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NOTES ON RANDOM WALKS IN THE CAUCHY DOMAIN OF

ATTRACTION

QUENTIN BERGER

Abstract. The goal of these notes is to fill some gaps in the literature about random
walks in the Cauchy domain of attraction, which has been in many cases left aside be-
cause of its additional technical difficulties. We prove here several results in that case:
a Fuk-Nagaev inequality and a local version of it ; a large deviation theorem ; two types
of local large deviation theorems. We also derive two important applications of these
results: a sharp estimate of the tail of the first ladder epochs, and renewal theorems – ex-
tending standard renewal theorems to the case of random walks. Most of our techniques
carry through to the case of random walks in the domain of attraction of an α-stable law
with α ∈ (0, 2), so we also present results in that case, since many of them seem to be
missing in the literature.
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1. Introduction

This paper initiated when, consulting some colleagues about random walks in the
Cauchy domain of attraction, they all shared the same observation that this case was
often left aside in the literature, and that many very natural results – to the best of our
knowledge – were not proven. These notes therefore aim at filling as many gaps as possible,
proving some new results as a by-product.

1.1. Setting and first notations. Let (Xi)i > 1 be a sequence of i.i.d., Z-valued, random
variables. We denote Sn :=

∑n
i=1Xi, and Mn := max1 6 i 6 n{Xi}. We assume that

(Sn)n > 0 is in the domain of attraction of an α-stable distribution, with α ∈ (0, 2). We
will put emphasis on the case α = 1, but we introduce notations in the general case.

More precisely, we assume that there is some α ∈ (0, 2) and some slowly varying function
L(·), such that as x→∞, P(|X1| > x) ∼ L(x)x−α and

P(X1 > x) ∼ pL(x)x−α , P(X1 < −x) ∼ qL(x)x−α, (1.1)

with p+ q = 1. If p = 0 (or q = 0), then we interpret (1.1) as o(L(x)x−α).

We define an the scaling sequence, characterized up to asymptotic equivalence by the
following relation

L(an)(an)−α
n→∞∼ 1

n
if α ∈ (0, 2) . (1.2)

We also define the recentering sequence, that we denote bn. We set µ := E[X1] if X1 is
integrable (if X1 is not integrable we abbreviate it as |µ| = +∞), and let

bn ≡ 0 if α ∈ (0, 1) ; bn = nµ if |µ| < +∞ ;

bn = nµ(an) with µ(x) = E
[
X11{|X1| 6 x}

]
if α = 1 and |µ| = +∞.

(1.3)
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We then have that (Sn − bn)/an converges in distribution to a non-trivial α-stable
distribution, see e.g. [15]. We denote Y a random variable with the limiting distribution,
whose density is continuous and denoted by g(·). Under these assumptions, Gnedenko’s
local limit theorem gives (see e.g. [18]):

sup
x∈Zd

∣∣∣anP(Sn = x
)
− g
(x− bn

an

)∣∣∣ n→∞−→ 0 . (1.4)

This local limit result is sharp in the range when |x− bn| is of order an, but does not give
much information when |x− bn|/an → +∞: one aim of our paper is to provide large and
local large deviations estimates, in particular in the case α = 1 which was left aside in
many cases such as [7] or [10, 13].

1.2. Organization of the paper and outline of the results. Let us now present a
brief overview of the paper.

In Section 2, we present large and local large deviation theorems. First, our Theorem 2.1
gives a standard large deviation estimate which seemed to be missing in the case α = 1
with infinite mean in full generality. We provide a Fuk-Nagaev inequality and a local
version of it (Theorem 2.2), which is a cornerstone of our paper and in turn implies our
local large deviation Theorem 2.3 that extends Caravenna and Doney’s result [7, Thm. 1.1]
to the case α = 1. Furthermore, with an additional locality assumption on the distribution
of X1, we provide an improved local large deviation Theorem 2.4, extending that of Doney
[13, Thm. A] to the case α ∈ [1, 2).

In Section 3, we give applications of the large and local large deviations to two distinct
problems. First, we consider the first descending ladder epoch T− = inf{n;Sn < 0}, and
give a sharp asymptotic of P(T− > n) in the case α = 1 with infinite mean (Theorem 3.2)
which improves significantly Budd, Curien and Marzouk’s result [6, Prop. 1]. We also treat
the case α ∈ [1, 2) with finite mean (Theorem 3.3, as was done in [12] for α 6= 1). Second,
we consider renewal theorems for transient random walks: in the case α = 1 with infinite
mean, we give sufficient conditions for the random walk to be transient, and we give the
asymptotics of the Green function G(x) =

∑∞
k=0 P(Sk = x) as x → ∞, see Theorem 3.4

in the “centered” case p = q and Theorem 3.5 in the case p 6= q. We also give a result in
the case α ∈ [1, 2) with finite mean (Theorem 3.6).

In Section 4, we consider several issues arising in the case α = 1 with infinite mean. In
particular, we discuss the question of the transience/recurrence of the random walk: this is
actually quite subtle, since the random walk – even if it goes to +∞ or −∞ in probability
– is shown not to drift to +∞ or −∞ (at least when p, q 6= 0, see Theorem 3.1). We
give sufficient conditions for the random walk to be transient in the “centered” case p = q
(Proposition 4.1) or in the case p 6= q (Proposition 4.2). Moreover, we provide useful
estimates on slowly varying functions (more precisely de Haan functions) related to the
case α = 1 with infinite mean .

All the proofs are collected in Sections 5-6-7-8. In Section 5 we state and prove Fuk-
Nagaev inequalities, which are the central tool for proving the large and local large de-
viation estimates, that are derived in Section 6. In Section 7, we focus on the ladder
epochs theorems in the case α = 1 with infinite mean. In Section 8, we prove the renewal
theorems, first in the case α = 1 with infinite mean, and then in the finite mean case.



RANDOM WALKS IN THE CAUCHY DOMAIN OF ATTRACTION 3

2. Large and local large deviations

Let us begin by stating a large deviation theorem which is standard when α ∈ (0, 1) or
when |µ| < +∞ (see [20] and references therein, also [9]), but appears to be missing in
the case α = 1 with infinite mean.

Theorem 2.1. Assume that (1.1) holds with α ∈ (0, 2), and define an as in (1.2) and bn
as in (1.3). Then,

P(Sn − bn > x) ∼ npL(x)x−α, as x/an → +∞ ,

P(Sn − bn < −x) ∼ nqL(x)x−α, as x/an → +∞ .

(If p = 0 or q = 0, one interpret this as o(nL(x)x−α).)

This result asserts that the large deviation is realized by a so-called one-jump strategy
(see [10] for a general setting). For the case α = 1 with infinite mean, [20] or [10] appears
to be giving the correct behavior only when the step distribution is sufficiently centered,
that is supn |bn|/an < +∞ (see condition (27) in [10]), or when x > δbn for some δ > 0.
The contribution of Theorem 2.1 is therefore to extend the result in the case α = 1 with
infinite mean to the whole range |x|/an → +∞, without any restriction on bn. In Section 5,
we recall the central tool to prove this theorem, the so-called Fuk-Nagaev inequalities (we
prove a new one in the case α = 1 with infinite mean), and we then prove Theorem 2.1 as
a simple consequence of these inequalities.

2.1. Local large deviations. As far as a local version of Theorem 2.1 is concerned,
results can be found in [10, §9] in the “centered” case supn |bn|/an < +∞. Recently,
Caravenna and Doney [7, Thm. 1.1] gave an improved local limit estimate in the case
α ∈ (0, 1) ∪ (1, 2) (and assuming µ = 0 when α ∈ (1, 2)): given γ > 0, they prove that
there is some constant C0 = C0(γ) <∞ such that for all x > 0,

P(Sn = x,Mn 6 γx) 6
C0

an

(
nP(X1 > x)

)d1/γe
.

We extend their result to the case α = 1 without any restriction on bn, and we also prove
a result in the case where Mn 6 y with y � x (which they do not considered).

It essentially corresponds to having a local version of some Fuk-Nagaev inequalities – we
recall these inequalities for α ∈ (0, 2) in Section 5. Here, we give a Fuk-Nagaev inequality
in the case α = 1 and a local version of it, which are new.

Theorem 2.2. Assume that (1.1) holds with α = 1. For every ε > 0 there exist constants
c1, c2, c3 > 0 such that for any 0 6 y 6 x and x > an, we have

P(Sn − bn > x;Mn 6 y) 6
(
c1nL(y)/x

)(1−ε)x/y
+ e−c2

(
x/an

)1/ε
(2.1)

c3an ×P(Sn − bbnc = x;Mn 6 y) 6
(
c1nL(y)/x

)(1−ε)x/2y
+ e−c2

(
x/an

)1/ε
. (2.2)

We stress that corresponding bounds hold in the case α ∈ (0, 1) ∪ (1, 2), see Theo-
rems 5.1-6.1, and that it can be improved in the case α = 1 if we assume that X1 has a
symmetric distribution, or that X1 is non-negative, see Theorem 5.2.

This has a simple consequence, which is an extension of the local limit theorem (1.4) to
the case when |x|/an → +∞.
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Theorem 2.3. For any α ∈ (0, 2) (the case α ∈ (0, 1) ∪ (1, 2) is in [7, Thm. 1.1.]), there
exists a constant C0 > 0 such that for any x ∈ Z

P(Sn − bbnc = x) 6
C0

an
nL(|x|)(1 + |x|)−α . (2.3)

Moreover, if p = 0, we obtain that as x/an → +∞

P(Sn − bbnc = x) = o
( 1

an
nL(x)x−α

)
.

An analogous result holds in the case q = 0, when x/an → −∞.

Let us underline that this statement is somehow optimal under the mere assumption
(1.1): for any sequence (εn)n > 0 with εn → 0, one may find distributions verifying (1.1)
and a subsequence xn such that xn/an → +∞ with

lim sup
n→∞

anP(Sn = xn)

εnnL(xn)x−αn
= +∞ . (2.4)

2.2. Improved local large deviation. We may improve Theorem 2.3 if we assume that
the (left or right) tail of the distribution of X1 verifies a more local condition than (1.1),
as considered for example by Doney in [13] – but only in the case α ∈ (0, 1). The first
natural condition – analogous to Eq. (1.9) in [13] – is that there exists a constant C1 > 0
(resp. C2) such that

P(X1 = x) 6 C1L(x)(1 + x)−(1+α) for all x ∈ N , (2.5)

P(X1 = −x) 6 C2L(x)(1 + x)−(1+α) for all x ∈ N . (2.6)

Another natural assumption – analogous to Eq. (1.3) in [13] – is that P(X1 = x) (resp.
P(X1 = −x)) is regularly varying, that is that

P(X1 = x) ∼ pαL(x)x−(1+α) as x→ +∞ , (2.7)

P(X1 = −x) ∼ qαL(x)x−(1+α) as x→ +∞ . (2.8)

(If p = 0 resp. q = 0, we interpret this as o(L(x)x−(1+α)).)

Theorem 2.4. Assume that (1.1) holds with α ∈ (0, 2). If in addition we have (2.5), then
there is a constant C > 0 such that for any x > an,

P(Sn − bbnc = x) 6 CnL(x)x−(1+α) ∼ C

x

L(x)

L(an)

(
x

an

)−α
. (2.9)

If we have (2.7), then as n→∞, x/an → +∞

P(Sn − bbnc = x) ∼ npαL(x)x−(1+α) . (2.10)

The analogous conclusion to (2.9) (resp. (2.10)) holds for P(Sn−bbnc = −x) if we assume
(2.6) (resp. (2.8)).
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3. Applications: ladder epochs and renewal theorems

In this section, we put more emphasis on the case α = 1 (although we will also state
results in the case α ∈ (1, 2)). Slowly varying functions will be interpreted as functions of
the integers as well as differentiable functions of positive real numbers.

In the case α = 1, we define

`(n) :=

∫ n

1

L(u)

u
du

n→∞∼
n∑
k=1

L(k)

k
, (3.1)

so that |µ| = +∞ if and only if `(n)→ +∞ as n→∞ – in which case `(n) diverges as a
slowly varying function, and verifies `(n)/L(n)→ +∞, see [3, Prop. 1.5.9.a.].

We stress that in the case |µ| = +∞ and if p 6= q, then because of (1.1) we have

µ(t)
t→∞∼ (p−q)`(t) and bn

n→∞∼ (p−q)n`(an). If p = q, we interpret this as µ(n) = o(`(n)).
and the general study gets much more subtle since we do not have a priori the asymptotic
behavior of bn (aside from bn = o(n`(an))). When p = q, we will consider in particular
the case where bn/an → b ∈ R.

