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Nonlinear static state feedback for saturated linear

plants via a polynomial approach
G. Valmorbida, L. Zaccarian, S. Tarbouriech, I. Queinnec and A. Papachristodoulou

Abstract—The paper revisits the local exponential stabilization
and global asymptotic stabilization problems of saturated linear
systems using nonlinear control laws. The proposed nonlinear
control law has rational dependence on a parameter σ, which is
computed by solving an implicit equation depending on the state.
Constructive solutions are obtained, based on a sum-of-squares
formulation of the proposed conditions.

I. INTRODUCTION

Saturation mechanisms are present in almost all intercon-

nected practical systems. They remain a major challenge for

the control designer as they may cause instability or loss

in performance. Usually local design methods are considered

rather than global approaches as they allow larger control gains

and reduced convergence time. Even in this case, performance

in terms of response time remains limited when constant

control gains are computed. It is then preferable to compute

solutions where control gains are smaller when the trajectory

is far from the origin and become larger when the trajectory

approaches it. Key results in the 80’s had also proven that

global asymptotic (exponential) stability is not achievable by

saturated static feedback for plants with exponentially unstable

dynamics [18], [17], [10]. The even former work of Fuller had

established that no saturated linear controller could globally

asymptotically stabilize the triple integrator [3]. All these

aspects explain the importance of proposing nonlinear control

strategies when dealing with saturated linear plants.

High performance, static, state feedback stabilization of

saturated systems, that is, a selection of nonlinear control

gains that induce a desirable high convergence rate, have been

thoroughly investigated since the early ’90s, when the nested

saturations [20], [22] and scheduled Riccati [13] techniques

were introduced. In particular, much attention has been de-

voted to the problem of stabilizing a chain of integrators

with bounded feedback. This particular class belongs to the

very peculiar set of plants called ANCBI (asymptotically null-

controllable with bounded inputs), which possess poles on

the imaginary axis but no poles in the right half plane. In
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particular, the double integrator with input saturation continues

to attract a strong interest for research due to the fact that it

characterizes the main dynamics of several practical systems.

This interest especially arises in the global context [2], [26]

where convergence rate performance is a key aspect.

The aim of this paper is to propose a nonlinear, static,

state feedback design for input-saturated linear plants with

a guaranteed closed-loop stability region and a guaranteed

convergence rate that may possibly deteriorate as the norm

of the initial condition becomes larger. This degradation of

the guaranteed convergence rate is reasonable since input

saturation limits uniformly the globally achievable rate. It

is necessary for ANCBI plants whose origin can be (uni-

formly) globally asymptotically stabilized (GAS) but cannot

be (uniformly) globally exponentially stabilized (GES). Then

different exponential bounds must be considered because no

uniform global exponential bound can be obtained. In the

sequel we will talk about GAS and GES without specifically

emphasizing uniformity in our acronym, even though it should

be kept in mind that this is a central aspect behind the standard

definition of GAS and GES.

Our approach is inspired by some of the results presented in

[4] and [5], where similar scheduled state feedback laws were

proposed. The nonlinear controllers designed in this paper

arise from rational polynomial matrices in a parameter σ,

associated to an implicit equation. Such a polynomial approach

to design a nonlinear controller had already been exploited in

[27] for the problem of semi global stabilization of exponen-

tially unstable linear systems subject to actuator saturation,

in which the low gain parameter represented the convergence

rate of the closed-loop system. A parameterized Algebraic

Ricatti Equation (ARE) approach had also been used in [6]

and extended to Linear Matrix Inequalities (LMI) conditions in

[8], to allow one to take into account uncertainty in the model.

A valid alternative to our construction is the recent work [12],

however only global solutions for non-exponentially unstable

plants are given there, whereas here we also address local

solution for any type of linear plant. Moreover, our method

is radically different from the one of [12] since we rely on

polynomial constraints solvable by way of convex sum of

squares (SOS) techniques, while [12] relies on the solution

of a partial differential matrix inequality. Another strategy,

originally formulated for the regulation problem [1], [11],

parametrizes the gain on the state with the use of a scalar,

bounded nonlinear function.

