
RegionalL2m gain analysis for linear saturating systems ⋆

Giorgio Valmorbida a, Andrea Garulli b, Luca Zaccarian c,d
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Abstract

Sufficient conditions are presented for regional stability and nonlinear L2m gain analysis of linear systems subject to saturation,
based on piecewise polynomial Lyapunov functions. The proposed conditions are formulated in terms of convex optimization
problems and improve existing results both for the quadratic (L2 gain) and the polynomial (L2m gain) cases.

1 Introduction and background

In this paper we use piecewise polynomial functions to
study regional properties of linear saturating systems,
proposing nontrivial extensions of the results in [1–4].
We consider a linear closed loop comprising satura-
tion/deadzone nonlinearities:

ẋ = Ax+Bqdz(y) +Bww

y = Cyx+Dyqdz(y) +Dyww

z = Czx+Dzqdz(y) +Dzww,

(1)

where x ∈ R
n, z ∈ R

p, y ∈ R
d, w ∈ R

r, all the matrices
are real and have appropriate dimensions, and dz(y) =
y−sat(y) is a decentralized symmetric deadzone having
limits u = [u1 . . . ud]. In the following, |x| denotes
the Euclidean norm of vector x and ‖w‖2m denotes the
L2m norm of signalw. As it is well known in the saturated
systems literature (see, e.g., [8,7]), a relevant problem
when analyzing the properties of (1) is the following one.

Problem 1 (Saturated stability/performance analysis)
Given system (1), if the origin is locally exponentially
stable (namely, matrix A is Hurwitz), determine:
(i) an (inner) estimate of its region of attraction when
w = 0;
(ii) an (outer) estimate of the maximum reachable set
with x(0) = 0 and ‖w‖2m ≤ ρ̄, for some ρ̄ > 0 and
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m ∈ Z≥1;
(iii) an upper bound γρ̄ of the worst case local L2m gain,
such that, for x(0) = 0, ‖z‖2m ≤ γρ̄‖w‖2m, for all w
satisfying ‖w‖2m ≤ ρ̄, for some ρ̄ > 0 and m ∈ Z≥1.

In [1], piecewise quadratic Lyapunov functions (solving
Problem 1.i) or Storage functions (solving Problem 1.ii,
1.iii) of the form

V (x, dz(u(x))) =

[

x

dz(u(x))

]T

P

[

x

dz(u(x))

]

(2)

were proposed to analyze stability and L2 gain per-
formance of (1), based on the piecewise linear solution
x 7→ u(x) of the implicit equation

u(x)−Dyqdz(u(x)) = Cyx, (3)

arising from the algebraic loop of (1) when w = 0.
Necessary and sufficient conditions for the well posed-
ness of this nonlinear algebraic loop had been already
given in [7, Claim 2]. We will assume that matrix Dyq

satisfies these conditions so that function x 7→ u(x) is
well defined and unique. The nice feature of the ap-
proach in [1] is that one does not need to compute ex-
plicitly function x 7→ u(x) because the Lyapunov con-
struction directly follows from the implicit equation (3).
In [3] a piecewise polynomial version of the function
in (2) was introduced for the computation of L2m-gain
bounds. An important aspect of the results in [1,3] is
that the computation of global gain estimates was ob-
tained with the solution of a convex Semidefinite Pro-
gram (SDP). However one drawback of the correspond-
ing local formulations described in [1,2] is that regional
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properties 1 could only be assessed via non-convex opti-
mizations because the proposed conditions are given in
terms of bilinear matrix inequality (BMI) constraints.
Hence the proposed iterative formulations are only guar-
anteed to achieve local optima of the presented noncon-
vex optimizations. Another rather restrictive assump-
tion on the piecewise quadratic/polynomial functions,
x 7→ V (x, dz(u(x))) studied in [1–4] is that they were re-
quired to be positive definite with respect to both argu-
ments, disregarding the relation between the deadzone
function and the state variable x. For the quadratic case
in (2), this assumption implies that the matrix P must
satisfy the unnecessary constraint P > 0.

