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Abstract

The application of anisotropic diffusion equation for color image process-
ing is discussed in this master thesis. Nonlinear PDEs of diffusion type
are a common tool for color image processing and image filtering. These
PDEs are designed in such a way that diffusion eliminates the noise but
preserves the significant edges and features of the image. A diffusion ten-
sor with learning abilities was designed in to provide these features. This
model was previously applied to grey-scale images and gave excellent re-
sults [9]. In this work this model is extended to color images. The pro-
posed algorithm for color image denoising is implemented in the form of
C++ scripts. In order to evaluate our proposed algorithm, comparisons
with Chambolles’s projection algorithm [21, 6] and the more recent DA3D
algorithm [38] are performed. The source code of both algorithms the de-
scription of the methods and the test images were borrowed from the IPOL
online resources. The results confirm the good performance of the diffusion
tensor approach for color images.
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Chapter 1

Introduction

Image denoising has been one of the most important and widely studied
problems in image processing and computer vision. The need to have a
very good image quality is increasingly required with the advent of the
new technologies in various areas such as multimedia, medical image anal-
ysis, aerospace, video systems and others. Indeed, the acquired image is
often marred by noise which may have a multiple origins such as: thermal
fluctuations; quantify effects and properties of communication channels.
It affects the perceptual quality of the image, decreasing not only the ap-
preciation of the image, but also the performance of the task for which the
image has been intended. The challenge is to design methods, which can
selectively smooth a degraded image without altering edges, losing signif-
icant features and producing reliable results. Traditionally, linear models
have been commonly used to reduce noise. It is shown that these methods
perform well in the flat regions of images, but do not preserve edges and
discontinuities which are often smeared out. In contrast, nonlinear models
can handle edges in a much better way than those linear models. Many
approaches have been proposed to remove the noise effectively while pre-
serving the original image details and features as much as possible. In the
past few years, the use of non linear PDEs methods involving nonlinear
diffusion has significantly grown and becomes an important tool in con-
temporary image processing. The key idea behind the nonlinear diffusion
is to incorporate an adaptive smoothness constraint in the denoising pro-
cess.

Nonlinear diffusion equations for image processing were first proposed
by Perona and Malik [37]. It was later improved by Catté, Lions, Morel and
Coll [15] and refined by Alvarez, Lions and Morel [28]. The derivation and
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application of diffusion tensors instead of a scalar diffusion coefficient were
proposed by Cottet and Germain [10] and Weickert [24]. The work in [10]
was further improved by Cottet and El-Ayyadi in [9]. In the later model,
time-delay regularization instead of spatial regularization is used to con-
struct the diffusion tensor. This gives a natural adaptivity of the diffusion
and allows to obtain processed images on steady-states of the models. The
selected steady states are based on a contrast parameter involved in the
time-delay regularization. The model also bears some analogy with neu-
ral networks which obey hebbian rules to update synaptic weights [8]. In
the present work we will demonstrate how an anisotropic diffusion equa-
tion, similar to that studied in [9], can be used to perform filtering of color
images. The application of this approach to color images is done by split-
ting it into the three color channels Red, Green and Blue and filtering each
channel separately.

In order to evaluate the proposed algorithm in comparison with other
color image denoising algorithms, the database of IPOl (Image Processing
On Line) is used. IPOL is an open access journal which publishes state-
of-the-art image processing and image analysis algorithms emphasizing
the role of mathematics as a source for algorithm design. It provides the
detailed description of the published algorithms together with their soft-
ware implementation in the form of C, C++ or Matlab codes. We will make
extensive comparisons with two papers published in the journal, Cham-
bolle’s projection algorithm [21] and the Data Adaptive Dual Domain De-
noising (DA3D) algorithm [38]. The tests will be conducted on noisy color
images obtained from noise-free original images by adding Gaussian noise
of several standard deviation δ. Two image quality metrics, the PSNR (peak
signal to noise ratio) and RMSE (root mean square error), will be used to
evaluate the quality of the restored image. All experiments and obtained
results are described in Chapter 4.

This master thesis is organized as follows. In Chapter 2, we give an
overview of diffusion models for image processing, with more details on
time-delay anisotropic diffusion models. In Chapter 3, the application and
implementation details of the proposed method for color images are pre-
sented. Numerical experiments and results on real photographic images
are shown in Chapter 4. Conclusion and bibliography are given in Chap-
ters 5 and 6 respectively.
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Chapter 2

Image processing techniques
based on partial differential
equations

Image denoising has been one of the most important and widely studied
problems in image processing and computer vision. Indeed, the acquired
image is often marred by noise which may have a multiple origins such
as: thermal fluctuations; quantify effects and properties of communica-
tion channels. It affects the perceptual quality of the image, decreasing not
only the appreciation of the image, but also the performance of the task for
which the image has been intended. The challenge is to design methods,
which can selectively smooth a degraded image without altering edges, los-
ing significant features and producing reliable results. In this context PDE
based techniques for image processing have played central role as PDE-
based methods are one of the mathematically best-founded techniques in
image processing and provides deep mathematical results with respect to
well-posedness. Furthermore, it provides stable algorithm for image pro-
cessing.

PDE-based image processing techniques are mainly used for smooth-
ing and restoration purposes. In image processing we need to cover two
important requirements, firstly, it is necessary to smooth homogeneous re-
gions of the image and at the same time we should preserve the image
edges and features carefully. In order to meet two significant requirements,
Marr and Hildreth [31], later formalized by Witkin [42], Koenderink [27]
and Canny [5], uses a low-pass filtering obtained by convoying the image
with Gaussian of increasing variance. Koenderink [27] soon found out that
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the convolution of the image with a Gaussian at each scale is the solution
of the heat equation itself with the image as initial state.