The paper is organized as follows. Section II gives our

main local and global design solutions. Section III contains a

theoretical example, while Section IV presents SOS numerical

implementations and their illustrations on examples. All the



proofs and necessary lemmas are presented is the Appendix.

Notation. For x ∈ R
m the ring of polynomials in x is

denoted R[x], the ring of polynomial matrices of dimensions

n × m is denoted Rn×m[x], the ring of diagonal polyno-

mial matrices of dimension n, Rn×n
diag [x]. The set of sum-

of-squares polynomials on variable x, {p(x) ∈ R[x]|p(x) =
∑k

i=1 g
2
i (x), gi(x) ∈ R[x]} is denoted Σ[x]. The set of sum-

of-squares matrices of dimension n is denoted Σn×n[x] and

the set of diagonal sum-of-squares matrices of dimension

n, Σn×n
diag [x]. The sublevel set α−1 of a quadratic function

xTMx, where M is positive definite,
{
x|xTMx ≤ α−1

}
, is

denoted E(M,α−1). The identity matrix is denoted by I . The

Hermitian operator on square matrices He(·) is defined as

He(X) := X +XT .

II. SATURATED STATE FEEDBACK DESIGN

In this paper we address the problem of designing a nonlin-

ear state feedback for the following general linear plant with

input saturation

ẋ = Ax+Bsat(u) (1)

where x ∈ R
n, A ∈ R

n×n, B ∈ R
n×m and sat(u) is

the standard decentralized saturation function with unitary

saturation limits1.

Given plant (1), our aim is to design a high performance

nonlinear feedback stabilizer

u = κ(x), (2)

with a guaranteed stability region and convergence rate.

The following two theorems establish the desirable proper-

ties of the proposed construction. The first one addresses the

local stabilization problem with guaranteed region of attraction

and guaranteed convergence rate. The second one extends

the first result to the global case. Notice that the stability

conclusion is different for the two cases. Indeed, while the first

statement deals with bounded stability regions (or estimates

of the basin of attraction) from which uniform exponential

stability is easily established, the second theorem establishes

global properties that require to relax uniform exponential

convergence to uniform asymptotic convergence. The proofs

of both theorems are given in the Appendix.

Theorem 1: Given plant (1) and two scalars σ, σ, 0 < σ <
σ, assume that there exist a symmetric positive definite matrix

W (σ) ∈ R
n×n, a diagonal positive definite matrix T (σ) ∈

R
m×m, two matrices R(σ) ∈ R

m×n and G(σ) ∈ R
m×n, and

a positive scalar α such that the following inequalities hold

1In the paper we select unit (vector) saturations to keep the discussion
simple. However the results can be readily extended to the case of symmetric
saturations and, with some level of conservativeness also to non-symmetric
saturations as long as the unsaturated region has nonempty interior including
the origin.

for all σ ∈ [σ, σ]:

N(σ) =

[
σAW (σ) + σBR(σ) +W (σ) −σBT (σ)

σR(σ) − σG(σ) −σT (σ)

]

−He(N(σ)) ≥ 0 (3a)

W (σ) ≥ I (3b)

0 <
dW (σ)

dσ
≤ αW (σ) (3c)

[
W (σ) GT

i (σ)
Gi(σ) α

]

≥ 0, i = 1, . . . ,m, (3d)

where Gi denotes the ith row of matrix G. Then, denoting

P := W−1(σ) and P := W−1(σ), the following holds:

1. Well posedness. For each x ∈ E(P , α−1) \ E(P , α−1), the

implicit equation:

ϕ(x, σ) := xTW−1(σ)x − α−1 = 0 (4)

has a unique solution σ = σϕ(x), and the function

σ∗(x) :=

{
σϕ(x), if xTPx ≥ α−1,
σ, if xTPx ≤ α−1 (5)

is Lipschitz for all x ∈ E(P , α−1).
2. Exponential Stability. The static nonlinear state feedback