3.1. Ladder epochs. Denote T− = inf{n ; Sn < S0 = 0} and T+ = inf{n ; Sn > S0 = 0}
the first descending and ascending ladder epochs. A very natural question is first to know
whether T−, T+ are defective (if so, then Sn is said to drift to +∞, resp. −∞), and to
obtain the asymptotics of the tail probabilities P(T− > n),P(T+ > n).

A crucial tool for this study is our Theorem 2.1, which gives as an easy consequence
the precise asymptotics (see Lemma 7.1 below), in the case α = 1

if p > q , then P(Sn < 0) ∼ q

p− q
L(|bn|)
`(|bn|)

,

if p < q , then P(Sn > 0) ∼ q

p− q
L(|bn|)
`(|bn|)

.

(3.2)

(One may naturally find asymptotics in the general case α ∈ (0, 2).) From this we may
use Theorem 2 in [15, XII.7] and Lemma 7.1 below, to get the following

Proposition 3.1. Assume that (1.1) holds with α = 1, and assume that |µ| = +∞. If
q 6= 0,

+∞∑
n=1

1

n
P(Sn < 0) = +∞,

and the random walk does not drift to +∞, in the sense that T− <∞ a.s. Analogously, if
p 6= 0 then the random walk does not drift to −∞, i.e. T+ < +∞ a.s.

Note that if |µ| < +∞, then the strong law of large numbers gives that (Sn)n > 1 is
transient if µ 6= 0, and drifts to +∞ (resp. to −∞) if µ > 0 (resp. µ < 0).

This proposition hence says that if α = 1 with |µ| = +∞ and q 6= 0, then even if
bn/an → +∞ so that Sn goes to +∞ in probability (since Sn/bn converges in probability
to 1), the random walk does not drift to +∞. We will see below in Section 4.1 that the
random walk may still be transient, but that determining transience/recurrence is a much
more complicated matter.

As far as the asymptotics of P(T− > n) are concerned (the estimates for T+ are sym-
metric by considering (−Sn)n > 0), we refer to the seminal papers of Rogozin [21] and of
Doney [11, 12], and to [5] or [22] for more recent results: however, the case α = 1 is left
aside in these papers. The case α = 1 (to our knowledge) does not appear to have been
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treated in the literature, apart from the recent work of Budd, Curien and Marzouk [6,
Prop. 1] where a rough estimate on P(T− < n) is given in the case where L(n) is constant.
We shall give a sharp asymptotic, in the case of a general slowly varying function.

We will give two levels of sharpness, according to whether we assume that L(·) in (1.1) is
slowly varying in the Flajolet-Odlyzko sense (see conditions V1-V2 in [16]), that is verifies:

V1. there exists some x0 > 0 and some φ ∈ (π/2, π) such that L(z) is analytic in the
region {z ; arg(z − x0) ∈ [−φ, φ]}

V2. we have, for any θ ∈ [−φ, φ] and x > x0∣∣∣L(xeiθ)

L(x)
− 1
∣∣∣ 6 ε(x) ,

∣∣∣L(x log x)

L(x)
− 1
∣∣∣ 6 ε(x) , for some ε(x)

x→∞→ 0 .

This is satisfied for example if L(x) is equal to (log x)a for some a ∈ R or log log x, but we
stress that V2 fails for instance if L(x) = exp((log x)b) for some b ∈ (0, 1).

Theorem 3.2. Assume that (1.1) holds with α = 1 and |µ| = +∞. Then, recalling the
definition of bn = nµ(an) and of ` in (3.1)

(i) If p = q and if b = limn→∞ bn/an = limn→∞ E[ X1
1+(X1/an)2

] exists, then there exists

a slowly varying function ϕ(·) such that

P(T− > n) = ϕ(n)n−ρ with ρ =
1

2
+

1

π
arctan

(2b

π

)
.

(ii) If p < q in (1.1), then bn
n→∞∼ −(q − p)n`(an)→ −∞, and

P(T− > n) =
L(|bn|)
n

`(|bn|)
q
p−q+o(1) .

If additionally V1-V2 above holds, then we can make the o(1) more precise: there

exists a slowly varying function L̃(·) such that

P(T− > n) =
L(|bn|)
n

`(|bn|)
q
p−q L̃

(
`(|bn|)

)
.

(iii) If p > q in (1.1), then bn
n→∞∼ (p− q)n`(an)→ +∞, and

P(T− > n) = `(bn)
− q
p−q+o(1) .

If additionally V1-V2 above holds, then there exists a slowly varying function L̃(·)
such that

P(T− > n) = `(bn)
− q
p−q L̃

(
`(bn)

)
.

We are also deal with the case p = q = 1/2 when bn/an → +∞ but we did not state it
here for conciseness since it requires further notations: we refer to Section 7.5 for further
details, see in particular (7.22).

As an application of Theorem 3.2, we improve Proposition 1 of [6] in the case p 6= q:
if L(n) is a constant c (and obviously verifies V1-V2), then `(n) ∼ c log n, an ∼ cn, and

bn ∼ (p − q)cn log n. Hence, we obtain that there exists some slowly varying function L̃
such that

P(T− > n) =

{
(log n)

− q
p−q L̃(log n) if p > q ,

n−1(log n)
p
q−p L̃(log n) if p < q .

(3.3)

In the case where |µ| < +∞, we state the result for the sake of completeness.

Theorem 3.3 (cf. Theorems 0-I of [12] and Theorem 1 of [4]). Assume that (1.1) holds
with α ∈ [1, 2) and |µ| < +∞.
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(i) If µ > 0, then T− is defective: p∞ := P(T− = +∞) = e−D− with D− :=∑∞
k=1 k

−1P(Sk > 0) <∞. Moreover, if q 6= 0 we have

P(T− = n)
n→∞∼ q e−D−

µα
L(n)n−α .

(ii) If µ < 0 and p 6= 0, then we have D+ :=
∑∞

k=1
1
kP(Sk > 0) <∞ and

P(T− > n)
n→∞∼ p eD+

|µ|α
L(n)n−α .

(iii) If µ = 0, then there exists a slowly varying function ϕ(·) such that

P(T− > n) = ϕ(n)n−ρ ,

with ρ := P(Y > 0) = 1
2 + 1

πα arctan
(
(p− q) tan(πα/2)

)
.

This result does not seems to be proven in the case α = 1, but the case α ∈ (1, 2) is in
[12] and in [4, 5]. However, the proof of items (i)-(ii) easily translate from [4, Thm. 1] to
the case α = 1 with a finite mean, so we do not include them here. For item (i), we simply
using Theorem 2.1 to get that in the case µ > 0 n−1P(Sn < 0) = n−1P(Sn−µn < −µn) ∼
qL(µn)(µn)−α is regularly varying: then the result follows from Eq. (23) in [4] together
with an application of [8, Thm. 1] – using that D− :=

∑
k k
−1P(Sk > 0) < ∞. Item (ii)

is identical. For (iii), we use that P(Sk > 0) = P(Sk/ak > 0) converges to P(Y > 0) =: ρ
where Y is an α-stable law with skewness parameter β = p− q (hence the formula for the
positivity parameter ρ = P(Y > 0), see [25, Sec. 2.6]). This implies (see [21, 12])s that
T− is in the domain of attraction of a positive stable random variable with index ρ, and
(iii) follows.

3.2. Renewal theorems. An interesting application of the local limit Theorems 2.3-2.4
is that we are able to obtain renewal theorems for transient random walks (Sn)n > 1: we
give the behavior, as x→∞, of the Green function G(x) =

∑
n P(Sn = x).

In the case of renewals – that is when the step variable X1 is positive – G(x) is inter-
preted as the renewal mass function P(x ∈ S), and has been studied in a variety of papers.
The well-known renewal theorem gives that whenever X1 > 0 and µ = E[X1] < +∞, then
P(x ∈ S)→ 1/µ as x→ +∞. Assuming additionally that (1.1) holds with α ∈ (0, 1] (and
necessarily p = 1, q = 0 since X1 > 0), then Garcia and Lamperti [17] showed the strong
renewal theorem

P(x ∈ S)
x→+∞∼ α sin(πα)

π
L(n)−1n−(1−α) if α ∈ (1/2, 1). (3.4)

Erickson [14] also proved that,

P(x ∈ S)
x→+∞∼ 1

µ(x)
if α = 1 with |µ| = +∞. (3.5)

Finally, Caravenna and Doney gave very recently a necessary an sufficient condition for
the above strong renewal theorem (3.4) to hold when α ∈ (0, 1/2].

In the case when (Sn)n > 1 is a (general) random walk rather than a renewal process, the
Green function G(x) has been considered in the case α ∈ (0, 1) for example in [7, 24], but
we are not aware of any references for the case α > 1. We shall prove renewal theorems in
the case α = 1, under some specific assumptions that ensures the transience of the random
walk: we comment further in Section 4 the particularity of the case α = 1, where even the
question of recurrence/transience of (Sn)n > 1 is subtle.
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The first renewal theorem we get is in the “centered” case p = q = 1/2.

Theorem 3.4. Assume that (1.1) holds with α = 1 and p = q = 1/2, and that b :=
limn→∞ bn/an exists, b ∈ R. Assume also that

∑
n > 1

1
nL(n) < +∞. Then Sn is transient,

and

G(x)
n→∞∼ 2

π(1 + (2b)2)

∑
n>x

1

nL(n)
,

which is vanishing as a slowly varying function as x→ +∞.

In the case where (1.1) holds with α = 1 and p 6= q, we need the extra assumptions
(2.5)-(2.6) to be able to derive a renewal theorem – otherwise it is not even clear that
(Sn)n > 0 is transient. Recall that if p 6= q and |µ| =∞, then µ(x) ∼ (p− q)`(x) (and goes
to +∞ if p > q and −∞ if p < q).

Theorem 3.5. Assume that (1.1) holds with α = 1, p 6= q and |µ| = +∞. Assume addi-

tionally that (2.5)-(2.6) hold. Then Sn is transient, and we have that G(x) = O
(

1/|µ(x)|
)

and also lim inf G(x)/µ(x) > 1 if p > q.

(i) If p > q and P(X1 = −x)
x→∞∼ qL(x)x−2 (if q = 0, we interpret this as o(L(x)x−2)),

then

G(x)
x→+∞∼ 1 + q/(p− q)

µ(x)
. (3.6)

(ii) If p < q and P(X1 = x)
x→∞∼ pL(x)x−2 (if p = 0, we interpret this as o(L(x)x−2)),

then

G(x)
x→+∞∼ p/(q − p)

|µ(x)|
. (3.7)

Hence, we recover Erickson’s result (3.5) in the case of general random walk, at the
expense of assumptions (2.5)-(2.6) (in the case of renewals we get q = 0).

Let us make a short comment on (3.6). When p > q (so that bn → +∞) the behavior in
(3.6) comes from two types of contribution to G(x) =

∑+∞
k=1 P(Sk = x): when the number

of steps is of the order of kx verifying bkx = x (so that τkx is approximately x), and when
the number of step is much larger. For the first part, we prove that is is asymptotic to
1/µ(x). For the second part, we are able to prove that is it O(1/µ(x)) under (2.6), and

we can get its asymptotic behavior if P(X1 = −x)
x→∞∼ qL(x)x−2.

Finally, we give a renewal theorem also in the case of a finite mean |µ| < +∞.

Theorem 3.6. We assume that (1.1) holds with α ∈ [1, 2) and |µ| < +∞.

(i) Case µ > 0: in the case α = 1, we assume additionally that (2.5)-(2.6) hold. Then
we have that

lim
x→∞

G(x) =
1

µ
.

(ii) Case µ < 0: we assume additionally that P(X1 = x) ∼ qαL(x)x−(1+α) as x→∞.
Then we have that, as x→ +∞

G(x) ∼ q

(α− 1)|µ|2
L(x)x1−α if α > 1 ,

G(x) ∼ q

|µ|2
∑
k>x

L(k)

k
if α = 1 .



RANDOM WALKS IN THE CAUCHY DOMAIN OF ATTRACTION 9

In the case α = 1, we have that
∑

k>x L(k)k−1 is a vanishing slowly varying

function, such that L(x) = o
(∑

k>x L(k)k−1
)
.

Item (ii) is reminiscent of Williamson’s results [24] in the case α ∈ (0, 1). Our result
is somehow different since it deals with a drifting random walk and may be seen as a
generalization of [24, Thm. 1], where only the case of centered walks is considered.

We stress that one may use our techniques to prove that G(x) → µ−1 as x → ∞ also
when S is in the domain of attraction of the Normal distribution, under a very weak
assumption. We do not treat this case here since it will be proven (in a more general
setting) in [2].