Let us consider an image u0(x), where x = (x1, x2) denotes space coor-
dinates, the scale-space analysis associated with u0 consists in solving the
next system

∂tu−52u = 0 u(x, o) = u0(x) (2.1)

It has a unique solution

u(x, t) =

{
u0(x) t = 0

(G√2t ∗ u0)(x) t > 0
(2.2)

provided that the function satisfies |u(x, t)| ≤ M exp(a|x|2), M > 0, it
depends continuously on the initial condition u0 with respect to || · ||L∞(R2),
and it meets the maximum-minimum principle infR2 ≤ u(x, t) ≤ supR2u0

on R2 × [0,∞). The point x is an edge for the scale t where | 5 u(x, t)| is
large and52u(x, t) changes sign.

Gaussian smoothing is very attractive for image denoising in terms of
its simplicity and effectiveness, but at the same time it has some disad-
vantages as Gaussian filter does not smooth only noise but also smooths
everything along with it and does not preserve edges and artifacts of the
image [42, 43]. Most of the shortcomings of linear diffusion processes can
be avoided through nonlinear diffusion models.

2.1 Nonlinear (anisotropic) diffusion models

In order to avoid the problems like blurring and localization which appears
in the case of linear diffusion filtering, Perona and Malik [37] in 1987 pro-
pose a nonlinear diffusion method which they called "anisotropic". The
model accomplishes this by applying a process that reduces the diffusiv-
ity in places having higher likelihood of being edges. This likelihood is
measured by a function of the local gradient | 5 u|. Another words they
propose to replace the heat equation by a nonlinear equation. The model
can be written as

∂tu− div · (g(| 5 u|)5 u) = 0, ∂nu = 0, u(x, 0) = u0(x) (2.3)

where ∂nu = 0 denotes homorgeneous Neumann boundary conditions. In
this model the diffusuvity has to be such that g(| 5 u|2)→ 0 when | 5 u| →
∞ and g(| 5 u|2) → 1 when | 5 u| → 0. The idea is that the smoothing
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process obtained by the equation is conditional: if g| 5 u| is big, then the
diffusion will be low and therefore the exact loclization of the edges will
be preserved. If g| 5 u| is small then the diffusion will tend to smooth still
more around (x1, x2). One of the diffusivities Perona and Malik proposed
is

g(| 5 u|2) =
1

1 + | 5 u|2/λ2
, λ > 0 (2.4)

where λ is a threshold (contrast) parameter that separates forward (low
contrast) and backward (high contrast) diffusion [41]. Although Perona
and Malik name their filter anisotropic, it should be noted that – in our
terminology – it would be regarded as an isotropic model, since it utilizes
a scalar-valued diffusivity and not a diffusion tensor.

The experiments of Perona and Malik were visually very impressive:
edges remained stable over a very long time. It was demonstrated [37]
that edge detection based on this process clearly outperforms the linear
Canny edge detector,even without applying non-maxima suppression and
hysteresis thresholding. This is due to the fact that diffusion and edge de-
tection interact in one single process instead of being treated as two inde-
pendent processes which are to be applied subsequently.

Despite of the practical success of the Perona-Malik model, it involves
some serious theoretical problems: (a) None of the classical well-posedness
frameworks is applicable to the Perona-Malik model, i.e. we can not ensure
well-posedness results [33, 25]; (b) Uniqueness and stability with respect
to the initial image should not be expected, i.e. solvability is a difficult
problem, in general [18, 19, 26, 35, 15]; (c) The regularizing effect of the
discretization plays too much of an important role in the solution [16, 3].
The latter is perhaps the key element in the success or failure of the model.
Most practical applications work very well provided that the numerical
schemes stabilize the process through some implicit regularization.

The model which has been proposed by Catté, Lions, Morel and Coll
[15] is a synthesis of Malik and Perona’s ideas which avoids the above-
mentioned difficulties. These authors replace the diffusivity g(| 5 |2) of
the Perona and Malik model by g(| 5 uσ|2) with uσ := Gσ ∗ u and establish
existence, uniqueness and regularity of a solution for σ > 0. Their proposed
model is therefore

∂tu− div(g(| 5 uσ|2)5 u) = 0 ∂nu = 0, u(x, 0) = u0(x) (2.5)

However, this last model keeps some of the drawbacks of the previous
model as it has no clear geometric interpretation, because the term inside
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the divergence is hybrid and combines the estimate of the gradient. In
practice, after the Gaussian filtering, the term g(| 5 uσ|2) allows detection
of the location of the main edges and prevents excessive diffusion at these
location. But the small noise or fluctuation will be smooth enough and can
be diffused away.

It was refined by Alvarez, Lions and Morel further. They proposed and
studied a class of nonlinear parabolic differential equations of the form:

∂tu− g(|G ∗ 5u|)| 5 u|div(
5u
| 5 u|

) = 0 ∂nu = 0 u(x, 0) = u0(x) (2.6)

The degenerate diffusion term | 5 u|div( 5u|5u|) diffuses u in the direction
orthogonal to its gradient 5u and prevents diffusion in the direction of
5u. The term g(|G ∗5u|) is used for edge enhancement and it controls the
speed of the diffusion.

2.2 Nonlinear diffusion filtering with a Diffusion ten-
sor

All nonlinear diffusion filters that we mentioned before utilize a scalar-
valued diffusivity g which is adapted to the underlying image structure.
Therefore, they are isotropic and the flux j = −g 5 u is always parallel to
5u. But it is desirable to direct the flux towards the orientation of interest-
ing features. It can not be done by a scalar diffusivity anymore, so it may
be accomplished by using a diffusion tensor instead of a scalar diffusivity
[10, 41, 8].

All Anisotropic diffusion filters usually apply spatial regularization strate-
gies, only exception is the time-delay regularization of Cottet and El-Ayyadi
[9] which is discussed deeply in the next Section 2.3.

There are two main representatives of anisotropic diffusion processes.
The first one offers advantages at noisy edges, whereas the second one
is well-adapted to the processing of one-dimensional features. They are
called edge-enhancing anisotropic diffusion and coherence-enhancing anisotropic
diffusion, respectively.

2.2.1 Edge-enchancing anisotropic diffusion

In the interior of a segment the nonlinear isotropic diffusion equation (2.5)
behaves almost like the linear diffusion filter (2.1), but at edges diffusion
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is inhibited. Therefore, noise at edges cannot be eliminated successfully by
this process. To overcome this problem, a desirable method should prefer
diffusion along edges to diffusion perpendicular to them.