κ(x) = K(x)x := R(σ∗(x))W−1(σ∗(x))x (6)

exponentially stabilizes the origin of (1), (2) with basin of

attraction containing the set E(P , α−1).
3. Exponential performance. There exists M > 0 such that for

each σ ∈ [σ, σ], all solutions to the nonlinear closed loop (1)-

(6) satisfy

x(t0) ∈ E(W−1(σ), α−1) ⇒ |x(t)| ≤ Me−
t−t0

σ |x(t0)|. (7)

Theorem 1 establishes local results with guaranteed region

of attraction and convergence rate, once a suitable bounded

set σ ∈ [σ, σ] of feasibility of the (infinite dimensional)

inequalities (3) is found. The following theorem shows that

it is possible to make these local results global by simply

ensuring feasibility of these inequalities in an unbounded set

σ ∈ [σ,+∞).

Theorem 2: Given plant (1) and a scalar σ > 0, assume

that inequalities (3) hold for all σ > σ. Then the implicit

equation (4) has a unique solution σ = σϕ(x) for all x /∈
E(P , α−1) and σ∗(x) in (5) is locally Lipschitz. Moreover, the

feedback law (6) induces GAS and LES of the origin of (1)-

(2), (5)-(6). Finally, for each σ ≥ σ, there exists Mσ such

that all solutions to the nonlinear closed loop (1)-(2), (5)-(6)

satisfy (7) with M = Mσ.

Remark 1: Note that due to the well-posedness result pro-

vided in Theorems 1 and 2, the established (local or global)

asymptotic stability is robust to sufficiently small perturba-

tions, either due to noise or to uncertainty affecting the

system model. This fact follows from the intrinsic robustness

established in [7, Thm 7.21] for compact attractors (which in

our case is only one point, namely the origin). ⋆



III. AN ILLUSTRATIVE EXAMPLE

The inequalities in (3) are difficult to check in general. In

this section we illustrate how these can be solved for a scalar

open-loop unstable plant with input saturation, highlighting

the potential of Theorem 1. Consider the scalar system

ẋ = ηx+ sat(u), (8)

where η > 0. System (8) corresponds to (1) with A = η,

B = 1, and it is an example of system that can be only locally

stabilized from u since its open-loop trajectories are unstable.

Below we show that a particular choice of the elements

W , R, G, T α, σ and σ in (3) satisfies the conditions

of Theorem 1, hence leading to a locally stabilizing gain.

Consider the following choice:

Q(σ) =
√
2
2 (1 − 4η) + 2

√
2η2σ

R(σ) = −kQ(σ), G(σ) = −ǫkQ(σ), α = 8η2

T (σ) = k(1− ǫ)Q(σ), W (σ) = α−1(ǫk)2Q2(σ)

(9)

with ǫ ∈ (0, 1) and k = 4ηǫ−1. We verify next that relations

(3a)-(3d) hold with σ = η−1 and σ = σ +
√
2−1
4 η−2.

Relation (3b): since Q is strictly increasing one gets

W (σ) ≥ W (σ) = (ǫk)2

α
Q2(σ) = 2

(√
2
2

)2

= 1. Hence (3b)

holds.

Relation (3c): one gets
dW (σ)

dσ
= 2α−1(ǫk)2Q(σ)dQ(σ)

dσ
.

Since α−1(ǫk)2Q(σ) > 0 for all σ ∈ [σ, σ], inequality
dW (σ)

dσ
≤ αW (σ) is equivalent to inequality 2 dQ(σ)

dσ
≤ αQ(σ)

on the inteval [σ, σ]. Since αQ(σ) ≥ αQ(σ) = 4
√
2η2 =

2 d
dσ

Q(σ) the inequality is satisfied and (3c) holds.

Relation (3d): the Schur complement of the matrix is given

by W (σ)− G2(σ)
α

, which, from the definition of W and G, is

identically zero.

Relation (3a): we need to prove −He(N(σ)) ≥ 0, that is

2σQ(σ)

[

k −
(
η + 1

σ

) (ǫk)2

α
Q(σ) k(1− ǫ)

k(1− ǫ) k(1− ǫ)

]

≥0

which is true if (1− ǫ) > 0 (always true since ǫ ∈ (0, 1)), and

the determinant is positive, that is if
(
η + 1

σ

) (ǫk)
α

Q(σ) < 1.