By introducing technical improvements related to the
storage functions and the local sector inequalities, in this
paper we enhance the results of [1–4]. Preliminary re-
sults in this direction were given in [2] where a noncon-
vex formulation for local generalizations of the global
results in [1,4] was presented. The proposed improve-
ments are: 1) Relax the constraint on the piecewise poly-
nomial function to be positive on both its arguments;
2) Provide a convex SDP formulation in terms of Sum-
of-squares (SOS) programmes allowing one to obtain
bounds on the regional L2m-gains of linear saturating
systems. These convex results also improve upon the
nonlinear L2 gain estimates computed with the noncon-
vex conditions in [1], as shown by the example studies
in Section 3.

Notation. To easily refer to the quantities in (2) and (3),
we omit the explicit dependence on x by introducing the
notation q = dz(y(x)), θ = dz(u(x)). We also introduce
u̇ = du/dt and ζ(x,w) = d(dz(u))/dt = dθ/dt, so that
the time derivatives of u(x(t)) and θ(t) = dz(u(x(t))),
whenever they exist, satisfy

θ̇i = ζi(x,w) =

{

0, if |ui| < ūi

u̇i, if |ui| > ūi.
(4)

Note that ζi(x,w) may not be defined where ui = ±ūi,
hence it is well defined almost everywhere (namely for
all (x,w) except for a set of Lebesgue measure zero). We

respectively denote by P[x] and by P
d×d
diag[x] the set of

positive polynomials functions and the set of diagonal
polynomial matrix on variable x ∈ R

n. We also denote
by D

d
>0 ⊂ R

d×d and by D
d
≥0 ⊂ R

d×d the sets of real
diagonal matrices with positive elements and with non-
negative elements, respectively.

We briefly recall the sector-like conditions of [3] where

1 Due to structural limitations of bounded stabilization,
regional stability/performance properties are fundamen-
tal in the study of saturated systems (see, e.g., the lo-
cal/generalized sector conditions in [6,5], and the related dis-
cussions).

vector ξ is the generic argument of some diagonal mul-
tipliers, and U = diag (u).

Lemma 1 (Sector conditions) Given any diagonal
matrix ξ 7→ Π(ξ) such that Π(ξ) ≥ 0 for all ξ, then

(I) ∀ψ ∈ R
d, φ ∈ R

d, |U
−1
φ|∞ ≤ 1

dz(ψ)TΠ(ξ)(ψ − φ− dz(ψ)) ≥ 0, ∀ξ. (5a)

(II) the following holds almost everywhere in x and w

{

θTΠ(ξ) (u̇− ζ(x,w)) = 0

ζ(x,w)TΠ(ξ) (u̇− ζ(x,w)) = 0.
(5b)

(III) ∀ψ1, ψ2 ∈ R
d,

(dz(ψ1)− dz(ψ2))
T Π(ξ) (sat(ψ1)− sat(ψ2)) ≥ 0.

(5c)

Lemma 1.(I) states that dz belongs to the sector [0, I].
By setting Π(ξ) = Π0(ξ) ≥ 0 ∀ξ, ψ = u and φ = 0
in (5a) along with (3) one gets

Ω0(Π0(ξ)) := θTΠ0(ξ) (Cyx+ (Dyq − Id)θ) ≥ 0, (6a)

which holds for all ξ and for all x, q, w, θ satisfying (1). By
setting Π(ξ) = Πi(ξ) > 0 ∀ξ and φ = ρ−1Π−1

i (ξ)hi(x, θ)
in (5a) i = 1, 2, with ρ a positive scalar, one obtains,
respectively

Ω1(Π1(ξ)) := θT (Π1(ξ) (Cyx+Dyqθ)

−ρ−
1

2m h1(x, θ) −Π1(ξ)θ
)

≥ 0, (6b)