Anisotropic models do not only take into account the modulus of the
edge detector 5uσ, but also its direction. In this purpose, there is con-
structed the orthonormal system of eigenvectors v1, v2 of the diffusion ten-
sor D such that they reflect the estimated edge structure:

v1 ‖ 5uσ, v2 ⊥ 5uσ (2.7)

To smooth across the edge instead of along the edge, Weickert propose to
choose the corresponding eigenvalues λ1 and λ2 as follows:{

λ1(5uσ) := g(| 5 uσ|2)

λ2(5uσ) = 1
(2.8)

Commonly,5u does not match with one of the eigenvectors of the diffusion
tensor D as long as σ > 0. Hence, this model behaves really anisotropic.
If we let the regularization parameter σ tend to 0, we finally come to the
isotropic Perona–Malik process.

2.2.2 Coherence-enhancing anisotropic diffusion

Another motivation for introducing anisotropy into diffusion processes arises
from the wish to process one-dimensional features such as line-like struc-
tures. It was presented by Cottet and Germain [10], they constructed a
diffusion tensor with eigenvectors as in (2.7) and corresponding eigenval-
ues {

λ1(5uσ) := 0

λ1(5uσ) := η|5uσ |2
1+(5uσ |/σ)2

, η > 0
(2.9)

This is a process diffusing solely perpendicular to 5uσ. For σ → 0, we
observe that 5u becomes an eigenvector of diffusion tensor D with cor-
responding eigenvalue 0. Therefore, the process stops completely. In this
sense, it is not intended as an anisotropic regularization of the Perona–Malik
equation. When u has support around a one-dimentional curve, provided
its curvature does not vary too much on a scale of the order of σ. Therefore,
it can be expected that the diffusion will not affect smooth one-dimentional
objects, and σ appears again as a scale parameter which will determine the
minimal size of the details that one wishes to keep in the image. On the
other hand, if the signal is noisy, then the direction of5uσ and5u will not
show any coherence, and4σ will act as an isotropic diffusion.
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2.3 Time-delay anosotropic diffusion

In contrast with the above anisotropic diffusion filters which use spatial
regularization strategies, Cottet and El-Ayyadi [9] proposed a the time-
delay regularization. Their model is the combination of two tools: anisotropic
nonlinear diffusion and time-delay regularization. It is known from the
previous observations that anisotropic diffusion tensors allow a better track-
ing of the edges in comparison with a scalar diffusion models. Further-
more, time-delay regularization is an alternative to spatial regularization in
the construction of diffusion coefficients from the image itself. The model
is driven by a contrast parameter which selects steady states. These steady
states consist in images made of homogeneous patterns (with constant grey
levels) separated by fronts with stiffness controlled by the contrast parame-
ter. The model has the capability of restoring these steady states as asymp-
totic states, thus avoiding the, sometimes delicate, choice of a stopping
time. In practical implementation the stopping time can be obtained from
the value of the residual between two successive iterations on the model.

2.3.1 Description of the model

Let us consider an initial image in the unit square Ω =]−1,+1]2 whose grey
level is given by a function u0 with values in [−1,+1]. The filter is based on
the next system of differential equations:

∂u

∂t
− div(L5 u) = 0 (2.10)

∂L

∂t
+ L = F (5σu) (2.11)

where
5σu = 5(u ∗ fσ), fσ(y) = σ−2f( yσ ),

∫
fdx = 1.

The system is supplemented with initial values u0 (noisy image) and diffu-
sion matrixL0 and periodic boundary conditions. But boundary conditions
are no significant conditions in image processing they are only dictated by
our wish to get rid of any technical unessential difficulties.

In the equation (2.10) u is a evolving image, L is a 2×2 diffusion matrix
responsible for anisotropy, and F is a 2×2 anisotropy force matrix which is
a function on an image gradient. It is an anisotropic diffusion equation and
the diffusion matrix takes into account information, as time goes on, from
the gradient of u.
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σ is a positive smoothing parameter needed for the mathematical well-
posedness of the system, in precise σ = 0 (for which5σu = 5u) proved to
be satisfactory. It is very important to mention that the parameter should
be considered as independent case, in contrast with other diffusion models
where the smoothing parameter has to be adjusted in particular to the noise
level of the image.

Let us now indicate the smoothness assumption on f and F :
F is a nonnegative symmetric matrix:

〈F (v)ω, ω〉 ≤ 0, ∀v, ω ∈ R2 (2.12)

F and its derivatives are bounded:

|F (v)|+ | 5 F (v)| ≤ C, ∀v ∈ R2 (2.13)

f and its derivatives are bounded. (2.14)

The goal of the (2.13) is clearly to avoid anti-diffusion in (2.10): if one starts
from a positive diffusion matrix

L0 ≥ αId, α > 0 (2.15)

the explicit integration of (2.11) combined with (2.13) yields

L(:, t) ≥ αe−tId (2.16)

and (2.10) is a parabolic equation. For details of the proof of the well-
posedness of the presented model the reader is referred to [9]. It is impor-
tant to note that the spatial regularization is here only introduced for the
purpose of the mathematical analysis.In practice this regularization step is
ignored (or, equivalently, σ is set to 0), which allows to obtain non trivial
steady states.
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Chapter 3

The application of the
diffusion-delay anisotropic
equation model for color image
filtering