This last inequality holds for all σ ∈ [σ, σ]. Indeed for all such

values of σ we have
(
η + 1

σ

) (ǫk)
α

Q(σ) <
(

η + 1
σ

)
(ǫk)
α

Q(σ) = 1.

From our choice, the implicit equation (4) yields

W−1(σ(x)) = α−1

x2 which implies that Q(σ(x)) = α
ǫk
|x| and

therefore R(σ(x)) = −α
ǫ
|x|. Using (6) the state feedback is

explicitly written as

u(x) :=

{

− 1
ǫ

1
|x|x if xTW (σ)−1x > α−1

− 2
√
2

ǫ
ηx if xTW (σ)−1x ≤ α−1

, (10)

and stabilizes the origin of system (8) for all x ∈ E(P , α−1).
To obtain a solution in the case of the simple system (8),

we have used the potential of the generalized sector condition

allowing for R(σ) 6= G(σ) [21, Lemma 1.6]. Moreover,

the second relation in (10) yields u(x) = − 2
√
2

ǫ
ηx and the

unsaturated closed loop satisfies ẋ = − (2
√
2−ǫ)
ǫ

ηx, therefore

yielding local exponential stability of the origin (recall that

ǫ ∈ (0, 1)).

Note that for the very simple example chosen here, the

solution to relation (3) is polynomial in the parameter σ. It

is, therefore, natural to investigate polynomial solutions for

more general cases and to provide constructive solutions by

formulating SOS programs, as addressed in Section IV.

IV. CONVEX OPTIMIZATION FORMULATION

This section presents a formulation of an optimization

problem in order to solve inequalities by considering functions

W (σ), T (σ), R(σ) and G(σ) that are polynomials in the

variable σ. The solution to this problem relies on a line

search for the positive scalar α that, when fixed, allows

for a solution to a feasibility problem with sum-of-squares

constraints. The assumption of polynomial dependence on

parameter σ allows us to prove the nonconservativeness of

a sum-of-squares formulation through an application of the

Positivstellensatz, reported in Appendix B.

Proposition 1: Assume that W (σ) ∈ Rn×n[σ], R(σ) ∈
Rm×n[σ], G(σ) ∈ Rm×n[σ] and T (σ) ∈ Rm×m

diag [σ]. Then

inequalities (3) hold in the set

D := [σ, σ] = {σ|g(σ) := −(σ − σ)(σ − σ) ≥ 0} (11)

with σ > σ > 0 if and only if there exist polynomial matrices

M1(σ) ∈ Σ(n+m)×(n+m)[σ], M2(σ) ∈ Σn×n[σ], M3j(σ) ∈
Σn×n[σ], j = 1, 2, M4i(σ) ∈ Σ

(n+1)×(n+1)
diag [σ], i = 1, . . . ,m,

such that for some ǫ > 0 we have (T (σ)− ǫI)−g(σ)M0(σ) ∈
Σn×n[σ], and

−He(N(σ)) − g(σ)M1(σ) ∈ Σ(n+m)×(n+m)[σ] (12a)

(W (σ)− I)− g(σ)M2(σ) ∈ Σn×n[σ] (12b)

∂W (σ)

∂σ
− g(σ)M31(σ) ∈ Σn×n[σ] (12c)

(

αW (σ) − ∂W (σ)

∂σ

)

− g(σ)M32(σ) ∈ Σn×n[σ] (12d)

[
W (σ) GT

i (σ)
Gi(σ) α

]

− g(σ)M4i(σ)

∈ Σ(n+1)×(n+1)[σ], i = 1, . . . ,m. (12e)

Proof: We will use Lemma 2 (given in the Appendix)

in order to relate (12) to (3). Notice that the hypothesis

of Lemma 2 holds since the quadratic module M(g(σ))
generated by g(σ) is Archimedean. Indeed, consider any pair

(r,N∗), r ∈ R>0 and N∗ ∈ N, satisfying

N∗ ≥ 1

4

r2

r − 1
(σ + σ)2 − σσ.