4. Further discussion and useful estimates in the case α = 1

In this section, we focus on the case α = 1 with infinite mean, and we discuss the
subtleties that might arise. One of the first difficulty when |µ| = +∞ is that the recentering
term bn is not homogeneous: the recentered walk Sn−bn is a sum of i.i.d. recentered random
variables, but that recentering depends on n:

Sn − bn =

n∑
i=1

(Xi − µ(an)) .

Hence, we are not able to simplify the problem by studying a centered random walk as it
is customary when |µ| < +∞.

Recall the definition (3.1) of `(·), and let us discuss the behavior of the recentering
constant bn.
? If p > q, then bn ∼ (p− q)n`(an): we conclude that bn � an, since `(x)/L(x)→ +∞

and an ∼ nL(an). Hence Sn/bn converges in probability to 1, and Sn goes in probability
to +∞ – even though Proposition 3.1 tells that Sn does not drift to +∞.
? If p = q then it is more tricky, and we can have all possible behaviors for bn: bn =

o(an) (in which case we may set bn ≡ 0, as it is the case for a symmetric distribution) ;
0 < lim supn→+∞ |bn|/an < +∞; limn→∞ bn/an = +∞ (but still bn = o(n`(an))) ; and it
is not excluded that lim supn→∞ bn/an = +∞ and lim infn→∞ bn/an = +∞.

4.1. About the transience/recurrence of Sn. Recall Proposition 3.1: in the case
α = 1 with infinite mean the random walk is shown not to drift neither to +∞ or −∞,
even in the cases where Sn goes to +∞ in probability. The central – and subtle – question
is therefore to know whether the random walk is transient or recurrent: we study the
Green function at 0,

∑
n P(Sn = 0), with the help of our local limit theorems – more

specifically in two cases.

First case. In the case supn |bn|/an < +∞, then P(Sn = 0) is necessarily of order 1/an:
by the local limit theorem (1.4) anP(Sn = 0) = (1 + o(1))g(−bn/an), and is therefore
bounded away from 0 and infinity. We conclude that the walk is transient if and only if∑

(an)−1 < +∞, and Wei [23] gives another characterization.

Proposition 4.1. If (1.1) holds with α = 1 and supn |bn|/an < +∞ (so in particular
p = q) then

(Sn)n > 0 is transient ⇐⇒
+∞∑
n=1

1

an
< +∞ ⇐⇒

+∞∑
n=1

1

nL(n)
< +∞ .
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Second Case. In the case where limn→∞ bn/an → +∞, we have that Sn → +∞ in prob-
ability, but we cannot conclude that Sn is transient – in particular because it does not
drift to ∞. We have P(Sn = 0) = P(Sn − bn = −bn) and Theorem 2.3 gives that is
is bounded by a constant times (an)−1nP(X1 > bn) ∼ (bn)−1L(bn)/L(an). Hence, a
sufficient condition for the walk to be transient is that∑

n > 1

(b−1n )L(bn)/L(an) < +∞.

However Theorem 2.3 does not provide a lower bound on P(Sn = 0), so the question of
the recurrence/transience cannot be settled. Let us give a simple sufficient condition for
the transience of the random walk.

Proposition 4.2. Assume that (1.1) holds with α = 1 and that |µ| = +∞. If p > q, and
if additionally (2.6) holds, then Sn is transient. (The case p < q is symmetric.)

Note that the assumption (2.6) we need is only on the left tail of X1: since we already
know that Sn → +∞ in probability when p > q, we simply need to control the (large)
jumps to the left that might make the random walk visit 0.

Proof Here, we may use Theorem 2.4 to get that there is a constant C such that

P(Sn = 0) = P(Sn − bbnc = −bbnc) 6 Cnb−2n L(bn) .

Hence, to show that (Sn)n > 1 is transient, and since bn = nµ(an) ∼ (p − q)n`(an) ∼
(p− q)n`(bn) (see Lemma 4.3 below) it is therefore sufficient to show that

+∞∑
n=1

L(bn)

bn`(bn)
< +∞ ⇐⇒

+∞∑
k=1

L(k)

k`(k)2
< +∞ .

The equivalence simply comes from a comparison of the sums with corresponding integral
(we may work with differentiable slowly varying functions see [3, Th. 1.8.2]), and a change
of variable k = bn, dk = (p − q)`(bn)dn. Lemma 4.4 below (more precisely (4.1)) allows
us to conclude. �

Other cases. If lim sup bn/an = +∞ and lim inf bn/an < +∞, it is even less clear, and it
seems hopeless to conclude anything without further assumptions.

4.2. Useful estimates on `(·). We collect here a few estimates on the slowly varying
function `(·) (actually a de Haan function), which will be central in the proofs of Theorems
3.2 and 3.5.

Lemma 4.3. Recall the definitions (3.1) of `(·) and (1.2) of an. Assume that `(n)→ +∞
(otherwise the statement is trivila), we then have that

`(an) ∼ `
(
n`(an)

)
as n→∞ .

As a consequence, in the case α = 1 with infinite mean, then if we have p 6= q in (1.1)
we have bn ∼ (p− q)n`(an), so that `(an) ∼ `(bn) as n→∞.

Proof The proof can be found in [1], but since the proof is very short, we include it here
for the sake of completeness. We write

`(n`(an))− `(an)

`(an)
=

1

`(an)

∫ n`(an)

an

L(u)

u
du 6 2

L(an)

`(an)

∫ n`(an)

an

du

u
,

where we used that L(tan)(tan)−1 6 2t−1L(an)a−1n = 2L(an)/u uniformly for t = u/an > 1,
provided that n is sufficiently large. Then, since an ∼ nL(an), we can bound the
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above term by a constant times L(an)
`(an)

log `(an)
L(an)

, which goes to zero as n → ∞ since

`(x)/L(x)→∞ as x→∞. �

Another lemma is concerned with sums that appear naturally in the course of the proofs,
in particulars that of (4.1)-(4.2).

Lemma 4.4. Consider the case α = 1 with infinite mean: `(n) defined in (3.1) di-
verges as a slowly varying function. Let f be a non-increasing function R+ → R+. Then∑

k > 1 k
−1L(k)f(`(k)) is convergent if and only if

∫ +∞
1 f(t)dt is convergent. Moreover

(i) If
∫ +∞
1 f(t)dt < +∞ then

∞∑
k=n

L(k)

k
f
(
`(k)

) n→+∞∼
∫ +∞

`(n)
f(t)dt→ 0 .

(ii) If
∫ +∞
1 f(t)dt = +∞ then

n∑
k=1

L(k)

k
f
(
`(k)

) k→+∞∼
∫ `(n)

1
f(t)dt→ +∞ .

As a consequence, we have that in the case α = 1 with infinite mean∑
k > 1

L(k)

k`(k)2
< +∞ and

+∞∑
k=n

L(k)

k`(k)2
n→∞∼ 1

`(n)
; (4.1)

∑
k > 1

L(k)

k`(k)
= +∞ and

n∑
k=1

L(k)

k`(k)

n→∞∼ log `(n) . (4.2)

Proof For (i), the asymptotic equivalence comes from a simple comparison of the sum
with the following integral (since k−1L(k)f(`(k)) is asymptotically non-increasing this is
straightforward), which is computed explicitly thanks to a change of variable t = `(u),
dt = L(u)u−1du: ∫ ∞

n

L(u)

u
f
(
`(u)

)
du =

∫ +∞

`(n)
f(t)dt

n→∞→ 0 .

For (ii), we have similarly∫ n

1

L(u)

u
f
(
`(u)

)
du =

∫ `(n)

1
f(t)dt

n→∞→ +∞ .

�

5. Fuk-Nagaev’s inequalities and local large deviations

From now on, we use c, C, c′, C ′, ... as generic (universal) constants, and will will keep
the dependence on parameters when necessary, writing for example cε, Cε for constants
depending on a parameter ε.

5.1. Fuk-Nagaev inequalities. Our first result is an improved Fuk-Nagaev inequality in
the case α = 1. Let us first recall known Fuk-Nagaev inequalities – they are collected for
example in [20], and are based on standard Cramér-type exponential moment calculations.

Theorem 5.1. Assume that (1.1) holds with α ∈ (0, 2). There exists a constants c such
that for any y 6 x,
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(i) If α < 1,

P (Sn > x;Mn 6 y) 6
(

1 +
cx

ny1−αL(y)

)−x/y
6
(
c−1

y

x
nL(y)y−α

)x/y
.

(ii) If |µ| <∞,

P (Sn − µn > x;Mn 6 y) 6
(

1 +
cx

ny1−αL(y)

)−x
y
6
(
c−1

y

x
nL(y)y−α

)x/y
.

(iii) If α = 1, µ = +∞, we have for any y 6 x,

P (Sn > x;Mn 6 y) 6
(

1 +
cx

nL(y)y1−α

)−(x−nµ(y)) 1
y
−cnL(y)y−α

.

The case α < 1 is given in [20, Thm 1.1] (take 1 > t > α so that A(t, Y ) 6 cnyt−αL(y)).
The case α ∈ [1, 2) is given in [20, Thm 1.2] (take 2 > t > α so that A(t, Y ) 6 cnyt−αL(y)).
All these results remain valid if we only assume an upper bound P(|X1| > x) 6 cL(x)x−α.
Also, the case α = 2 and more generally random walks in the Normal domain of attraction
can also be dealt with, see Corollary 1.7 in [20].

For the case α = 1 with |µ| = ∞, then Theorem 5.1 gives some bound, but it is not
optimal in general. However, if X1 has a symmetric distribution, we have that µ(x) ≡ 0
and bn ≡ 0, so Theorem 5.1 yields immediately the inequality

P (Sn − bn > x;Mn 6 y) 6
(

1 +
cx

nL(y)

)−x/y
. (5.1)

The general case needs more work.

Theorem 5.2. Assume that (1.1) holds with α = 1 and that |µ| =∞.

(i) Assume in a first step that X1 is non-negative, so n 7→ µ(n) is non-decreasing.
Then there exists a constant c > 0 such that for every ε > 0, there is some Cε > 0
such that for any x > Cεan and any y 6 x

P (Sn − bn > x;Mn 6 y) 6
(
cnL(y)/x

)(1−ε)x/y
,

P (Sn − bn 6 − x) 6 exp
(
−
(
x/an

)1/ε)
.

(5.2)

(ii) In the general case, for every ε > 0, there exists some Cε > 0 such that, for any
x > Cεan and any y 6 x

P (Sn − bn > x;Mn 6 y) 6
(
cnL(y)/x

)(1−ε)x/y
+ exp

(
−
(
x/an

)1/ε)
. (5.3)

Let us comment briefly this result. First, it gives the first part of Theorem 2.2, by
possibly adjusting the constants to treat the case x > an instead of x > Cεan. Second, we
need for this result that x > Cεan, which was not the case for Theorem 5.1 – even if it has
the same flavor. Note that in in (5.3), the large deviation may come from two different
strategies (see (5.11) for more details): considering the positive part X+

1 := X11{X1>0}
and the negative part X−1 := −X11{X1<0} of X1, then either the positive part make a few
jumps of length y (the number of such jumps is approximately (1−ε)x/y), giving the first
term, either the negative part make a large deviation to lower its value, giving rise to the
second term (which is not affected by the truncation y).
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5.2. An easy consequence: Theorem 2.1. An easy consequence of the above Fuk-
Nagaev inequalities is Theorem 2.1, that we now prove. We write it only for large devia-
tions to the right (i.e. x/an → +∞), the other case being symmetric. For any fixed ε > 0,
we write

P(Sn− bn > x) = P(Sn− bn > x;Mn > (1− ε)x) +P(Sn− bn > x;Mn 6 (1− ε)x) . (5.4)

First term. It gives the main contribution. A lower bound is, by exchangeability and
independence of the Xi’s

nP
(
X1 > (1 + ε)x

)
P
(
Sn−1 − bn > −(1− ε)x

)
> (1− ε)nP

(
X1 > (1 + ε)x

)
,

where we used that x/an → +∞ and the fact that (Sn−1−bn)/an converges in distribution,
the lower bound holding for n large enough. For an upper bound, we use simply a union
bound to get

P
(
Mn > (1− ε)x

)
6 nP

(
X1 > (1− ε)x

)
.

By (1.1), the first term is therefore asymptotically bounded from below by (p−ε)nL(x)x−α

and from above by (p+ ε)nL(x)x−α.