Denoising methods for color images can essentially be classified into four
categories: neighborhood filters, frequency domain methods, variational
PDE based methods and non-local methods. The most commonly used
neighborhood filters include blurring filters, median filter or variations of
it, and others such as the filters described in [29, 30]. Neighborhood fil-
ters are easy to implement and fast, and in some applications they can be
effective, although in general their effectiveness is limited. In frequency
domain methods a wavelet, DCT or other type of transformations is first
performed. A filter is then applied to the transformation. The most com-
mon frequency domain method is the wavelet thresholding. The wavelet
thresholding method assumes that noise appear in the wavelet transfor-
mation as small nonzero coefficients in the high frequency range and sets
them to zero. The wavelet thresholding method is very effective in remov-
ing noise, and very fast. It is still perhaps the best “quick and easy” denois-
ing scheme. However, it suffers from Gibbs oscillations at discontinuities.
These oscillations can be reduced, although not eliminated, by using soft
wavelet thresholing [11, 12] and translational invariant wavelet threshold-
ing [7]. Methods that are not PDE based and do not fit the description of the
other two, including some statistical methods, can be classified as non-local
denoising methods, see e.g. [1, 40, 13, 22, 32]. These methods are typically
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slower, and some of them assume certain statistical properties are known.
Given the right images, non-local methods can yield excellent results. For
example, the non-local method developed in [1] and its refinement in [32]
work very well for images with repeat patterns or large homogeneous ar-
eas. Variational PDE based methods are quite effective and easy to imple-
ment but their performance depends on the noise level in the case of images
corrupted with high level of noise it retains some noise or oversmooth the
image.

The proposed method for color image denoising is based on the time-
delay anisotropic diffusion model described in Chapter 2 i.e. the extension
of the model (2.10)-(2.11). In the RGB color space we denoise each of the
three channels to complete the filtering of the color image.

3.1 Application

The proposed method for color image denoising is based on the time-delay
anisotropic diffusion model described in Chapter 2 i.e. it is the extension
of the model. In the RGB color space we denoise each of the three channels
to complete the denoising of the color image. So to clarify the application
of the discussed model for color images we need to discuss the choise of
various parameters in the model (2.10)-(2.11). As it was mentioned above,
the parameter σ is taken equal to zero. Firstly, it is important to explain
the choice of the F in the right hand side of the time-delay regularization
equation (2.11).

The goal of the choices is preventing diffusion across the significant
edges of the image. The distinction between significant edges and high
gradient zones resulting from noise is based on averaging. So, the first
choice is made as orthogonal projection on the direction orthogonal to the
gradient of the image:

F0(5u) = P5u⊥ (3.1)

In two dimensions, this means that, with the notation5u = (u1, u2)

F = | 5 u|−2

[
u2

2 −u1u2

−u1u2 u2
1

]
(3.2)

Also it is necessary to introduce a time scale factor τ in the relaxation equa-
tion (2.11) so that the evaluation equation for the diffusion tensor reads

∂L

∂t
+

1

τ
L =

1

τ
F0(5u) (3.3)
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Equation (3.3) means that the diffusion direction is a time average, over a
time scale of τ , of the directions perpendicular to the edges, while the effect
of the initial choice for L fades away. In comparison with reaction-diffusion
equation where mentioned above directions were based on space averages
of the gradients, a pure diffusion equation where the same directions based
on time averages of the gradients is more tractable.

As the first choice of F leads to the many steady states (any image to-
gether with the diffusion tensor along directions perpendicular to the edges
is a steady state) which in its term leads to the fast convergence of the filter.
As a result, the processed image retains a significant amount of noise. It is
notably in the case of images corrupted with high noise level.

To overcome this difficulty Cottet and El Ayyadi [9] proposed to select
the steady states on the basis of a contrast threshold parameter. They define

Fs(5u) =

{
P5u⊥ if | 5 u| ≥ s
3
2(1− |5u|

2

s2
)Id+ |5u|2

s2
P5u⊥ if not

(3.4)

When the gradients are not large enough the diffusion matrix will thus still
be fed with isotropic diffusion, allowing to further filter the image away
from the edges.

By considering image such that L5 u = 0 where L has the form of the
the right hand side above, one easily finds that the steady states resulting
from this model are images made of homogeneous patterns separated by
fronts of stiffness larger than s.

The model will produce such patterns on its asymptotic states and the
relaxation parameter τ determines the scales of these patterns. The smaller
the parameter τ is chosen, the smaller the features of the pictures can be
preserved. However this relaxation parameter should be large enough to
allow the initial isotropic diffusion to eliminate noise.

3.2 Description of the numerical procedure

Equation (2.10) is discretized by using classical one-sided difference schemes
for the operators divergence and5, together with an explicit time-discretization.
If upq is the value of the u at the pixel (x = ph, y = qh) we set

4x
+up,q = up+1,q − up,q, 4x

−up,q = up,q − up−1,q (3.5)

and similar formulas for finite-differences in the y direction. Let us denote
by

[Lpq]xx, [Lpq]yx, [Lpq]xy [Lpq]yy (3.6)
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the four entries of the tensor L at the pixel (ph, qh). Then (2.10) is solved by

un+1
pq − unpq
4t

−
4x

+([Lpq]
n
xx4x

−u
n
pq + [Lpq]

n
xy4

y
−u

n
pq)

h2

−
4y

+([Lpq]
n
yx4x

−u
n
pq + [Lpq]

n
yy4

y
−u

n
pq)

h2
= 0, wherethetimestepisdenotedby4t.

(3.7)
As for (3.3), it is solved by the implicit scheme:

Ln+1 − Ln

4t
+
Ln+1

τ
=
Fn

τ
(3.8)

which gives

Ln+1
pq = (

1

1 + β
)(βLnpq + Fnpq) (3.9)

where β = τ
4t and Fpq is computed on the basis of (3.4) with gradient

obtained through centered finite difference. Note that using an implicit
scheme for (3.3) (at no additional cost compared to an explicit scheme) al-
lows to unconditionally preserve the positivity of the tensor L.

Color images can be described as a tree-band monochrome image data,
where each band corresponds to a different color. So typical color images
are represented as red, green, and blue or RGB images. Using the 8-bit
monochrome standard as a model, the corresponding color image would
have 24 bits/pixel – 8-bit for each of the three-color bands (red, green, and
blue). In the purpose of applying the numerical procedure described above
it is necessary to split the observed image on its tree channels (Red, Green
and Blue). After that we will be able to filter each channel separately and
combine denoised channels to complete the filtering process for color im-
ages.

We should note that all model parameters that are described in previous
section can be set for each channel with different values as the noise level
and contrast values of the channels can differ.