Ω2(Π2(ξ)) := qT (Π2(ξ) (Cyx+Dyqq +Dyww)

−ρ−
1

2m h2(x, θ) −Π2(ξ)q
)

≥ 0, (6c)

which hold for all ξ and for all x, θ, q, w satisfying (1)

and |(ρ
1

2mu−1
i Πi(ξ))

−1hi(x, θ)|∞ ≤ 1, i = 1, 2. By the
definition of u and by (1) and (4), we have u̇ = Cyẋ +
Dyqζ(x,w). Then, relations (5b) provide the following
equalities, which hold for all ξ and for all x, q, θ, ζ =
dθ/dt, solutions to (1):

Ω3(Π3(ξ)) := θTΠ3(ξ) (Cyẋ+ (Dyq − Id)ζ) = 0; (7a)

Ω4(Π4(ξ)) := ζTΠ4(ξ) (Cyẋ+ (Dyq − Id)ζ) = 0. (7b)

Finally, by using (5c) with ψ1 = u and ψ2 = y, for any
Π5(ξ) ≥ 0, the following holds for all q, θ solutions to
(1), and for all w and ξ:

Ω5(Π5(ξ)) := (θ − q)
T
Π5(ξ) ((Dyq − Id)θ

+(Id −Dyq)q −Dyww) ≥ 0. (8)
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2 Local stability and finite L2m gain estimates
with piecewise polynomial functions

Wepresent a convex formulation for the estimation of the
basin of attraction and the local L2m-gain of system (1).
The regional analysis requires the following lemma that
presents a sufficient condition for the inclusion of level
sets of Lyapunov/storage functions

E(V, ρ) := {x ∈ R
n | V (x, dz(u(x))) ≤ ρ} (9)

in the set where the local sector inequalities (6b)-(6c)
hold, which according to Lemma 1.(I) are of the form

H := {x ∈ R
n |

|ρ−
1

2mU
−1

Π−1(x, dz(u))h(x, dz(u))|∞ ≤ 1
}

.

Lemma 2 Given a function V : Rn+d → R, a function
Π : Rn+d → D

d
>0, a function h : Rn+d → R

d, if there

exist diagonal matrix functions Πaj : Rn+d → D
d
≥0, j =

1, 2, and a function ω : Rn+d → R
d satisfying the set of

inequalities:

I(V, h,Π,Πa1,Πa2, ω) :=
{

Π(x, θ) − (|[ xθ ]|)
2m−2

Im ≥ 0, (10a)

(|[ xθ ]|)
2m−2

ωi(x, θ) − Ω0(Πa1(x, θ))

− 2νhi(x, θ) + ν2 ≥ 0, (10b)

V (x, θ)− Ω0(Πa2(x, θ)) − 2u−2
i ν2(m−1)ωi(x, θ)

+ ν(2m) ≥ 0, (10c)

i = 1, . . . , d, ∀x ∈ R
n, ∀θ ∈ R

d, ∀ν ∈ R

}

,

then E(V, ρ) ⊆ H holds.

Proof.DefineHθ :=
{

(x, θ) | u−2
i Π−2

(i,i)(x, θ)h
2
i (x, θ) ≤ ρ

1

m ,

i = 1 . . . d}, and notice thatH = Hθ

∣

∣

∣

θ=dz(u(x))
. Also de-

fineWθ :=
{

(x, θ) ∈ R
n+d | u−2

i ωi(x, θ) ≤ ρ
1

m , i = 1 . . . d
}

.