Second term. It remains to prove that, for any arbitrary ε > 0, the second term in (5.4)
is o(nL(x)x−α) as x/an → +∞. We decompose again this probability into two part. The
first part is

P
(
Sn−bn > x;Mn ∈ (x/8, (1−ε)x]

)
6 nP(X1 > x/8)P

(
Sn−1−bn > εx

)
= o(nL(x)x−α) .

where the first inequality comes from the exchangeability and independence of the Xi’s,
and the second one comes from the convergence in distribution of (Sn−1 − bn)/an to-
gether with x/an → +∞. The last part is controlled thanks to the above Fuk-Nagaev
Theorems 5.1-5.2: we have that in any case (take ε = 1/2 in (5.3)), as x/an → +∞

P
(
Sn − bn > x;Mn 6 x/8

)
6
(
cnL(x)x−α

)4
+ e−c(x/an)

2
= o
( L(x)

L(an)
(x/an)−α

)
,

where we used that n ∼ a−αn L(an) (so that the last term is indeed o(nL(x)x−α)).

In conclusion, since ε > 0 is arbitrary, we get Theorem2.1. �

5.3. Proof of Theorem 5.2.

The case of a non-negative X1. In particular, we have that µ(x) := E[X11{|X1|<x}] is
non-decreasing.

Proof of the first part of (5.2). We start from Theorem 5.1, which states that for any
y 6 x′

P
(
Sn > x

′;Mn 6 y
)
6
(

1 + c
x′

nL(y)

)−(x−nµ(y)) 1
y
−cst.nL(y)y−1

.

Plugging x′ = bn + x = nµ(an) + x in this inequality, we get that for any y 6 x

P (Sn − bn > x;Mn 6 y) 6
(

1 + c
nµ(an) + x

nL(y)

)−x
y
+n(µ(y)−µ(an)/y

. (5.5)

Then it is just a matter of comparing n(µ(y)− µ(an)) to x (with x > y).
First, when y 6 an, then µ(y)− µ(an) 6 0 since X1 is non negative, so that

P (Sn − bn > x;Mn 6 y) 6
(
c

x

nL(y)

)−x
y
.
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When y > an, then we use the following claim (we prove it for `(·) defined in (3.1), but
it obviously holds also for µ(·) in the case of a non-negative X1).

Claim 5.3. For every δ > 0, there is a constant cδ s.t. for every u > v > 1 we have

1

L(v)

(
`(u)− `(v)

)
6 cδ(u/v)δ . (5.6)

Moreover, considering two sequences (un), (vn) → +∞, if there is a constant c > 0 such
that un 6 vn 6 cun for all n then we have

1

L(un)

(
`(vn)− `(un)

) n→∞∼ log
(
vn/un

)
(5.7)

Proof of the Claim. We write

`(u)− `(v)

L(v)
=

∫ v

u

L(t)t−1

L(v)
dt 6 cδ

(u
v

)δ/2 ∫ v

u

dt

t

where we used Potter’s bound to get that there is a constant cδ such that uniformly for
t > v we have L(t)/L(v) 6 cδ(t/v)δ/2. Then, the last integral is equal to log(u/v) 6 cδ(u/v)δ

so the first part of the claim is proven. For the second part, this is standard and comes
from the same computation, together with the fact that L(t)/L(vn) → 1 uniformly for
t ∈ [un, vn] ⊂ [un, cvn]:

`(vn)− `(un)

L(un)
=

∫ vn

un

L(t)t−1

L(vn)
dt

n→∞∼
∫ vn

un

dt

t
= log(vn/un) .

�
From this Claim (take δ = 1/2) we get that, for any y > an, and since x > y

n(µ(y)− µ(an)) 6 cδnL(an)(y/an)1/2 6 c
nL(an)

an
(x/an)−1/2 × x.

Therefore, by choosing Cε > 0 large enough, we get that n(µ(y)−µ(an)) 6 εx for x > Cεan,
an 6 y 6 x. Plugged in (5.5), we get

P (Sn − bn > x;Mn 6 y) 6
(
c
nµ(an) + x

nL(y)

)−(1−ε)x
y
6
(
c
nL(y)

x

)−(1−ε)x
y
.

Hence, the first part of (5.2) is proven.

Proof of the second part of (5.2). We write, for any t > 0 and any an 6 x 6 bn

P (Sn − bn 6 − x) 6 e−t(x+bn)E[e−tX1 ]n .

We also use that, because X1 > 0 and thanks to (1.1), we have that there is a constant
c > 0 such that for any t 6 1

E[e−tX1 ]− 1 + tµ(1/t) 6 ctL(1/t) . (5.8)

Indeed, one simply writes that the absolute value of the left hand side is∣∣∣∣ 1/t∑
n=1

(
1− e−tn − tn

)
P(X1 = n) +

∑
n>1/t

(1− e−tn)P(X1 = n)

∣∣∣∣
6

1/t∑
n=1

t2n2P(X1 = n) +
∑
n>1/t

(1 + e−1)P(X1 = n)

6 t2E
[
(X1)

21{X1 6 1/t}
]

+ (1 + e−1)P(X1 > 1/t) .
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Then, one easily get that thanks to (1.1), both terms are O(tL(1/t)).
Thanks to (5.8), and using that 1 + x 6 ex, we get that for any t 6 1

P (Sn − bn 6 − x) 6 exp
(
− t(x+ bn)− ntµ(1/t) + cntL(1/t)

)
= exp

(
− tx+ nt

[
µ(an)− µ(1/t) + cL(1/t)

])
. (5.9)

Then, we fix ε > 0 and choose t := (an)−1 × (x/an)(1−ε)/ε, so that 1/t < an: thanks to
Claim 5.3 we get that there is a constant cε such that µ(an)−µ(1/t) 6 cε(tan)εL(an), and
Potter’s bound also gives that L(1/t) 6 cε(tan)εL(an). We therefore get that the r.h.s. of
(5.9) is bounded by

exp
(
− tx+ (1 + cε)nt(tan)εL(an)

)
6 exp

(
−
( x
an

)1/ε
+ c′ε

( x
an

)(1−ε2)/ε)
(5.10)

where we used the definition of t, together with the fact that nL(an) ∼ an for the sec-
ond term in the exponential. Hence, there exists some Cε > 0 such that provided that
x/an > Cε we have

P (Sn − bn 6 − x) 6 exp
(
− 1

2

(
x/an

)1/ε)
,

which ends the proof of the second part of (5.2), the factor 1/2 being irrelevant.

General case: proof of (5.3). When X1 can be negative as well as positive, we separate
the Xi’s into a positive and a negative part:

X+
i := Xi1{Xi>0} , X−i := Xi1{Xi<0} ,

so that both X+
i and X−i are non-negative. Naturally, we also define S+

n :=
∑n

i=1X
+
i

and S−n :=
∑n

i=1X
−
i so that Sn = S+

n − S−n ; and also b+n := nE[X−1 1{X−
1 6 an}

] and

b−n := nE[X−1 1{X−
1 6 an}

], so that b+n (resp. b−n ) is a centering sequence for S+
n (resp. S−n ),

and bn = b+n − b−n . Then, the probability we are after can be bounded by

P
(
Sn − bn > x ; Mn 6 y

)
6 P

(
S+
n − b+n > (1− ε)x ; max

1 6 i 6 n
X+
i 6 y

)
+P
(
S−n − b−n 6 − εx

)
. (5.11)

Then, we may use (5.2) for both terms, and we obtain (5.3) (changing possibly the value
of ε and of the constant Cε).

6. Local large deviations

6.1. Local versions of Fuk-Nagaev inequalities. We prove Theorem 2.3, and along
the way a local version of Theorem 5.1.

Theorem 6.1. Assume that (1.1) holds with α ∈ (0, 1) or α ∈ [1, 2) with |µ| <∞. There
exist constants c, C > 0 such that for any y 6 x

Can ×P (Sn − bn = x;Mn 6 y) 6
(

1 +
cx

ny1−αL(y)

)−x/2y
6
(
c−1

y

x
nL(y)y−α

)x/2y
.

Note that this result is similar to [7, Thm. 1.1], but here we have an estimate even when
y � x which is not the case in [7]. We might also be able to improve the exponent x/2y
to dx/ye as in [7, Thm. 1.1], but we do not pursue this level of optimality here.
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Proof We will focus on the proof of Theorem 2.3, i.e. in the case α = 1, but the proof is

identical for proving Theorem 6.1. Let us denote Ŝn := Sn − bbnc the “recentered” walk.

We decompose P(Ŝn = x) according to whether Sbn/2c − 1
2bbnc > x/2 or not, so that we

obtain

P
(
Ŝn = x;Mn 6 y

)
6 P

(
Ŝn = x;Sbn/2c − 1

2bbnc > x/2 ; Mbn/2c 6 y
)

+ P
(
Ŝn = x;Sn − Sbn/2c − 1

2bbnc > x/2 ; max
bn/2c<i 6 n

Xi 6 y
)
.

The two terms are treated similarly, so we only focus on the first one. We have

P
(
Ŝn = x ; Sbn/2c − 1

2bbnc > x/2;Mbn/2c 6 y
)

=
∑

z > 1
2 bbnc+x/2

P
(
Sbn/2c = z;Mbn/2c 6 y

)
P
(
Sn − Sbn/2c = bbnc+ x− z

)
6
C

an

∑
z > 1

2 bbnc+x/2

P
(
Sbn/2c = z;Mbn/2c 6 y

)
=
C

an
P
(
Sbn/2c − 1

2bbnc > x/2;Mbn/2c 6 y
)
, (6.1)

where we used Gnedenko’s local limit theorem (1.4) to get that there is a constant C > 0
such that for any k > 1 and y ∈ Z, we have P(Sk = y) 6 C/ak.

Then, we want to use Fuk-Nagaev inequalities (i.e. Theorems 5.1-5.2) to estimate the
last probability: for that, we need to control 1

2bbnc− bbn/2c. When α ∈ (0, 1) we have that
bn ≡ 0 so this quantity is equal to 0, and when X1 is integrable we have bk = kµ in which
case we get 1

2bbnc − bbn/2c > − |µ|. When α = 1 and |µ| = ∞, this is more delicate but
not too hard:

1
2nµ(an)− bn/2cµ(abn/2c) >

n

2

[
µ(an)− µ(abn/2c)

]
− |µ(abn/2c)|

> − c0 nL(an)− |µ(abn/2c)| > −
c0
2
an .

where for the second inequality we used the Claim 5.3 (separating the positive and negative
parts of X1, using also that an/abn/2c is bounded from above by a constant), and in the
last inequality we used the definition of an (and the fact that |µ(abn/2c)| � an). In all
cases, and provided that x > Cεan with some constant Cε large enough, we get that
1
2bbnc − bbn/2c > − εx/2, so that

P
(
Sbn/2c − 1

2bbnc > x/2;Mbn/2c 6 y
)
6 P

(
Sbn/2c − bbn/2c > (1− ε)x/2;Mbn/2c 6 y

)
.

Then, an application of Theorems 5.1-5.2, plugged into (6.1), gives Theorem 2.3. (Note
we do not need to take x > Cεan if α ∈ (0, 1) or α ∈ [1, 2) with |µ| <∞.) �

Also, one may obtain the following local analogous of (5.1) and (5.2): if α = 1 in (1.1)
then for every ε > 0 there are constants c1, c2 such that for any x > c2an,

• if X1 has a symmetric distribution, we have

Can ×P(Sn = x;Mn 6 y) 6
(
cnL(y)/x

)(1−ε)x/2y
; (6.2)
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• if X1 > 0, we have

Can ×P(Sn − bbnc = x;Mn 6 y) 6
(
cnL(y)/x

)(1−ε)x/2y
. (6.3)

6.2. Improved local large deviations: proof of Theorem 2.4. We only consider the
large deviation to the right, i.e. x > an, since the other case is symmetric. We give the
proof of (2.9) and (2.10) together, the latter using the same estimates. We fix ε > 0 (we
take ε = 1/8 when we prove (2.9), and we will choose ε arbitrarily small when we prove
(2.10)), and we write

P
(
Sn − bn = x

)
= P

(
Sn − bn = x,Mn > (1− ε)x

)
+ P

(
Sn − bn = x,Mn ∈ (εx, (1− ε)x)

)
+ P

(
Sn − bn = x,Mn 6 εx

)
. (6.4)

The first term in (6.4) is also the main one: by exchangeability of the Xi’s, we get that

P(Sn − bn = x,Mn > (1− ε)x) =
∑

y > (1−ε)x

P(Sn − bn = x,Mn = y)

=
∑

y > (1−ε)x

nP(X1 = y)P(Sn−1 − bn = x− y,Mn−1 6 y)

6 n sup
y > (1−ε)x

P(X1 = y)
∑

y > (1−ε)x

P(Sn−1 − bn = x− y)

6 n sup
y > (1−ε)x

P(X1 = y) . (6.5)

Then, if we assume (2.5), we get that

P
(
Sn − bn = x,Mn > (1− ε)x

)
6 CnL(x)x−(1+α) , (6.6)

and if we assume (2.7), we may replace the constant C by (p + 3ε), provided that x is
large enough.