The algorithm below summarizes the different steps of the method.

Algorithm 1. Proposed algorithm for color image denoising

Step 1: Initialization
Input: A noisy image u0 as a N ×M × 3 matrix, diffusion matrix L0 con-
trast parameter si > 0, τi > 0, time-step parameters δt > 0 and algorithm
stopping criterion, bi > 0 i = 1, 2, 3
Step 2: splitting of the observed image to its tree channels (Red, Green and
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Blue)
Step 3: While |u(t)− u(t− 1)| ≥ b do
3.1. Computation of the gradient using differences (3.7)
3.2. Computation of the F using (3.4)
3.3. Reconstruction of the diffusion tensor using (3.9)
3.4. Image update
Step 4: Applying the iterative scheme to all three channels
Step 5: Reconstruction of the image from r,g,b channels
Output: The denoised image u(T ) as an N ×M × 3 matrix.

The algorithms was implemented in the form of C++ script. Some nu-
merical experiments on original images are provided in Chapter 4.

3.3 Error metrics

In order to evaluate the quality of the processed images we will use stan-
dard error metrics. The better a reconstructed image resembles the original
one, the bigger should be the value produced by this metrics. A common
measure used for this purpose is the peak signal to noise ratio (PSNR). In
addition, it is also simple to calculate but it has only a limited, approximate
relationship with the perceived errors noticed by the human visual system.
This is why higher PSNR values imply closer resemblance between the re-
constructed and the original images, but they do not provide a guarantee
that viewers will like the reconstructed image.

Denoting the pixels of the original image by Pi and the pixels of the re-
constructed image by Qi we first define mean square error (MSE) between
the two images as

MSE =
1

n

n∑
i=1

(Pi −Qi)2 (3.10)

It is the average of the square of the errors (pixel differences) of the two
images. The root mean square error (RMSE) is defined as a square root of
the MSE and the PSNR is calculated as

PSNR = 20log10
maxiPi
RMSE

(3.11)

The PSNR is expressed in decibels.
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Chapter 4

Experimental results

In this chapter we first recall different common type of noise that one has to
deal with in image processing and we discuss the behavior of the method
on these types of noise. We also discuss the choice of the different param-
eters of the methodsand of the stopping criterion and how they affect the
results of the algorithm. Finally, we illustrate our method by compring its
results with Chambolle’s projection algorithm for total variation denoising
and the DA3D algorithm.

4.1 Experiments with different types of noise

Noise is considered as an undesirable effect in image processing which
can damage the image at the time of its capturing or further transmission.
There are numerous sources and reasons of image noise which can be clas-
sified as Impulse noise (Salt and pepper noise), Amplifier noise (Gaussian
noise), Shot noise, Quantization noise (uniform noise), Multiplicative noise
(Speckle noise) and Periodic noise [34]. The goal of image processing is
often to remove a specific kind of noise.

4.1.1 Impulse Noise (Salt and Pepper Noise)

The impulse noise has various denominations in the literature, like spike
noise, random noise or independent noise. It is also well-known as a salt
and pepper noise as black and white dots appear [4] on the image as a result
of noise. This noise increases in the image as a result of sharp and sudden
changes of image signal.
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The first experiment illustrates the behavior of the algorithm when the
color image is corrupted with Salt and Pepper noise of deviation σ = 30
(Figure 4.1).

(a) Original image
.
.

(b) Noisy image
RMSE=63.865
PSNR=11,99

(c) Denoised image
RMSE=9.09
PSNR=28.94

Figure 4.1: From left to right, original image, noisy image corrupted with
Salt and Pepper noise with parameter σ = 30 and filtered image by pro-
posed algorithm.

The root mean-square error (RMSE) and Peak signal-to-noise ratio (PSNR)
are two error metrics used to compare image processing quality. Denoised
image shows that the PSNR is significantly improved while the RMSE de-
creases more than six times. The RMSE represents the cumulative squared
error between the denoised and the original image, whereas PSNR repre-
sents a measure of the peak error. The lower the value of RMSE, the lower
the error. The higher the PSNR, the better the quality of the denoised im-
age. Although Some blurring effect is visible in the denoised image, it ap-
pears that the proposed algorithm provides good results both visually and
in terms of PSNR and RMSE. We can conclude that the proposed algorithm
performs well as a tool for removing the noise of salt and pepper type.

4.1.2 Gaussian Noise (Amplifier Noise)

This noise model is additive in nature [36] and follows a Gaussian distri-
bution. This means that each pixel in the noisy image is the sum of the true
pixel value and a random, Gaussian distributed noise value.

The second experiment demonstrates the behavior of the proposed al-
gorithm in the case of Gaussian noise. As an example, there was taken an
image which was captured with Gaussian noise (noise level σ = 30) and
then processed through our algorithm (Figure 4.2).

The results that were obtained after our second experiment with Gaus-
sian noise show that the denoised image provides significant performance
on the visual level. The PSNR is also very high which serves as an evi-
dence of the best quality of the processed image. Furthermore, RMSE falls
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(a) Original image
.
.

(b) Noisy image
RMSE=72.68
PSNR=10,96

(c) Denoised image
RMSE=8.01
PSNR=63.08

Figure 4.2: From left to right, original image, noisy image corrupted with
Gaussian noise with parameter σ = 30 and filtered image by the proposed
algorithm.

down dramatically. This confirms that our algorithm behaves much better
in removing Gaussian noise in comparison with Salt and Pepper noise.

4.1.3 Poisson Noise (Photon Noise)

Poisson or shot photon noise is the noise that can result when the num-
ber of photons sensed by the sensor is not sufficient to provide detectable
statistical information [36]. This noise has a root mean square value propor-
tional to square root intensity of the image. Different pixels are corrupted
by independent noise values [4].

The third experiment with Poisson noise (Figure 4.3) confirms that the
proposed algorithm works well to remove this type of noise.