The Archimedean property is then satisfied with θ0(σ) =
((√

r − 1
)
σ − 1

2
r√
r−1

(σ + σ)
)2

+σσ+N∗− 1
4

r2

(r−1)(σ+σ)2,

θ1(σ) = r. Consider (3a), if −He(N(σ)) ≥ 0, ∀σ ∈ D
then according to Lemma 2 there exist M10(σ),M1(σ) ∈
Σ(n+m)×(n+m)[σ] such that −He(N(σ)) = M10(σ) +
g(σ)M1(σ), yielding (12a). Lemma 2 is applied in a similar

fashion to obtain (12b)-(12e).

We rely on the following proposition to provide a numerical

procedure to solve the inequalities in Theorem 2, related to the

global case.



Proposition 2: Assume that W (σ) ∈ Rn×n[σ], R(σ) ∈
Rm×n[σ], G(σ) ∈ Rm×n[σ] and T (σ) ∈ Rm×m

diag [σ], then

inequalities (3) hold in the set

Do := [σ,+∞) = {σ|g(σ) := (σ − σ) ≥ 0} (13)

with σ > 0 if there exist polynomial matrices M1(σ) ∈
Σ(n+m)×(n+m)[σ], M2(σ) ∈ Σn×n[σ], M3j(σ) ∈ Σn×n[σ],

j = 1, 2, M4i(σ) ∈ Σ
(n+1)×(n+1)
diag [σ], i = 1, . . . ,m, such that

(12) holds.

Proof: Since the set Do is not compact (hence, not pos-

sibly Archimedean [14]), we can not apply Lemma 2 to prove

necessity of existence of SOS multipliers Mj(σ) in (12). How-

ever, sufficiency is immediate since g(σ) ≥ 0, ∀σ ∈ Do, thus

for M1(σ) ∈ Σ[σ] one verifies −He(N(σ)) − g(σ)M1(σ) >
0 ⇒ −He(N(σ)) > 0 ∀σ ∈ Do.

Although Lemma 2 gives necessary and sufficient condi-

tions for inequalities (3) (with polynomial data) to hold, in

order to make these conditions computationally tractable the

degree of the sum-of-squares polynomials Mi(σ) in (12) must

be fixed, hence yielding only sufficient conditions for (3)

for a given degree of Mi, on variable σ. Notice that the

conditions for local exponential stability or global asymptotic

stability in Propositions 1 and 2 are based on the same set of

inequalities (12) although with different choices of polynomial

g(σ) (given by (11) or (13) for the local and the global case

respectively).

The computation of polynomial matrices W (σ), R(σ),
G(σ), T (σ) that solve (12) for fixed values of α can be for-

mulated as a convex feasibility problem, since an optimization

problem with SOS constraints is a semi-definite program [16]

for which efficient and reliable solvers are available [19].

According to item 2 of Theorem 1, to enlarge the basin of

attraction for the local case and to impose a bound on the

Lispschitz constant for the derivative of W with respect to α
(according to (3c)) we can solve the optimization problem

minimize α subject to (12) (14)

Note that (14) is non convex due to the product between W and

α in (12d) but α could be found by bi-section as it enters in

a quasi-convex way, just as in a maximum decay generalized

eigenvalue problem.

V. NUMERICAL EXAMPLES

Example 1: Consider the unstable system (8) discussed in

Section III with η = 1. We solve (12) with g(σ) as in (11),

σ = 1.6, σ = 20, and α = 10, by setting W (σ) and

R(σ) to be polynomials of degree 4. The nonlinear control

gain corresponding to these values is K(x) = n(σ∗(x))
d(σ∗(x)) where

x 7→ σ∗ is defined in (4)-(5) and

n(σ) = −0.9662σ4+0.5832σ3+0.02296σ2+0.2977σ+0.125,

d(σ) = 0.0006743σ3 − 0.05204σ2 + 1.0196σ − 0.3741.

Figure 1 shows trajectories starting from x(0) = 0.89 (on the

boundary of the set E(P , α−1)). The solution to (4)-(5) reaches

the lower bound σ(x(t∗)) = σ = 1.6 at t∗ = 1.8, establishing

the maximal local exponential convergence rate, thus freezing

the gain K(σ(x(t))) = K(σ) for all t ≥ t∗ = 1.8. To illustrate

Remark 1, the closed loop is affected by measurement noise.