For the second term in (6.4), we have:

P
(
Sn − bn = x,Mn ∈ (εx, (1− ε)x)

)
=

(1−ε)x∑
y=εx

P(Sn − bn = x,Mn = y)

6
(1−ε)x∑
y=εx

nP(X1 = y)P(Sn − bn = x− y)

6 Cε nL(x)x−(1+α) P(Sn − bn > εx) , (6.7)

where we used (2.5) or (2.7) in the last inequality. Moreover, since (Sn− bn)/an converges
in distribution, we get that P(Sn − bn > εx) → 0 if x/an → +∞, so the second term is

o(nL(x)x−(1+α)).

For the last term in (6.4), we decompose it into two parts,

P
(
Sn − bn = x,Mn 6 εx

)
6 P

(
Sn − bn = x,Mn 6 an

)
+ P

(
Sn − bn = x,Mn ∈ (an, εx)

)
The first part is controlled thanks to the local Fuk-Nagaev inequalities Theorems 2.2-6.1:
using that x > an and that nL(an)a−αn → 1, we get that

P(Sn − bn = x,Mn 6 an) 6
C

an

(
c
x

an

)−cx/an
6
c

x
× e−cx/an , (6.8)

which is negligible compared to (2.9) (i.e. (6.6)) as x/an →∞.
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For the other term, we have

P
(
Sn−bn = x,Mn ∈ [an, εx)

)
=

log2(x/an)∑
j=log2(1/ε)

P
(
Sn − bn = x,Mn ∈ [2−(j+1), 2−j)x

)

6
log2(x/an)∑
j=log2(1/ε)

∑
y∈[2−(j+1),2−j)x

nP
(
X1 = y

)
P
(
Sn − bn = x− y,Mn = y

)

6 C
log2(x/an)∑
j=log2(1/ε)

nL(2−jx)(2−jx)−(1+α)P
(
Sn − bn > x/2,Mn 6 2−jx

)
, (6.9)

where we used (2.5) to bound P(X1 = y) uniformly for y ∈ [2−(j+1), 2−j)x. Then, we
use Fuk-Nagaev’s inequalities Theorem 5.1-Theorem 5.2 – leave aside the case α = 1 with
infinite mean for the moment – to get that

P
(
Sn − bn > x/2,Mn 6 2−jx

)
6
(

1 +
c2j

nL(2−jx)(2−jx)−α

)−2j−2

6
(

1 + c2j
)−2j−2

,

where we used that 2−jx > an for the range considered, so nP(X1 > 2−jx) 6 nP(X1 > an)
and is bounded from above by a universal constant. Plugged in (6.9), and using Potter’s
bound to get that L(2−jx) 6 c2jL(x) for all j > 1, we therefore get that

P
(
Sn − bn = x,Mn ∈ [can, εx)

)
6 CnL(x)x−(1+α)

log2(x/an)∑
j=log2(1/ε)

2(2+α)j
(

1 + c2j
)−2j−2

6 cεnL(x)x−(1+α), (6.10)

where the constant Cε can be made arbitrarily small by choosing ε small. In the case
α = 1 with infinite mean, Theorem 2.2 gives an additional e−x/an in bounding P

(
Sn −

bn > x/2,Mn 6 2−jx
)

for any j 6 log2(x/an). Hence in (6.10) we obtain an additionnal

CnL(x)x−(1+α)
log2(x/an)∑

j=

2(2+α)je−x/an 6 CnL(x)x−(1+α) ×
( x
an

)3+α
e−x/an ,

which is o(nL(x)x−(1+α)) as x/an →∞.

In conclusion, combining (6.6)-(6.7)-(6.8)-(6.10), we proved that fixing ε = 1/8 we get
(2.9). Moreover, assuming (2.6), we obtained that for any η > 0, we can find ε > 0
(sufficiently small) such that if n and x/an are large enough,

P
(
Sn − bn = x

)
6 (p+ η)nL(x)x−(1+α) .

This proves the upper bound part in (2.6).
To get a lower bound, assume that p > 0 (otherwise there is nothing to prove), and

write

P
(
Sn − bn = x

)
> P

(
∃ i s.t. Xi ∈

(
(1− ε)x, (1 + ε)x

)
; ∀j 6= i Xj 6 x/2 ; Sn − bn = x

)
=

(1+ε)x∑
y=(1−ε)x

nP(X1 = y)P
(
Sn−1 − bn = x− y;Mn−1 6 x/2

)
> (1− 3ε)npL(x)x−(1+α)P

(
Sn−1 − bn ∈ [−εx, εx];Mn−1 6 x/2

)
,
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where we used that P(X1 = y) > (1−3ε)pL(x)x−(1+α) uniformly in y ∈
(
(1−ε)x, (1+ε)x

)
,

because of (2.6). Then, the last probability converges to 1 as n → ∞ and x/an → ∞
because (Sn−1 − bn)/an and Mn−1/an both converge in distribution. Hence we have that
for any η > 0, we can find ε > 0 (sufficiently small) such that if n and x/an are large
enough,

P
(
Sn − bn = x

)
> (1− η)npL(x)x−(1+α) ,

which concludes the proof. �

7. Ladder epochs: proof of Theorems 3.2

In order to prove Theorem 3.2, a crucial identity follows from the Wiener-Hopf factor-
ization (see e.g. Theorem 4 in [15, XII.7]): set pk := P(T− > k) for every k > 0, then for
any s ∈ [0, 1)

p(s) :=

∞∑
k=0

pks
k = exp

( +∞∑
m=1

sm

m
P(Sm > 0)

)
. (7.1)

Also, Theorem 2 in [15, XII.7] characterizes the defectiveness of T−, T+ in terms of con-
vergence of the series

∑
k > 1 k

−1P(Sk > 0).

7.1. Preliminaries. We first give the following lemma, which is the core of our proofs.

Lemma 7.1. Assume that (1.1) holds, with α = 1 and |µ| = +∞. Recall the definition
(3.1) of `(·) and (1.3) of bn. Then, if p > q, bn ∼ (p− q)n`(an) and

P(Sn < 0)
n→∞∼ q

p− q
L(bn)

`(bn)
.

Moreover we have that
n∑
k=1

1

k
P(Sk < 0)

n→∞∼ q

p− q
log `(bn) .

If q = 0, we interpret this as o
(

log `(bn)
)
. The case p < q is symmetric.

If p = q = 1/2, then bn = o(n`(an)) but if bn/an → +∞ we have

P(Sn < 0)
n→∞∼ nL(bn)

2bn
,

+∞∑
k=1

k−1P(Sk < 0) =∞ .

Proof First, by Theorem 2.1 and since bn/an → +∞ (because p > q), we get that

P(Sn < 0) = P(Sn − bn < −bn)
n→∞∼ nqL(bn)b−1n

n→∞∼ q

p− q
L(bn)

`(bn)
, (7.2)

where we used that bn = nµ(an) with µ(an)
n→∞∼ (p − q)`(an)

n→∞∼ (p − q)`(bn) (see
Lemma 4.3). Note that the first asymptotic equivalence remains true as soon as bn/an →∞.

Then, it remains to estimate the sum
∑n

k=1 k
−1P(Sk < 0) or, because of (7.2), of

q
∑n

k=1
L(bk)
bk

. A comparison with an integral and a change of variable t = bk (dt ∼ (p −
q)`(bk)dk, we may assume that we work with differentiable function, see [3, Thm. 1.8.2])
gives that

n∑
k=1

L(bk)

bk

n→∞∼ 1

p− q

bn∑
t=1

L(t)

t`(t)

n→∞∼ 1

p− q
log `(bn) ,

where for the last identity we used Lemma 4.4 – or more directly (4.2).
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In the case where p = q = 1/2 (so bk = o(k`(ak))) we use that according to (7.2) and
provided that bn/an → +∞, we have that there is a constant c > 0 such that

k−1P(Sk < 0) > cL(bk)/bk > c
L(k`(ak))

k`(ak)
.

And we proved just above that
∑+∞

k=1
L(k`(ak))
k`(ak)

= +∞. �

A simple consequence of Lemma 7.1 is Proposition 3.1, thanks to [15, XII.7 Thm. 2].
Indeed, we get that

∑
k > 1 k

−1P(Sk < 0) = +∞ as soon as q 6= 0: if p > q or p = q
with bn/an → +∞, this is directly Lemma 7.1; if supn bn/an < +∞, then this is just a
consequence of the convergence in distribution of (Sn − bn)/an to get that P(Sk < 0) =
P
(
(Sk − bk)/ak < −bk/ak

)
is uniformly bounded away from 0, so that

∑
k > 1 k

−1P(Sk <
0) = +∞; the general case when p = q = 1/2 can be dealt with similarly, by observing

that there is a constant c such that P(Sk < 0) > cL(k`(ak))k`(ak)
.

7.2. The case limn→∞ bn/an = b. We first prove the case (i), which is standard, cf.
Rogozin [21]. The sequence P(Sk > 0) = P((Sk − bk)/ak > −bk/ak) converges to P(Y >
−b), where Y is the limit in distribution of (Sn− bn)/an that is a symmetric Cauchy(1/2)
distribution (p = q = 1/2), and b = limn→∞ bn/an. Note that we could also characterize

bn/an by E
[

X1
1+(X1/an)2

]
, see [3, Thm. 8.3.1]. We therefore get that

lim
n→+∞

1

n

n∑
k=1

P(Sk > 0) = P(Y > −b) =: ρ ∈ (0, 1),

with ρ = 1
2 + 1

π arctan(2b/π). This is Spitzer’s condition: [3, Thm. 8.9.12] implies that T−
is in the domain of attraction of a positive stable random variable with index ρ, and (i)
follows.

7.3. The case p < q. We will first prove the weak result with the o(1) in the exponents,
and then turn to the precise statement under assumptions V1-V2.

General Case. Denote

f(s) =

+∞∑
m=1

sm

m
P(Sm > 0) , f ′(s) =

+∞∑
m=0

smP(Sm+1 > 0) . (7.3)

We are able to obtain the behavior of f(s) and f ′(s) as s ↑ 1. Since p < q, Lemma 7.1
gives that

n∑
k=1

k−1P(Sk > 0)
n→∞∼ p

q − p
log `(|bn|) and

n∑
k=1

P(Sk > 0)
n→∞∼ p

q − p
nL(|bn|)
`(|bn|)

,

(7.4)
(because P(Sk > 0) ∼ p

q−pL(|bk|)/`(|bk|)). Therefore, Corollary 1.7.3 in [3] gives that

f(s) ∼ p

q − p
log `(|b1/(1−s)|) , f ′(s) ∼ p

q − p
1

1− s
L(|b1/(1−s)|)
`(|b1/(1−s)|)

as s ↑ 1 . (7.5)

Then, (7.1) gives that p(s) = ef(s) for any s ∈ [0, 1) so that p′(s) = f ′(s)ef(s): the
estimates (7.5) allows us to derive that

p′(s) =
L(|b1/(1−s)|)

1− s

(
`(|b1/(1−s)|)

)q/(q−p)+o(1)
as s ↑ 1 , (7.6)
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where the term p/(q − p) has been absorbed in `(|b1/(1−s)|)o(1) From this we would like

to conclude that
∑n

k=1 kpk = nL(|bn|)
(
`(|bn|)

)q/(q−p)+o(1)
, but we cannot directly apply

Corollary 1.7.3 in [3] since we do not have a proper asymptotic equivalence. We therefore
prove it directly.
Upper bound. First, take s = 1− 1/n in (7.6), so that we get, as n→∞

+∞∑
k=0

kpk

(
1− 1

n

)k−1
= nL(|bn|)

(
`(|bn|)

)q/(q−p)+o(1)
. (7.7)

Then, using that pk is non-increasing, we can write that

+∞∑
k=0

kpk

(
1− 1

n

)k−1
>

n∑
k=0

kpn

(
1− 1

n

)n
> c n2pn,

and we therefore get the upper bound

pn 6 c
1

n
L(bn)

(
`(bn)

)q/(q−p)+o(1)
=
L(|bn|)
n

(
`(|bn|)

)q/(q−p)+o(1)
. (7.8)

Lower bound. The lower bound is a bit trickier. Let ε > 0, and define tn := `(|bn|)ε →∞
as n→∞. Setting s = 1− 1/(ntn) in (7.6), we get that for n sufficiently large

+∞∑
k=0

kpk

(
1− 1

ntn

)k−1
= ntnL(|bn/tn |)

(
`(|bn/tn |)

)q/(q−p)+o(1)
> nt1/2n L(|bn|)

(
`(|bn|)

)q/(q−p)+o(1)
. (7.9)

For the second inequality, we used that |bn/tn | > t−2n |bn| for n large enough (since bk is regu-

larly varying with index −1), and than Potter’s bound to get that L(t−2n |bn|) 6 t
−1/4
n L(|bn|)

and `(t−2n |bn|)q/(p−q)+o(1) 6 t
−1/4
n for n large enough.