4.1.4 Stopping criterion for the algorithm

The question of finding an optimal stopping criterion has been studied in
several previous works. Capuzzo, Dolcetta and Ferretti [20] determine the
optimal time by finding the minimum of a performance index which bal-
ances the computing and stopping costs. It is then applied to the regu-
larized Perona-Malik equation. Their method requires a constant that is
found by experimentation using a typical image with similar details and
discontinuities as the image to be processed. This is a rather vague require-
ment and they demonstrate that one only needs some approximation to the
constant. Sporring and Weickert [23]choose the stopping criteria based on
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(a) Original image
.
.

(b) Noisy image
RMSE=20.54
PSNR=16.77

(c) Denoised image
RMSE=11.08
PSNR=26.87

Figure 4.3: From left to right, original image, noisy image corrupted with
Poisson noise and filtered image by proposed algorithm.

the signal to noise ratio and the relative variance at time t and the initial
image. Mrazek and Navara [39] extend this idea and choose the stopping
criteria so that the correlation of the signal u(T ) and noise u(0) − u(T ) in
the filtered image is minimized. This is applied to several nonlinear filters
both isotropic and anisotropic. Gilboa, Sochen and Zeevi [17] also choose
the optimal stopping criteria to obtain a minimal SNR, i.e. one stops the
process when filtering more signal than noise. This is done by estimating
the covariance of the image and the noise.

As already said, one important feature of our proposed algorithm is
that it exhibits nontrivial steady states. This allows to choose a the stopping
criterion on a very simple basis, by looking at residual difference between
the processed images at successive iterations. We stop the algorithm as
soon as this value goes below a threshold b. For example, we may set b =
10−4.

Color images can be described as a tree-band monochrome image data,
where each band corresponds to a different color. So typical color images
are represented as red, green, and blue or RGB images. Using the 8-bit
monochrome standard as a model, the corresponding color image would
have 24 bits/pixel – 8-bit for each of the three-color bands (red, green, and
blue). In the purpose of applying the stopping criterion method described
above it is necessary to split the observed image to its tree channels (Red,
Green and Blue). Also during the experiments, it was noticed that the noise
level of three colors are different, the blue channel is the most noisy chan-
nel among others. It thus can be advisable to set different bi, i = 1, 2, 3
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thresholds for each channel as a stopping criterion.
The next experiment shows the influence of the value of residual thresh-

old on the result for the flower image, using the scheme that was described
above. In this experiment the same threshold is chosen for all channels
(Figure 4.4). One can see that taking a very small threshold value can result
in undesired blurring of the image.

(a) Original image
.

(b) Noisy image
RMSE=32.92 PSNR=17.78

(c) Denoised image with b=0.0001
RMSE= 1.30 PSNR=45.8512

(d) Denoised image with b=0.00001
RMSE=7.22 PSNR=30.97

Figure 4.4: Top left: original image, top-right : noisy image with Gaussian
noise with standard deviation = 40, bottom-left : processed image and
bottom-right : processed image with b = 0.0001 when the PSNR has its
maximum value and bottom-right : processed image with b = 0.00001.

4.1.5 Discussion of the model parameters

As it was explained above in Section 3, steady states are selected on the
basis of a contrast parameter s. If s = | 5 u|, then L = Fs(5u) and the
algorithm stops. Conversely, if the contrast threshold parameter s is larger
than 5u and gradients are not large enough the diffusion matrix will still
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be fed with isotropic diffusion which allow to continue the filtering process.
The relaxation parameter τ determines the amount of Gaussian diffu-

sion which will remain in the filter before the image settles on a steady
state. In practice this means that it must be chosen according to the noise
level.

So far in in all our experiments we have taken a fixed value τ = 10 and
s = 5. In the next experiment we deal with a very noisy image. Due to the
high level of noise we have set a higher values for our parameters (Figure
4.5). In this case the original image is corrupted with a Gaussian noise with
standard deviation σ = 60 and the filter parameters were s = 7 and τ = 20.

It is evident from the Figure 4.5. that the denoised image is somewhat
blurred but the significant edges are reasonably preserved.

(a) Original image
.

(b) Noisy image, σ = 60
.

(c) Denoised image s = 7,
τ = 20

Figure 4.5: From left to right, original image, noisy image corrupted with
Gaussian noise with parameter σ = 60 and filtered image by proposed
algorithm.

In the next experiments we compare the results of the algorithm for
different values of parameter τ to show its influence on the model. All
experiments were led on the Flower image from Figure 4.7. corrupted with
Gaussian noise of standard deviation σ = 50. In the first case we set equal
values τrgb = 20 for all three channels, in the second case we set values of
relaxation parameter as follows τr = 10, τg = 10, τb = 20, in the third case
we used the reinitialization method suggested in [9] i.e. once the algorithm
reaches the prescribed residual, say at time T , it is restarted with the initial
image u0 and the diffusion tensor obtained at the end of the previous cycle
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LT (Figure 4.6).

(a) Proposed with equal τ
PSNR=18.52

(b) Proposed with differ-
ent τ
PSNR=20.34

(c) Processed image
PSNR=20.92

Figure 4.6: From left to right a) with equal values of parameter τrgb = 20
for all channels, b)with different values of parameter τrgb, τr = 10 τg = 10
τb = 20, c) with the same values of parameter τ and using reinitialization
technique

According to the last experiment It is evident that in the case of high
level of noise it is advisable to choose different values of τ for each channel
(Figure 4.6 (b)) or to apply a reinitialization technique (Figure 4.6.(c)).

4.2 Comparison with other Denoising Algorithms

Denoising of an image is an essential part of image Reconstruction process.
Many algorithms exist to solve this problem e.g. neighborhood filters ([29,
30]), the Wiener local empirical filter [29], the discrete universal denoiser
[14], Chambolle algorithm [21] and so on. In this section we compare our
algorithm, both in terms of quality metrics and computational complexity,
with Chambolle and D3AD algorithms.