Interestingly, this does not affect sat(u) in the initial time due

to clipping effects of saturation, nor it affects σ∗ in the tail,

when the state enters the set E(P , α−1). ◦

−1

0

1

0 1 2 3 4
0

0.5

1

0

10

20

t

x

sat(u)

σ∗

Fig. 1. Example 1 - The solid lines represent the time-evolution of σ∗(x(t))
(top), trajectory of the state for initial condition x0 = 0.89 (bottom), with the
nonlinear gain obtained by solving Problem (14) with g(x) as in (11). The
dotted lines in the figure present the same closed loop with a band limited
white noise w (of power 1×10−4 and sample time T = 0.01s) affecting the
feedback (10) as u(x + w), illustrating the robustness properties mentioned
in Remark 1.

Example 2: This example illustrates an ANCBI plant with

an underdamped mode and a pair of poles at the origin. It

corresponds to a seek control model of a hard-disk drive as

presented in [9] and studied in [12]

Pf (s) = Kp

(
1

s2
− κ

s2 + 2ζωns+ ω2
n

)

(15)

with Kp = 3.74 × 109[trkA−1s−2], κ = 0.7, ζ = 0.31 and

ωn = 2π(4.1× 103)[rad s−1], which, with a saturating input

having saturation levels magnitude of 0.5, has the following

state-space representation

ẋ =







0 1 0 0
0 0 0 0
0 0 0 ωn

0 0 −ωn −2ζωn






x+







0
1
0
−κ






Kp(

1
2sat(u))

y =
[
1 0 1 0

]
x.

(16)

We obtain α = 1.2 by solving Problem (14), where the

parameters in (11) are selected as [σ, σ] = [2, 2000].
We compute trajectories from the initial condition x(0) =
x0 = [ 1000 0 0 0 ]

T
(selected to satisfy σ(x0) ≤ 2000).

The time histories for the state variables and the control are

depicted in Figure 2. Figure 3 shows comparative evolutions

of y, starting from the same x0, obtained with the proposed

nonlinear control law (blue solid curve), with the linear control

defined by the constant gain K(σ) (blue dashed curve), and

with the nonlinear control solutions proposed in [1], [11]

(black dotted curve) and in [12] (red solid curve). We have

followed the indications of [11, Section 4], where some free

parameters are chosen by trial and error and with the goal of

improving the speed of convergence for this particular initial
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Fig. 2. Example 2 - Trajectories of the input and the state for initial

condition x0 = [ 1000 0 0 0 ]T with the nonlinear gain obtained by solving
Problem (14) with g(x) as in (11). From t∗ = 2.56×10−3s, σ∗(x(t∗)) = σ

and the gain is constant and given by K(σ).

condition. The linear control obtained with K(σ) (blue dash-

dotted curve) also guarantees convergence to the origin from

this initial condition (dashed curve) but the nonlinear gain

(blue solid curve) results in a faster convergence rate, which

is expected when comparing to the linear solution. Notably,

the convergence time is essentially the same as the excellent

performance of [12] (red dash-dotted curve). While matching

that extreme performance on this ANCBI plant, we emphasize

that our solution is (more broadly) applicable to any linear

saturated plant. ◦

0 0.0010 0.0020 0.0030 0.0040

−500

0

500

1000

t[s]

y(t)

Fig. 3. Example 2 - Output y for the closed loop between (16) and the
nonlinear gain K(σ∗(x(t))) (blue solid) compared with the output response
with the linear control given by the constant gain K(σ) (blue dashed), and
with the nonlinear control strategies of [1] (black dash-dotted) and [12] (red
solid).

For a globally stabilizing nonlinear control law of the

form (6) with W (σ) ∈ R[σ] and R(σ) ∈ R[σ], refer to

[24] where we have obtained solutions with set as (13) for

the single and the double integrator and a system with a pair

of imaginary eigenvalues. The solution to (12) of this section

were obtained with SOSTOOLS [15] and SeDuMi [19].