Now we may write, since pk is non-increasing,

+∞∑
k=0

kpk

(
1− 1

ntn

)k−1
6

n∑
k=0

kpk + pn

+∞∑
k=n+1

k
(

1− 1

ntn

)k−1
(7.10)

For the first sum, we get thanks to (7.8) that
n∑
k=0

kpk 6 c nL(|bn|)
(
`(|bn|)

)q/(p−q)+o(1)
= o
(
nt1/2n L(|bn|)

(
`(|bn|)

)q/(p−q)+o(1))
,

where we used the definition of tn, which is such that `(|bn|)o(1) = o(t
1/2
n ). Now we have∑

k > 1 ks
k−1 = (1−s)−2, so that the second term in (7.10) is bounded by pn(ntn)2. Hence,

plugging (7.10) (and the subsequent estimates) in (7.9), we obtain that

nt1/2n L(|bn|)
(
`(|bn|)

)q/(q−p)+o(1)
6 o
(
nt1/2n L(bn)

(
`(|bn|)

)q/(p−q)+o(1))
+ pn(ntn)2,

so that we conclude that

pn >
c

nt
3/2
n

L(|bn|)
(
`(|bn|)

)q/(p−q)+o(1)
.

Recalling that tn = `(|bn|)ε, and since ε > 0 is arbitrary, we get that

pn >
L(|bn|)
n

(
`(|bn|)

)q/(p−q)+o(1)
. (7.11)
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�

Under assumption V1-V2. Let us first introduce some notations. We construct b̃t an

analytic function such that its derivative is given by `(̃bt). Define

H(x) =
(∫ t

1

dx

`(x)

)−1
, and b̃t = H−1(1/t) . (7.12)

Then, it is easy to verify that H ′(x) = −H(x)/`(x), so that ∂tb̃t = `(̃bt) (using also that

H (̃bt) = 1/t). Notice that we also have easily that H(x)
x→∞∼ `(x)/x, so that b̃t

t→∞∼ t`(̃bt)

and thanks to Lemma 4.3 we get that b̃t
t→∞∼ t`(at). We therefore get that bn ∼ −(q−p)̃bn.

Then, we define

g(s) := log `
(
b̃ 1
1−s

)
.

Using that ∂tb̃t = `(̃bt), we get that

g′(s) =
1

(1− s)2
L
(
b̃ 1
1−s

)
b̃ 1
1−s

s↑1∼ 1

1− s

L
(
b̃ 1
1−s

)
`
(
b̃ 1
1−s

) .
Since L(·) satisfies V1-V2, so does L

(
b̃ 1
1−s

)/
`
(
b̃ 1
1−s

)
, and we may apply Theorem 5 in [16]

to get that g′(s) =
∑∞

n=0 s
n with an

n→∞∼ L(̃bn)/`(̃bn). We therefore end up with

g(s) := log `
(
b̃ 1
1−s

)
=
∞∑
n=1

gns
n with gn

n→∞∼ L(̃bn)

n`(̃bn)

n→∞∼ q − p
q

P(Sn > 0)

n
. (7.13)

In view of (7.3), we get that

f(s) =
q

q − p
g(s) +

∞∑
n=1

vns
n with vn = o

( L(̃bn)

n`(̃bn)

)
, (7.14)

so that

p′(s) = f ′(s)`
(
b̃ 1
1−s

)q/(q−p)
ψ
(

1
1−s
)

with ψ
(

1
1−s
)

:= exp
( ∞∑
n=1

vns
n
)
. (7.15)

We show below the following lemma.

Lemma 7.2. There exists some slowly varying function L̃(·) such that

ψ
( 1

1− s

)
= L̃

(
`
(
b̃ 1
1−s

))
.

With this lemma in hand, we get that p′(s) is regularly varying with index −1,

p′(s) ∼
L(̃b 1

1−s
)

1− s
`
(
b̃ 1
1−s

)q/(q−p)
L̃
(
`
(
b̃ 1
1−s

))
as s ↑ 1 ,

so that by Corollary 1.7.3 in [3] we get that

n∑
k=1

kpk
n→∞∼ nL

(
b̃n
)
`
(
b̃n
)q/(p−q)

L̃
(
`
(
b̃n
))
.

The result follows by using the monotonicity of pn (and the fact that |bn| ∼ (q − p)̃bn).
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Proof of Lemma 7.2 Set Q(t) = `(̃bt) for simplicity, which is an increasing function.

We want to show that L̃(t) := ψ
(
Q−1(t)

)
is slowly varying as t→∞ (t = (1− s)−1), i.e.

for any b > 0,

ψ
(
Q−1(bt)

)
ψ
(
Q−1(t)

) = exp

( ∞∑
n=1

vn

[(
1− 1

Q−1(bt)

)n
−
(

1− 1

Q−1(t)

)n])
→ 1 as t→∞ .

Since vn = o
(
L(̃bn)/b̃n

)
, we write vn = εnL(̃bn)/b̃n. In order to show that the sum in the

exponential goes to 0 as t→∞, we split it into three parts.

Part 1. For n 6 Q−1(t) we use that(
1− 1

Q−1(bt)

)n
−
(

1− 1

Q−1(t)

)n
6 1−

(
1− n

Q−1(t)

)
=

n

Q−1(t)
.

Hence the sum up to n = Q−1(t) is bounded by 1
Q−1(t)

∑Q−1(t)
n=1 nvn, and since nvn → 0

we get that this first part goes to 0. Indeed, we have that nvn ∼ εnL(̃bn)/`(̃bn), and
L(x)/`(x)→ 0 as x→ 0.

Part 2. For Q−1(t) < n 6 Q−1(2bt), we simply bound the sum by

Q−1(2bt)∑
n=Q−1(t)

vn 6 sup
n > Q−1(t)

εn ×
∫ Q−1(2bt)

Q−1(t)

L(̃bu)

b̃u
du . (7.16)

Recalling that Q(t) = `(̃bt) we get that Q′(t) = L(̃bt)

b̃t
`(̃bt), so that the integral is exactly

logQ(s)
∣∣Q−1(2bt)

Q−1(t)
= log 2b. Since εn → 0, this second part also goes to 0 as t→∞.

Part 3. For n > Q−1(2bt), we bound the sum by

∞∑
k=1

Q−1(2k+1bt)∑
n=Q−1(2kbt)

εn
L(̃bn)

b̃n

(
1− 1

Q−1(bt)

)Q−1(2kbt)

6 sup
n > Q−1(t)

εn ×
∞∑
k=1

e−Q
−1(2kbt)/Q−1(bt)

∫ Q−1(2k+1bt)

Q−1(2kbt)

L(̃bu)

b̃u
du .

As above, the integral is equal to log 2. Moreover, since Q(·) is slowly varying we get that
for t large enough, for any k > 1

Q
(
2kQ−1(bt)

)
6 2kQ

(
Q−1(bt)

)
= Q

(
Q−1(2kbt)

)
,

giving that 2kQ−1(bt) 6 Q−1(2kbt). Hence, for t large enough the third part is bounded
by

sup
n > Q−1(t)

εn × log 2
∑
k > 1

e−2
k → 0 as t→ 0 .

�

7.4. The case p > q. This case is similar. We only prove the general case, the improve-
ment under assumption V1-V2 being identical to what is done above.

Using the same definition of f(s), and writing P(Sm > 0) = 1−P(Sm < 0), we get that

f(s) =
∞∑
m=1

sm

m
P(Sm > 0) = log

( 1

1− s

)
− h(s) with h(s) =

∞∑
m=1

sm

m
P(Sm < 0) . (7.17)
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Then, Lemma 7.1 gives that
∑n

k=1 k
−1P(Sk < 0)

n→∞∼ q
p−q log `(bn), and again, Corol-

lary 1.7.3 in [3] gives that h(s) ∼ q
p−q log `(b1/(1−s)) as s ↑ 1.

Hence, we conclude thanks to (7.1) that

p(s) =
1

1− s
e−h(s) =

1

1− s

(
`(b1/(1−s))

)−q/(p−q)+o(1)
as s ↑ 1 ,

and we deduce from this the behavior of pn in the same way as above.
Upper bound. Taking s = 1− 1/n, and using that pk is non-increasing, we get that

n
(
`(bn)

)q/(p−q)+o(1)
=

∞∑
k=0

pk

(
1− 1

n

)k
>

n∑
k=0

pn

(
1− 1

n

)k
> cnpn,

and therefore

pn 6 c
(
`(bn)

)−q/(p−q)+o(1)
=
(
`(bn)

)−q/(p−q)+o(1)
. . (7.18)

Lower bound. As above, we fix ε > 0 and define tn = `(bn)ε. Taking s = 1 − 1/(ntn),
we get as in (7.9) that for n large enough

∞∑
k=0

pk

(
1− 1

ntn

)k
= ntn

(
`(bntn)

)−q/(p−q)+o(1)
> nt1/2n

(
`(bn)

)q/(p−q)+o(1)
. (7.19)

On the other hand, as in (7.10), since pk is non-increasing we have

∞∑
k=0

pk

(
1− 1

ntn

)k
6

n∑
k=0

pk + pn
∑

k > n+1

(
1− 1

ntn

)k
= o
(
nt1/2n

(
`(bn)

)−q/(p−q)+o(1))
+ ntnpn ,

where we used (7.18) for the first term, together with the fact that `(bn)o(1) = o(t
1/2
n ), and

a standard computation for the second term. Combining this with (7.19) we get that

pn > t
−1/2
n

(
`(bn)

)−q/(p−q)+o(1)
,

and since tn = `(bn)ε with ε > 0 arbitrary, we get that pn > `(bn)−q/(p−q)+o(1).

7.5. Further remarks on the case p = q. In the case p = q = 1
2 , then bn = o(n`(an)).

If limn→∞ bn/an = b, then Theorem 3.2 gives the correct asymptotic for P(T− > n). In
the case limn→∞ bn/an = +∞ (the case where the limit is −∞ is symmetric), then we still
have as in (7.2) that

P(Sk < 0)
n→∞∼ 1

2
kL(bk)(bk)

−1. (7.20)

Hence, since bn is regularly varying with exponent −1, we get that

r(n) :=

n∑
k=1

1

k
P(Sk < 0)

n→∞∼
n∑
k=1

L(bn)

2bn
(7.21)

is slowly varying. Additionally, we get that r(n) = o(log n) (since P(Sn < 0) → 0), and
also r(n) � log(`(an)) in view of Lemma 7.1, since bn = o(n`(an)). We therefore have
that that

`(an)1/o(1) 6 er(n) 6 no(1) .
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Then, the same scheme of proof as above give the behavior of p(s) and p′(s), so that we
get that

P(T− > n) = e(1+o(1))r(n) and P(T+ > n) =
L(bn)

bn
e(1+o(1))r(n) . (7.22)

Details are straightforward and left to the reader.

8. Renewal theorems: proof of Theorems 3.4-3.5-3.6

8.1. The case α = 1 with infinite mean.

8.1.1. The case limn→+∞ bn/an = b ∈ R. Let us set kx an integer such that akx ∼ x. We
fix ε > 0 such that supn |bn|/an 6 1/

√
ε, and we write

G(x) :=
( ∑
k 6 1

ε
kx

+
∑

k>
1
ε kx

)
P(Sk = x). (8.1)

The first term is estimated thanks to Theorem 2.3, which gives that there is a constant C
such that for any x > 1 and any k, P(Sk = x) 6 C(ak)

−1kL(x)x−1, so that∑
k 6 1

ε
kx

P(Sk = x) 6 C ′
(kx
ε

)2
(akx/ε)

−1L(x)x−1 6
C ′′

ε
L(x)−1. (8.2)

where we used that akx/ε ∼ ε−1akx and that kx ∼ akxL(akx)−1 ∼ xL(x)−1.
The second term is in fact the main one. Thanks to the local limit theorem (1.4), for

any η > 0 there is some ε > 0 small and some k0 such that for any k > k0,

g
(

(x− bk)/ak
)
− η 6 akP(Sk = x) 6 g

(
(x− bk)/ak

)
+ η .