4.2.1 Chambolle projection algorithm

Chambolle’s projection algorithm for image denoising is based on Rudin-
Osher-Fatemi (ROF) model, where the denoised image u is the solution of
the following minimization problem:
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minu∈BV (Ω)

∫
Ω
| 5 u(x)|dx (4.1)

subject to the next constraints∫
Ω
u(x)dx =

∫
Ω
f(x)dx and

∫
Ω
|u(x)− f(x)|2dx = σ2|Ω| (4.2)

The first constraint assumes that the noise has zero mean while the sec-
ond constraint uses a priori information on the noise standard deviation σ.
Later, it was proved that (4.1) and (4.2) are linked to the next unconstrained
minimization problem [2]:

minu∈BV (Ω)

∫
Ω
| 5 u(x)|dx+

λ

2
||u− f ||22 (4.3)

for an appropriate Lagrange multiplier λ > 0. With the following notations:
f -observed noisy image
BV (Ω) - the space of functions of bounded variations and defined as

BV (Ω) := u ∈ L1(Ω) :

∫
Ω
| 5 u| <∞ (4.4)

The first term in (4.3) is a smoothing term and the second one measures
the fidelity to the data. The parameter λ controls the trade off between the
regularity and fidelity terms. As λ gets smaller the weight of the regular-
ity term increases. Therefore λ is related to the degree of filtering of the
solution of the minimization problem.

Chambolle proposed the semi-implicit gradient descent scheme described
in Algorithm 1 for computing the discrete minimizer of (4.3).

Algorithm 1. Chambolle’s projection algorithm for gray-scale TV de-
noising

Input: A noisy image f(i, j) as a NxN matrix, λ > 0, time-step param-
eters δt > 0 and algorithm tolerance tol > 0
Output: The denoised image u(i, j) as an NxN matrix.
while max1≤i,j≤N |pn+1

(i,j) − p
n
(i,j)| > tol do

for all pixel (i, j) in the image do
p(i, j)← p(i,j)+δtD(divp−λf)(i,j)

1+∂t|D(divp−λf)(i,j)|
end for
end while
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return u = f − 1
λdivp

The Vectorial Rudin-Osher-Fatemi model (VROF) for color image de-
noising is

minu∈BV (Ω),RM

∫
Ω
| 5 u|dx+

λ

2
||u− f ||2L2(Ω,RM ) (4.5)

where
∫

Ω | 5 u| is an alternative notation for VTV, f = (f1, ..., fM ) is the
given noisy vector-valued image and the L2(Ω, RM )2 norm is defined as

||u− f ||2L2(Ω,RM ) =

∫
Ω

M∑
m=1

|um − fm|2dx (4.6)

Chambolle’s projection algorithm in the vectorial case can be obtained
so that, for any color image f ∈ L2(Ω, RM ), the minimizer of (4.5) is com-
puted as

u = f − π 1
λ
KV TV (f) (4.7)

whereKV TV = v ∈ L2(Ω, RM ) :< v, u >L2(Ω,RM )≤ V TV (u)∀u ∈ L2(Ω, RM ).
And Algorithm 1 is adapted for calculating π 1

λ
KV TV (f) in the discrete set-

ting:

pn+1
m (i, j) =

pn+1
m (i, j) + δtD(divpnm − λfm)(i, j)

1 + ∂t

√∑M
m=1 |D(divpnm − λfm)(i, j)|2

∀1 ≤ m ≤M (4.8)

As in the case of anisotropic differential equations, straight edges are
maintained because of their small curvature. However, details and texture
can be oversmoothed if λ is too small. Nevertheless, there is no definite
formula to find λ corresponding to a particular value of σ. So Chambolle
proposed [6] an algorithm to generate a sequence of values that converges
to a unique λ such that ||u− f ||22 = σ2.

4.2.2 Comparison with Chambolle’s algorithm

In order to evaluate our proposed algorithm, a comparison with Cham-
bolles’s projection algorithm is done. The source code of Chambolle’s pro-
jection algorithm was taken from IPOL web-page [21]. Therefore, for com-
parison, there was used source code provided there and values of all pa-
rameters were taken as in the corresponding article. There were taken orig-
inal images of different sizes and in advance we create from them noisy
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images by adding Gaussian noise of several standard deviations. All ex-
perimental images with noise were processed by both algorithms. Figure
4.7 illustrates all images that were used in our experiments for comparison
of two algorithms.

In addition, Table 4.1 illustrates RMSE and PSNR of noisy images as
well as corresponding denoised images after applying both algorithms. It
is evident from the table that our proposed algorithm gives better results
than Chambolle’s algorithm as the value of PSNR is lower and RMSE is
higher in the case of Chambolle’s algorithm. Furthermore, Chambolle’s
projection algorithm shows the worst results with image "Flowers", it can
be explained with a fact that total variation cannot distinguish between
huge gradients because of the noise singularities on the image such as veg-
etation texture [21].
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(a) Nature 1920x1080

(b) Pinguin 300x300
(c) Autoumn 2968x2190

(d) Dog 962x662

(e) Lena 512x512

(f) Dice 2160x1440

(g) Scientist 736x841 (h) Flower 736x888 (i) Mario 1473x1854

Figure 4.7: Original images used for the comparison between Chambolle’s
projection algorithm and the proposed algorithm.

Moreover, it is very important to compare visually the performance of
both algorithms to see the characteristic artifacts of each one. For this pur-
pose we have taken an image corrupted with Gaussian noise of deviation
σ = 50 and denoised by both algorithms (Figure 4.8). It is obvious from the
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Figure 4.8. that the Chambolle’s algorithm does not work well in the case
of high level of noise and that processed image still retains a substantial
amount of noise, while our proposed algorithm performs better although
the resulting image is a little bit blurred.

Images Noisy image Chambolle’s algorithm Proposed algorithm
Metrics RMSE PSNR RMSE PSNR RMSE PSNR
Nature 18.63 22.73 8.79 29.25 2.86 30.98
Pinguin 27.48 19.35 8.01 30.06 4.04 34.99
Autoumn 28.54 19.02 16.82 23.61 6.62 26.12
Dog 25.95 19.85 6.20 32.28 1.57 44.19
Lena 28.99 18.88 10.50 27.70 3.85 30.41
Dice 25.63 19.95 8.79 29.25 3.59 37.03
Scientist 23.03 20.88 7.28 30.88 4.46 35.14
Flower 27.20 19.44 21.99 21.29 10.44 28.80
Mario 24.86 20.22 8.94 29.10 5.55 31.24

Table 4.1: Comparison between two algorithms with standard deviation
σ = 30 are displayed.