VI. CONCLUSION

The local exponential stabilization and global asymptotic

stabilization problems have been addressed for linear plants

with saturating inputs. In the local case, the proposed control

law has a nonlinear structure associated with a guaranteed

stability region and a guaranteed convergence rate. In the

global case, with the same controller structure, only asymptotic

stability may be achieved. The proposed method combines

parametric quadratic Lyapunov functions and a generalized

sector condition. The nonlinear static state-feedback control

law depends on a parameter σ, solution to an implicit equation.

Constructive solutions to the control law were then proposed

by considering polynomial dependence of the matrices on the

parameter σ and SOS relaxations for designing the controller.

APPENDIX

A. Proofs of the Theorems

The proof of Theorem 1 uses the following result that can be

found as a special case of [4, Thm 2] (see also the construction

in [25, §3.5] and [21, Ch 3]).

Lemma 1: Assume that, for a given scalar λ > 0, the fol-

lowing holds for suitable matrices A, B, K̄, H̄ , P̄ = P̄T > 0,

and Ū > 0 diagonal:

He

([
P̄A + P̄ B̄K̄ + λP̄ P̄B

UK̄ − UH̄ −Ū

])

≤ 0, (17)

[
P̄ H̄T

i

H̄i α

]

≥ 0, i = 1, . . . ,m, (18)

then, for all x ∈ E(P̄ , α−1), the following holds:

〈2P̄x, Ax +Bsat(K̄x)〉 ≤ −2λxT P̄ x. (19)

Proof of Theorem 1. Well posedness of the algebraic loop

(4) follows from the implicit function theorem and the fact

that by (3c), one has
∂W (σ)

∂σ
> 0 for all σ ∈ [σ, σ].

Indeed, for each x 6= 0, we have, from (4), ∂
∂σ

ϕ(x, σ) =

−xTW−1(σ)∂W (σ)
∂σ

W−1(σ)x, which implies ∂
∂σ

ϕ(x, σ) < 0
for all x satisfying xTW−1(σ)x ≤ α−1. This is a sufficient

condition for the implicit function theorem to apply and prove

the existence of a unique Lipschitz solution to the implicit

equation for all x ∈ E(P , α−1) \ E(P , α−1) (which does

not include the origin). The fact that σ∗ in (5) is Lipschitz

directly follows from its continuity at the patching surface,

which is easily established by noticing that the solultion to

ϕ(x, σ) = 0 is well defined also at the patching surface where

xTPx = α−1 and corresponds to σϕ = σ.

Consider now the following Lyapunov function candidate:

V (x) = xTW−1(σ∗(x))x
︸ ︷︷ ︸

:=Vloc(x)

+ σ∗(x) − σ
︸ ︷︷ ︸

:=Vglob(x)

(20)

and note that for all x ∈ E(P , α−1) we have V (x) = 0 if and

only if x = 0 and V (x) > 0 otherwise. Moreover, since σ∗ is

a Lipschitz function, function V is differentiable everywhere

except for the set where xTW−1(σ)x = α−1. To prove

exponential stability we may apply the Lyapunov theorem in

[23, page 99] which establishes that the Lyapunov decrease

condition must be verified only in the set where function V
is differentiable, that is for x satisfying xTW−1(σ)x < α−1

and for x satisfying xTW−1(σ)x > α−1.

To analyse the derivative of V along the solutions to (1), (2),

we first multiply inequality (3a) by σ−1 and we apply the



congruence transformation
[
P (σ) 0
0 U(σ)

]

:=
[
W−1(σ) 0

0 T−1(σ)

]

,

which is well defined because, from (3b) and by the assumed

positive definiteness of T , W (σ) and T (σ) are nonsingular

for all σ ∈ [σ, σ]. Then we obtain the following inequality:

He

([
P (σ)A+ P (σ)BK(σ) + σ−1P (σ) −P (σ)B

U(σ)K(σ)− U(σ)H(σ) −U(σ)

])

≤ 0, (21)

where K(σ) is defined in (6) and H(σ) = G(σ)W (σ)−1 .

Now we can split the analysis in two subcases.