Then for k > ε−1kx, and because ak is regularly varying with index −1, we have that
ak >

1
2ε
−1akx > x/(4ε) for x sufficiently large. We therefore get that if k > ε−1kx with x

large enough, then |x/ak| 6 4ε and also |bk/ak − b| 6 ε, so that by continuity of g, we get
that provided that ε is small and x is large enough

g(−b)− 2η 6 akP(Sk = x) 6 g(−b) + 2η for all k > kx/ε.

We stress that since we are in the symmetric case, with p = q = 1/2, and by our definition
(1.2) of an, g(·) is the density of a symmetric Cauchy(1/2) distribution, so that g(−b) =

2
π(1+(2b)2)

.

Hence, for any η′ > 0 and provided that ε is small enough and x large enough, the
second sum in (8.1) is

2(1− η′)
π(1 + (2b)2)

∑
k> 1

ε
kx

1

ak
6

∑
k>

1
ε kx

P(Sk = x) 6
2(1 + η′)

π(1 + (2b)2)

∑
k> 1

ε
kx

1

ak
,

and we estimate the last sum. We use a comparison with the following (convergent)
integral ∫ ∞

ε−1kx

dt

at
∼
∫ ∞
aε−1kx

du

uL(u)
∼
∫ +∞

ε−1x

du

uL(u)
as x→∞,

where we used a change of variable u = at so that t ∼ u/L(u) (see (1.2)) and dt =
L(u)−1du, and then used that aε−1kx ∼ ε−1akx ∼ ε−1x. Since v 7→

∫∞
v

du
uL(u) is a slowly
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varying function (vanishing as v → ∞), we get that for ε > 0 small enough and x large
enough (how large depends on ε)

2(1− 2η′)

π(1 + (2b)2)

∑
n>x

1

nL(n)
6

∑
k>

1
ε kx

P(Sk = x) 6
2(1 + 2η′)

π(1 + (2b)2)

∑
n>x

1

nL(n)
. (8.3)

In conclusion, combining (8.2) and (8.3), and since L(x)−1 = o
(∑

n>x
1

nL(n)

)
and η′ is

arbitrary, we get that

G(x)
x→∞∼ 2

π(1 + (2b)2)

∑
n>x

1

nL(n)
.

8.1.2. The case p > q. Let us define kx to be a solution of bkx = kxµ(akx) = x (kx may not
be an integer, but we may replace it by its integer part). Then we identify the range of k’s
for which we may apply the local limit theorem (1.4) to P(Sk = x): they are the k’s such
that x− bk is of order ak, and we find that they are in the range k = kx + Θ

(
akx/µ(akx)

)
.

Let us mention the results of [1, 19] where this heuristic is confirmed: if Nx the number
of renewals before reaching x, it is shown that (akx/µ(akx))−1(Nx − kx) converges in
distribution.

Let us stress right away that µ(akx) ∼ µ(bkx) = µ(x). Indeed, since p > q we have that
µ(x) ∼ (p− q)`(x), and Lemma 4.3 gives that `(an) ∼ `(bn).

We fix ε > 0 and decompose G(x) into five sums

G(x) =
( ∑
k<

1
2kx

+

kx− 1
ε
akx/µ(x)∑

k=
1
2kx

+

kx+
1
ε
akx/µ(x)∑

k=kx− 1
ε
akx/µ(x)

+

2kx∑
kx+

1
ε
akx/µ(x)

+
∑
k>2kx

)
P(Sk = x)

=: I + II + III + IV + V . (8.4)

The main contributions are the sums III and V , so we start by estimating those two
terms

Term III. By the local limit theorem (1.4), we get that as x→ +∞ (so kx → +∞)

III = (1 + o(1))

kx+
1
ε akx/µ(x)∑

k=kx−1
ε akx/µ(x)

1

ak
g
(x− kµ(ak)

ak

)
.

Then, we use the fact that akx is negligible compared to bkx = kxµ(akx) ∼ kxµ(x): we
get that uniformly for the k’s in the range considered, we have k = (1 + o(1))kx so that
ak = (1 + o(1))akx . Setting j = k − kx, we also have that for the range of k considered
(using that ak ∼ akx and µ(akx) ∼ µ(x)), since x = kxµ(akx)

x− kµ(ak)

ak
= (1 + o(1))

jµ(x)

akx
+
kx
(
µ(akx)− µ(ak)

)
(1 + o(1))akx

= (1 + o(1))
jµ(x)

akx
+ o(1). (8.5)

For the second identity, we used Claim 5.3 to get that |µ(akx) − µ(ak)| = o(L(akx)) =
o(akx/kx) for the range of k considered. In the end, and since g is continuous, we get that

III = (1 + o(1))

1
ε akx/µ(x)∑

j=−1
ε akx/µ(x)

1

akx
g
(
j × µ(x)

akx

)
=

1 + o(1)

µ(x)

∫ 1/ε

−1/ε
g(u)du , (8.6)
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where we used a Riemann sum approximation in the last identity. Then, since
∫ +∞
−∞ g(u)du =

1, we get that for any η > 0 we can choose ε > 0 such that for all sufficiently large x (how
large depend on ε)

1− η
µ(x)

6 III 6
1 + η

µ(x)
. (8.7)

Term V . For the last term in (8.4), we use (2.6) to get from Theorem 2.4 that for
k > 2kx

P(Sk = x) = P(Sk − bk = x− bk) 6 CkL(bk)b
−(1+α)
k ,

where we used that bk > b2kx >
3
2bkx = 3

2x provided that x is large enough, so that

|x− bk| > 1
2bk � ak. Then we get that (we have α = 1)

V 6 C
∫ ∞
kx

uL(bu)

b2u
du 6 C ′

∫ ∞
x

L(t)

t`(t)2
dt =

C ′

`(x)
, (8.8)

where we used a change of variable t = bu ∼ (p− q)u`(bu) (using also dt ∼ (p− q)`(bu)du
and bkx = x), and then Lemma 4.4.

Moreover, if one has that P(X1 = −x) ∼ qL(x)x−2, then we write

V =

ε−1kx∑
k=2kx

P(Sk = x) +
∑

k>ε−1kx

P(Sk = x) .

As above, the first term is comparable to
∫ ε−1kx
2kx

uL(bu)
b2u

du 6 C
∫ ε−1x
x

L(t)
t`(t)2

dt, which is

o(1/`(x)) because of Lemma 4.4 and since `(x) is slowly varying (so `(ε−1x) ∼ `(x)).
For the second term, we use Theorem 2.4 which gives that for any η > 0, and provided
that ε is fixed small enough and that x is large enough, we have for all k > ε−1kx (so
x = bkx 6

1
2ε
−1bk)

P(Sk = x) = P(Sk − bk = x− bk)

{
6 (q + η)kL(bk)b

−2
k ,

> (q − η)kL(bk)b
−2
k .

Moreover, by a change of variable t = bu (dt ∼ (p− q)`(bu)du) we get∫ ∞
ε−1kx

uL(bu)

b2u
du ∼

∫ ∞
ε−1x

1

(p− q)2
L(t)

t`(t)2
dt =

1

(p− q)2
1

`(ε−1x)
∼ 1

(p− q)µ(x)
, (8.9)

where we used that bε−1kx ∼ ε−1bkx = ε−1x and that `(·) is slowly varying, with µ(x) ∼
(p− q)`(x). In the end, and since η is arbitrary, we get that as x→∞,

V = (1 + o(1))
q

p− q
1

µ(x)
. (8.10)

To conclude the proof of the statement, we need to show that the terms I, II and IV
are negligible compared to 1/µ(x).

Term I. Thanks to (2.5) and Theorem 2.4, we obtain that there is a constant C > 0
such that for any k 6 1

2kx (so that x > 2
3bk � ak provided that x is large engouh) we have

P(Sk = x) 6 CkL(x)x−2. Then the first term in (8.4) is bounded by a constant times

1
2
kx∑

k=1

kL(x)x−2 6
1

8
k2xL(x)x−2 6

c

`(x)

L(x)

`(x)
, (8.11)
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where we used that kx ∼ 1
p−qx`(x)−1 as x → ∞. (indeed we have x = bkx ∼ (p −

q)kx`(bkx)). Now, because L(x)/`(x)→ 0, we get that I = o(1/`(x)).

Term II. We set j = kx − k. Then, the range of k considered corresponds to j ∈[
1
εakx/µ(x), 12kx

]
, and for that range we have similarly to (8.5)

x− bk
ak

=
kxµ(akx)− (kx − j)µ(akx−j)

ak
>
kx
ak

∣∣µ(akx)− µ(akx−j)
∣∣+ j

jµ(x)

2ak
. (8.12)

We used that µ(akx−j) ∼ µ(akx) ∼ µ(x) (since j 6 kx/2 with µ(·) slowly varying). Then,
we may use Claim 5.3 to get that

|µ(akx)− µ(akx−j)| 6 cL(akx) log
(
akx/akx−j

)
6 c′L(akx)j/kx ,

where in the second inequality we used that there is a constant c > 0 such that uniformly
for j ∈ [k/2, k], ak/ak−j 6 1 + cj/k (using that ak is regularly varying with index 1).
Plugging this in (8.12), and since L(akx) = o(µ(akx)) = o(µ(x)), we get that

x− bk >
1

4
jµ(x), for j := kx − k ∈

[
ε−1

akx
µ(x)

,
1

2
kx
]
. (8.13)

Then, since for the range considered we have jµ(x) > ε−1akx we have that x−bk > 1
4jµ(x) > ak

(k > kx/2), so that we may apply Theorem 2.4. We get that for the range of k considered
and with j = kx − k,

P(Sk = x) = P(Sk − bk = x− bk) 6 CkL(x− bk)(x− bk)−2

6 CkxL(jµ(x))(jµ(x))−2 . (8.14)

Hence we get that

II =

kx−ε−1akx/µ(x)∑
k= 1

2
kx

P(Sk = x) 6 Ckx

∫ 1
2
kx

ε−1akx/µ(x)

L(jµ(x))

(jµ(x))2
dj

6 Ckx
1

µ(x)

∫ ∞
ε−1akx

L(t)

t2
dt 6 C

kx
µ(x)

L(ε−1akx)

ε−1akx
,

where in the second inequality we made a change of variable t = jµ(x). Now, since L(·) is
slowly varying, and because of the definition (1.2) of an, we get that kxL(ε−1akx)/akx → 1
as x → ∞. Hence, there exists a constant C > 0 (independent of ε) such that for x
sufficiently large (how large depends on ε)

II 6
Cε

µ(x)
. (8.15)

Term IV . It is treated similarly to the term II. Setting j = k − kx, one gets exactly
as in (8.13) that provided that x is large enough,

x− bk 6 −
1

4
jµ(x) , for j := k − kx ∈

[
ε−1

akx
µ(x)

, 2kx
]
, (8.16)

Then we can apply Theorem 2.4 (we have that |x− bk| > ak for the range considered) to
get analogously to (8.14) that there is a constant C such that for any j := k − kx in the
range considered,

P(Sk = x) = P(Sk − bk = x− bk) 6 CkxL(jµ(x))
(
jµ(x)

)2
.
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Therefore, we can bound the term IV

IV =

2kx∑
k=kx+ε−1akx/µ(x)

P(Sk = x) 6 Ckx

2kx∑
j=ε−1akx/µ(x)

L(jµ(x))(
jµ(x)

)2 ,
so that as for the term II, we get that there is a constant C (independent of ε) such that
for x sufficiently large

IV 6
Cε

µ(x)
. (8.17)

Conclusion. Assuming (2.5)-(2.6), we get from the estimates (8.7)-(8.8) and (8.11)-
(8.15)-(8.17) that there is a constant C such that

G(x) 6
C

µ(x)
. (8.18)

If we additionally assume that P(X1 = −x) ∼ qL(x)x−1, we can use (8.10) instead of
(8.8). According to (8.7)-(8.15)-(8.17) and to (8.10), we find that for every η > 0, we can
choose ε > 0 such that for x sufficiently large (how large depends on ε) we get

1− η
µ(x)

+ (1 + o(1))
q

p− q
1

µ(x)
6 G(x) 6

1 + 3η

µ(x)
+ (1 + o(1))

q

p− q
1

µ(x)
. (8.19)

Since η > 0 is arbitrary, we get (3.6).

8.1.3. The case p < q. Here, we have that bk = kµ(ak) → −∞ as a regularly varying
function, since µ(k) ∼ (p− q)`(k). We define kx to verify bkx = −x. Let us fix ε > 0, and
split the sum in G into two parts this time.