31



(a) Original image
.

(b) Noisy image
RMSE=43.31 PSNR=15.40

(c) Chambolle
RMSE=35.23 PSNR=17.19

(d) Proposed algorithm
RMSE=30.240 PSNR=18.52

Figure 4.8: Top-left : original image, top-right : noisy image with Gaus-
sian noise with standard deviation σ = 50, bottom-left : processed image
by Chambolle’s and bottom-right : processed image by the proposed algo-
rithm.

4.2.3 Comparison with Data Adaptive Dual Domain Denoising

DA3D (Data Adaptive Dual Domain Denoising) is one of the latest and
most effective image denoising methods. It can also be called a “last step
denoising” method that takes as input a noisy image and as a guide the re-
sult of any state-of-the-art denoising algorithm. DA3D is an iterative algo-
rithm that uses a guide image (from a previous iteration) to determine spa-
tially uniform regions to which Fourier shrinkage could be applied without
introducing ringing artifacts [38, 27]. It is a “last step” denoising method
that performs frequency domain shrinkage on shape-adaptive and data-
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adaptive patches. DA3D consistently improves the results of state-of-the-
art methods and many experiments involving different methods were taken
as a guide for DA3D in the paper [27]. According to the results obtained in
this paper, Non-Local Bayes (NL-Bayes) image denoising method showed
the best results both visually and in terms of PSNR.

Non-Local Bayes (NL-Bayes) image denoising algorithm is an improved
variant of the NL-means image denoising method. In this method, each
patch is replaced by a weighted mean of the most similar patches present-
ing a neighborhood. The NL-Bayes strategy improves on NL-means by
evaluating for each group of similar patches a Gaussian vector model. To
each patch is therefore associated a mean (which would be the result of
NL-means), but also a covariance matrix estimating the variability of the
patch group. This permits to compute an optimal(in the sense of Bayesian
minimal mean square error) estimate of each noisy patch in the group,by a
simple matrix inversion [5]. NL-Bayes is very similar to many state of the
art methods like (TSID, BM3D, BM3D-SAPCA). According to the experi-
mental results provided in [5], Nl-Bayes is the best state of the art method
for color image denoising in terms of PSNR and CPU time.

As DA3D is one of the latest and most effective image denoising method
in combination with NL-Bayes, we made some experimental tests to evalu-
ate our algorithm. A reliable implementation of DA3D can be found in the
IPOL platform. We used the source code provided there and took noise-
free images of different size. Both algorithms have been processed on the
noisy images obtained from original ones after adding additive Gaussian
noise of standard deviation δ = 50.

The first experiment is made on the Flower image corrupted with Gaus-
sian noise of standard deviation σ = 50. This image was chosen because it
includes many small details and various gradients of color which makes it
very challenging. The experiment is illustrated in Figure 4.9.

All three algorithms, namely Chambolle, proposed and DA3D algo-
rithms were processed on Flower image corrupted with Gaussian noise of
standard deviation σ = 50. Our proposed algorithm is processed applying
once the reinitialization technique, which as we have seen gives more ro-
bust results with respect to the relaxation parameter. Visually it is evident
that the proposed and DA3D algorithms perform well and look very sim-
ilar to original one. In term of the PSNR metrics, DA3D performs slightly
better.

Our last experiment is based on the set of the images displayed in Fig-
ure 4.7. All three algorithms were ran on the noisy image created from
original images by adding Gaussian noise of standard deviation σ = 30.
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(a) Original image
.

(b) Noisy image
PSNR=15.40

(c) Chambolle
PSNR=17.19

(d) Proposed
PSNR=20.92 (e) DA3D PSNR=22.40

Figure 4.9: From left to right in the top row a) original image, b) noisy
image captured by Gaussian noise with standard deviation σ = 50, and in
the bottom row c) denoised image by Chambolle’s d) denoised images by
proposed algorithm and e) denoised image by DA3D

It is evident from the Table 4.2. that DA3D provides the best results
in terms of the quality metrics PSNR, but is the most time consuming. Its
computational complexity results from the fact that keeping track of the
minimum weight can require scanning of the whole image. In contrast,
Chambolle’s algorithm and our proposed algorithm are quite fast.
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Images DA3D Chambolle’s algorithm Proposed algorithm
Metrics CPU PSNR CPU PSNR CPU PSNR
Nature 3.25 31.02 0.62 29.25 1.25 30.98
Pinguin 0.46 34.50 0.25 30.06 0.11 34.99
Autoumn 0.49 26.19 0.38 23.61 0.16 26.12
Lena 0.34 30.52 0.24 27.70 0.17 30.41
Mario 0.56 31.74 0.25 29.10 0.19 31.24

Table 4.2: Comparison in various experiments of CPU time corresponding
to the three algorithms with standard deviation σ = 30 are displayed.
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Chapter 5

Conclusion

We have studied the capabilities of a class of time-delay anisotropic non-
linear diffusion PDEs for color image filtering. The diffusion equations are
solved independently on each channel of the image.

Despite of the simplicity of the proposed approach, it gives excellent
results in color image denoising, visually and in terms of quality metrics.

In a first set of experiments we have investigated the performance of the
algorithms for several types of noise. We have shown that the best perfor-
mance was obtained in the case of Gaussian noise and the worse in the case
of Poisson noise. These experiments allowed also to discuss the choice of
the two parameters that define the algorithm, the contrast coefficient which
selects the steady states and the relaxation time which controls the amount
of smoothing.

We have further evaluated our algorithm against Chambolle’s projec-
tion algorithm and DA3D (Data Adaptive Dual Domain Denoising) algo-
rithm, using source codes provided by IPOL.

These experiments show that, even in presence of a large amount of
noise, our algorithm yields a rather good trade-off between quality, evalu-
ated both visually and in terms of the quality metrics, and computational
complexity.
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