0.00 34.30 101.10 60.30 31.50 60.40 45.30
49.50 70.44

Nadarajah and Haghighi [8] observed that maximum likelihood estimate of the
shape parameter is non-unique for the Gamma, Weibull and Generalized exponential
distributions if data set consists of zeros and therefore none of these three distributions
can fit this kind of data set. On the other hand the PE distribution is defined as x ≥ 0,
which allow us to use the original values in the presence of zero. Table 5 displays the
MLE, standard-error and 95% confidence intervals for α and λ. Table 6 presents the
results of the P-value for the KS test for the compared distributions.

Table 5. MLE, Standard-error and 95% confidence intervals for α and λ.

θ MLE S. error CI95%(θ)
α 0.9934 0.0119 (0.7799; 1.2069)
λ 0.0144 0.0001 (0.0000; 0.0292)
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Table 6. Results of KS test for the compared distributions considering the data set related to the total

monthly rainfall during September at São Carlos.

Test PE Weibull Gamma Lognormal EE
P-value 0.66711 0.0000 0.0000 0.0000 0.0000

In the Figure 7, the survival function adjusted by the compared distributions and
the Kaplan-Meier estimator.
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Figure 7. Survival function adjusted by the compared distributions and a non-parametric method considering

the data set related to the total monthly rainfall during September at São Carlos.

The adjusted models when compared to the empirical survival show a goodness of
the fit for the PE distribution. Additionally, this result is corroborated by the P-value
of the KS test. Therefore, our proposed distribution can be used to describe the data
related to the total monthly rainfall during September at São Carlos.
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7. Concluding remarks

In this paper, we introduced a new two-parameter distribution called polynomial ex-
ponential distribution, which generalizes the ordinary exponential, linear exponential
and other combinations of Weibull distributions, because survival function of the PE
distribution represents the product of the survival functions of Weibull distributions
with parameters (λ, 1), (λ, 2), ..., and (λ, α). The new distribution could be an al-
ternative model for lifetime data, specially for the presence of instantaneous failures
(inliers), since standard distributions such as Gamma, Weibull, Lognormal and expo-
nentiated exponential may not be suitable. We provided a mathematical treatment of
the new distribution. The estimation of parameters was discussed by the maximum
likelihood approach. Simulation studies were performed to assess the performance of
the maximum likelihood estimators. We fitted the proposed distribution to two real
data sets and compared its fit to those of commonly known lifetime distributions,
establishing that the new model can be a good competitor for the latter. We hope
that the proposed distribution may be used in wide applications as well as lifetime
modeling. Future studies can be investigated by using other baseline functions G(x),
see Introduction section.
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