G(x) =
( ε−1kx∑

k=1

+
∑

k>ε−1kx

)
P(Sk = x) =: I + II. (8.20)

Term I. Since x − bk > |bk| with |bk| > ak, we may use (2.5) to get from Theorem 2.4
that

P(Sk = x) = P(Sk − bk = x− bk) 6 Ck
L(x− bk)
(x− bk)2

. (8.21)

Then, since x− bk > x (except possibly for finitely many k’s for which bk is positive), we
get that P(Sk = x) 6 CkL(x)x−2 for all k 6 ε−1kx (and k larger than a constant). Hence,
we get that the term I in (8.20) is bounded by

I 6 C
(
kx/ε

)2
L(x)x−2 6 C ′ε−2

L(x)

`(x)2
, (8.22)

where we used for the second inequality that kx ∼ 1
q−px`(x)−1 (indeed x = −bkx ∼

(p− q)kx`(|bkx |)). Then, since L(x)/`(x)→ 0 as x→∞, we get that I = o(1/`(x)).

Term II. Again, (8.21) is valid. Here, we use that x − bk > |bk| to get that P(Sk =
x) 6 CkL(|bk|)|bk|2. Then, we obtain that

II 6 C
∑

k > ε−1kx

k
L(|bk|)
|bk|2

6
C

`(x)
(8.23)

where we used the same calculation as in (8.9), with |bk| ∼ (q − p)k`(|bk|).
Hence we proved that there is a constant C > 0 such that G(x) 6 C/|µ(x)| (since

|µ(x)| ∼ −(q − p)`(x)). Combined with (8.18) in the case p > q, we get that G(x) =
O(1/|µ(x)|) in any case.



30 Q. BERGER

Let us now obtain the right asymptotic equivalence, assuming (2.7). We may use
Theorem 2.4 to obtain that for any η > 0, we can choose ε > 0 so that if x is large enough
we get for any k > ε−1kx we have |bk| 6 x− bk 6 (1 + 2ε)|bk| and

P(Sk = x) = P(Sk = bk = x− bk)

{
6 (p+ η)kL(|bk|)|bk|−2 ,
> (p− η)kL(|bk|)|bk|−2 .

Then the same calculation as in (8.9) gives that∑
k>ε−1kx

kL(|bk|)
|bk|2

∼ 1

(q − p)|µ(x)|
, (8.24)

using that |bk| ∼ (q − p)k`(|bk|) and |µ(x)| ∼ (q − p)`(x).
Then, since η is arbitrary, we get that as x→∞

V =
∑

k>ε−1kx

P(Sk = x)
x→∞∼ p

q − p
1

|µ(x)|
(8.25)

8.2. The finite mean case. In the case µ = 0, then the walk is recurrent, so we have
G(x) = +∞ for all x ∈ Z. We therefore consider only the cases µ > 0 and µ < 0.

8.2.1. Case µ > 0. We follow exactly the same scheme as for the case α = 1 with infinite
mean. Here, we set kx so that bkx = x (hence kx ∼ x/µ), and we decompose G(x) as in
(8.4): we fix ε > 0 and write

G(x) =
( kx/2∑
k=1

+

kx−ε−1akx∑
k=kx/2

+

kx+ε−1akx∑
k=kx−ε−1akx

+

2kx∑
k=kx+ε−1akx

+
∑
k>2kx

)
P(Sk = x)

=: I + II + III + IV + V .

Let us now consider all the terms, the main term being the third one.

Term III. We proceed as for the term III in the infinite mean case, but it is easier here.
The local limit theorem gives that we have, as x→∞

III = (1 + o(1))

kx+ε−1akx∑
k=kx−ε−1akx

1

ak
g
(x− bk

akx

)
= (1 + o(1))

ε−1akx∑
j=−ε−1akx

1

akx
g
( jµ
akx

)
where we set j = k − kx, together with the fact that ak ∼ akx uniformly for the range of
k considered and that g is continuous. Then, a Riemann sum approximation gives that

III = (1 + o(1))
1

µ

∫ ε−1/µ

−ε−1/µ
g(u)du . (8.26)

Since
∫ +∞
−∞ g(u)du = 1, we get as for (8.7) that for any η > 0 we may choose ε > 0 small

enough, and then x large enough (how large depend on ε) such that

1− η
µ
6 III 6

1 + η

µ
. (8.27)

Term I. For the first term, we get thanks to Theorem 2.3 that uniformly for the range
of k considered (which implies that x− bk > x/4)

P(Sk = x) 6
C

ak
kL(x− µk)(x− µk)−α 6 C

k

ak
L(x)x−α . (8.28)
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Then, since k/ak is regularly varying with exponent 1− 1/α > 0, we get

I 6 CL(x)x−α
kx/2∑
k=1

k/ak 6 C
′L(x)x−α × x2/ax,

where we used that kx 6 x. If α > 1, the right hand side is regularly varying with exponent
2− α− 1/α < 0, so that we obtain I = o(1).

If α = 1, then since we have ax ∼ xL(ax), we obtain the upper bound CL(x)/L(ax) and
we cannot conclude: we need to improve (8.28) by using (2.5). IAssuming (2.5), we get
that there is a constant C > 0 such that for the range of k considered (x−µk > x/4 > ak),

P(Sk = x) 6 CkL(x− bk)(x− bk)−2 6 C ′kL(x)x−2 .

Then we can bound

I 6 C ′L(x)x−2
kx∑
k=1

k 6 C ′′L(x) .

Now, since |µ| < ∞ we have that L(n) → 0 (L(n) = o
(∑

k>n L(k)k−1
)
), so we get that

I = o(1).

Term II. We may apply Theorem 2.3 to get that, setting j = kx−k so that x−bk > 1
2µj,

P(Sk = x) = P(Sk − bk = x− bk) 6 C
k

ak
L(j)j−α . (8.29)

We therefore get, since k/ak 6 2kx/akx in the range considered, that

II 6 C
kx
akx

∑
j > ε−1akx

L(j)j−α . (8.30)

If α > 1, then we obtain

II 6 C
kx
akx

L(ε−1akx)(ε−1akx)1−α 6 C ′εα−1 , (8.31)

where we used the definition (1.2) of an to get that L(ε−1akx)(akx)−α ∼ k−1x .
If α = 1, then

∑
j > ε−1akx

L(j)j−1 � L(akx), and we cannot conclude. Assuming (2.5)

and using Theorem 2.4 (we have x − bk > 1
2µj > ak for the range considered), we may

improve (8.29) to

P(Sk = x) = P(Sk − bk = x− bk) 6 CkL(j)j−2 with j = kx − k . (8.32)

We therefore get that

II 6 Ckx
∑

j > ε−1akx

L(j)j−2 6 CkxL(ε−1akx)(ε−1akx)−1 . (8.33)

Using that L(ε−1akx)(akx)−1 ∼ k−1x we get that II 6 Cε.

Term IV . This is similar to the term II. As for (8.29) we get that setting j = k − kx so
that for the range considered we have for the range considered |x− bk| > 1

2µj,

P(Sk = x) = P
(
Sk − bk = x− bk

)
6 C

k

ak
L(j)j−α with j = k − kx .

Hence, for α > 1 we get as for (8.30)-(8.31) that IV 6 C ′εα−1.
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In the case α = 1, one need to assume additionally that (2.6) holds: using Theorem 2.4
(we have |x− bk| > 1

2µj > ak for the range considered), we get that

P(Sk = x) = P
(
Sk − bk = x− bk

)
6 CkL(j)j−2 with j = k − kx .

As in (8.33) we then get that II 6 Cε.

Term V . Here, using that for k > 2kx we have |x− bk| > 1
2k, to get that

P(Sk = x) = P
(
Sk − bk = x− bk

)
6 C ×

{
k
ak
L(k)k−α in the general case,

kL(k)k−2 if α = 1 and (2.6) holds.

Hence, if α > 1, we get that

IV 6 C
∑

k > 2kx

L(k)k1−α/ak → 0, as kx →∞,

since k1−α/ak is regularly varying with index 1− α− 1/α < −1.
If α = 1, we get that

IV 6 C
∑

k > 2kx

L(k)k−1 → 0, as kx →∞,

since
∑

n L(n)n−1 < +∞.

Conclusion. Combining all the estimates (assuming additionally that (2.5)-(2.6) holds
in the case α = 1), we get that for any fixed η, we may choose ε > 0 sufficiently small so
that for x large enough (how large depends on ε) so that

(1− η)
1

µ
6 G(x) 6 (1 + 3η)

1

µ
,

8.2.2. Case µ < 0. Recall that we assume that P(X1 = x) ∼ qαL(x)x−(1+α), so that in
particular (2.5) holds. We fix ε > 0, and split G(x) into three parts,

G(x) =
( εx∑
k=1

+
ε−1x∑
k=εx

+
∑

k > ε−1x

)
P(Sk = x) =: I + II + III . (8.34)

The main term is the second one in the case α ∈ (1, 2) and the third one in the case α = 1.

Term I. We use that for the range considered x− bk > x > ak to get that from Theorem
2.4

P(Sk = x) = P(Sk − bk = x− bk) 6 CkL(x)x−(1+α) ,

so that

I 6 C
εx∑
k=1

kL(x)x−(1+α) 6 Cε2L(x)x1−α . (8.35)

Term II. We get thanks to Theorem 2.4 that uniformly for εx 6 k 6 ε−1x, and since
bk = µk

P(Sk = x) = P(Sk − bk = x+ |µ|k) ∼ qαkL(x)(x+ |µ|k)−(1+α) as x→∞ ,
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where we also used that L(x + |µ|k) ∼ L(x) uniformly for εx 6 k 6 ε−1x. Then, we get
that

II = (1 + o(1))qαL(x)x1−α × 1

x

ε−1∑
k=εx

k

x

(
1 + |µ|k

x

)−(1+α)
= (1 + o(1))qαL(x)x1−α

∫ ε−1

ε

u du

(1 + |µ|u)(1+α)
, (8.36)

where we used a Riemann sum approximation for the second identity.

Term III. For the last term, we use that x− bk > ck � ak, so that Theorem 2.4 gives

P(Sk = x) = P(Sk − bk = x− bk) 6 CkL(k)k−(1+α) .

Therefore, if α > 1 we get that

III 6 C
∑

k > ε−1x

L(k)k−α 6 Cεα−1L(x)x1−α . (8.37)

In the case α = 1, we obtain thanks to Theorem 2.4 that

P(Sk = x) ∼ qkL(x+ |µ|k)(x+ |µ|k)−2 .

And since k > ε−1x, we get that for any η > 0 we can choose ε > 0 small so that for x
sufficiently large,

II 6 (q + η)|µ|−2
∑

k > ε−1x

L(k)k−1 ,

II > (q − η)|µ|−2
∑

k > ε−1x

L(k)k−1 .

Conclusion. In the case α > 1, the integral in the term II is convergent. Since ε > 0
is arbitrary, we obtain that the terms I and III are negligible compared to the term II.
We therefore get that

G(x)
x→∞∼ q

(α− 1)|µ|2
L(x)x1−α ,

where we computed that
∫∞
0 u(1 + |µ|u)−(1+α)du =

(
|µ|2α(α− 1)

)−1
.

In the case α = 1, then the term III is dominant, since
∑

k > t L(k)k−1 is a slowly

varying function such that L(t) = o
(∑

k > t L(k)k−1
)
. We therefore get that, since η is

arbitrary

G(x)
x→∞∼ q

|µ|2
∑
k>x

L(k)

k
.
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LPMA, Université Pierre et Marie Curie, Campus Jussieu, case 188, 4 place Jussieu, 75252
Paris Cedex 5, France

E-mail address: quentin.berger@upmc.fr


	1. Introduction
	1.1. Setting and first notations
	1.2. Organization of the paper and outline of the results

	2. Large and local large deviations
	2.1. Local large deviations
	2.2. Improved local large deviation

	3. Applications: ladder epochs and renewal theorems
	3.1. Ladder epochs
	3.2. Renewal theorems

	4. Further discussion and useful estimates in the case =1
	4.1. About the transience/recurrence of Sn
	4.2. Useful estimates on ()

	5. Fuk-Nagaev's inequalities and local large deviations
	5.1. Fuk-Nagaev inequalities
	5.2. An easy consequence: Theorem 2.1
	5.3. Proof of Theorem 5.2

	6. Local large deviations
	6.1. Local versions of Fuk-Nagaev inequalities
	6.2. Improved local large deviations: proof of Theorem 2.4

	7. Ladder epochs: proof of Theorems 3.2
	7.1. Preliminaries
	7.2. The case limn bn/an =b
	7.3. The case p<q
	7.4. The case p>q
	7.5. Further remarks on the case p=q

	8. Renewal theorems: proof of Theorems 3.4-3.5-3.6
	8.1. The case =1 with infinite mean
	8.2. The finite mean case

	References