Case 1. If x satisfies xTW−1(σ)x < α−1, so that from (5)

one has σ∗(x) = σ, we may apply Lemma 1 with λ = σ−1,

P̄ = P (σ) = W−1(σ), K̄ = K(σ), Ū = U(σ), and H̄ =
H(σ), to get

V̇loc(x) ≤ −2σ−1xTP (σ)x < 0

V̇glob(x) = d(σ∗(x))
dt

= 0,
(22)

where the second inequality follows from the fact that σ∗(x)
is constant along trajectories for any x in the open set where

xTW−1(σ)x < α−1.

Case 2. If x satisfies xTW−1(σ)x > α−1, so that from

(5) with P̄ = P (σ) = W−1(σ) one may apply (4) to get

Vloc(x) = xTW−1(σ∗(x))x = xTW−1(σϕ(x))x = α−1, first

notice that

0 = d
dt

(
xTW−1(σ∗(x))x − α−1

)

= 〈2W−1(σ∗(x))x, ẋ〉+ xT dW−1(σ∗(x))
dσ∗

xd(σ∗(x))
dt

.
(23)

Consider now the right bound in equation (3c), multiply both

sides by W−1(σ∗(x)) and rearrange to get αW−1(σ∗(x)) ≥
W−1(σ∗(x))dW (σ∗(x))

dσ∗
W−1(σ∗(x)) = − dW−1(σ∗(x))

dσ∗
Then,

equation (23) implies:

d (σ∗(x))

dt
= −

(

xT dW−1(σ∗(x))

dσ∗ x

)−1

〈2W−1(σ∗(x))x, ẋ〉

≤
(
αxTW−1(σ∗(x))x

)−1

︸ ︷︷ ︸

=1

〈2W−1(σ∗(x))x, ẋ〉

≤ −σ∗(x)−1xTP (σ∗(x))x, (24)

where we applied again Lemma 1 with λ = σ∗(x)−1,

P̄ = P (σ∗(x)), K̄ = K(σ∗(x)), Ū = U(σ∗(x)), and

H̄ = H(σ∗(x)). Then, we have by using also (24):

V̇loc(x) = 0

V̇glob(x) ≤ −σ∗(x)−1Vloc(x).
(25)

Combining equations (22) and (25) of cases 1 and 2 above

V̇ (x) ≤ −σ∗(x)−1Vloc(x), ∀x ∈ E(P , α−1). (26)

Let us now prove item 3 of the theorem. Since the set [σ, σ]
is compact and bounded away from zero, we may find two

nondecreasing functions c1 and c2 such that for all σ ∈ [σ, σ],

xTP (σ)x + σ − σ ≤ c2(σ)|x|2 c1(σ)|x|2 ≤ xTP (σ)x

Then it follows that the function in (20) satisfies c1(σ)|x|2 ≤
V (x) ≤ c2(σ)|x|2, ∀x ∈ E(P , α−1). That can be used

in combination with (26) and with the property that (from

(24)), σ∗(x) is nonincreasing along solutions, to prove the

exponential bound (7) from standard Lyapunov arguments,

thus proving item 3. As a consequence, item 2 easily follows

from the exponential bound computed in item 3 for the

maximum value of σ = σ. �

Proof of Theorem 2. The proof follows the steps of the proof

of Theorem 1 except for item 2 that establishes asymptotic

stability rather than exponential stability. Indeed, the estimate

of the region of attraction is not compact in the global case

and no uniform exponential bound is guaranteed. �

B. Positivstellensatz

For a set of polynomials ḡ = {g1(x), . . . , gm(x)}, m ∈
N, the quadratic module generated by ḡ is M(ḡ) :=
{θ0 +

∑m
i=1 θigi|θi ∈ Σ[x]} . A quadratic module M ∈ R[x]

is said Archimedean if ∃N ∈ N such that N −‖x‖22 ∈ M(ḡ).
An Archimedian set is always compact [14]. We then state

Lemma 2 (Putinar Positivstellensatz): Suppose M(ḡ) is

Archimedian. Then for every f ∈ R[x], f > 0, ∀ x ∈
{x|g1(x) ≥ 0, . . . , gm(x) ≥ 0} ⇒ f ∈ M(ḡ).
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