We respectively have E(V (x, θ), ρ) ⊆ Wθ and Wθ ⊆ Hθ

if and only if for all x, θ

V (x, θ) − u−2m
i (ωi(x, θ))

m
≥ 0, i = 1, . . . , d, (11a)

Π2
(i,i)(x, θ)ωi(x, θ)− h2i (x, θ) ≥ 0, i = 1, . . . , d. (11b)

We now show that, with θ = dz(u(x)), (10) implies (11)
in three successive steps a), b), and c) below.

a) We have Π(i,i)(x, θ)ωi(x, θ) ≥ |[ xθ ]|
2(m−1) ωi(x, θ) if

(10a) holds. Then, for (11b) it is enough to prove, for
each i = 1, . . . , d,

(|[ xθ ]|)
2m−2

ωi(x, θ)− h2i (x, θ) ≥ 0, ∀ x, θ. (12)

b) To enforce (12), recall from (6b) that Ω0(Πa1) ≥ 0,

therefore (10b) implies (|[ xθ ]|)
2m−2 ωi(x, θ)−2hi(x, θ)ν+

ν2 ≥ 0, ∀(x, θ, ν) ∈ R
n+d+1. This implies (12) since it

corresponds to the particular choice ν = hi(x, θ) in the
above inequality.
c) Similarly, for (11a), we recall from (10a) that
Ω0(Πa2) ≥ 0 therefore (10c) implies V (x, θ) − 2u−2

i ×

ωi(x, θ)ν
2(m−1) + ν2m ≥ 0 i = 1, . . . , d, ∀(x, θ, ν) ∈

R
n+d+1. This implies (11a) that corresponds to the par-

ticular choice ν =
(

u−2
i ωi(x, θ)

)
1

2 in the above inequal-
ity. Thus the set inclusion E(V, ρ) ⊆ H holds under (10)
and the lemma is proven. ⋄

An important feature of Lemma 2 is that the inequali-
ties (10) are affine in V , h, Π, Πaj , and ω. We use those
inequalities to study stability and performance of sys-
tem (1) with a piecewise polynomial Lyapunov/storage
function in the affine formulation below.

Theorem 1 Consider system (1) with a well-posed al-
gebraic loop (3) and consider the set of inequalities

V (x, θ) − Ω0(Π0(ξ))− ǫ|x|k1 ≥ 0, (13a)

− V̇ (x, q, θ, ζ, w) −

5
∑

i=1

Ωi(Πi(ξ))−Ψ− ǫ|x|k2 ≥ 0,(13b)

I(V, h1,Π1,Π6,Π7, ω1), I(V, h2,Π2,Π8,Π9, ω2), (13c)

where Ωi, i = 0, . . . , 5, are given in (6)-(8) and

V̇ (x, q, θ, ζ, w) is a shorthand notation for

〈

∇V (x, θ),

[

Ax+Bqq +Bww

ζ

]〉

.

If there exist a polynomial function V (x, θ) ∈ P[(x, θ)],

polynomial matrices Πi(ξ) ∈ P
d×d
diag[ξ], i ∈ {0, 1, 2, 5,

6, 7, 8, 9}, two reals k1, k2 ≥ 2 and a scalar ǫ > 0 such
that (13) holds with

(1) Ψ = 0 andw = 0 (hence θ = q givingΩ5(Π5(ξ)) = 0
and, h1 = h2, giving Ω1 +Ω2 = 2Ω1);

(2) Ψ = −(wTw)m;
(3) Ψ = γd(z

T z)m − (wTw)m with γd ∈ R>0;

for all x, θ, q, ζ, w and ξ, then the following properties,
respectively, hold:

(1) the origin of system (1) is locally asymptotically sta-
ble and an estimate of its basin of attraction is given
by {x|V (x, dz(u(x))) ≤ ρ};

(2) for each ρ > 0, x(0) = 0 and ‖w‖2m ≤ ρ
1

2m , it holds
x(t) ∈ {x|V (x, dz(u(x))) ≤ ρ}, for all t ≥ 0 with
u(x) the unique solution to (3);

(3) x(0) = 0 implies ‖z‖2m ≤
(

1
γd

)
1

2m

‖w‖2m ∀w ∈

{w | ‖w‖2m ≤ ρ
1

2m }.
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Proof. Let V (x, θ), Πi(ξ),∈ P
d×d
diag, i ∈ {0, 1, 2, 5, 6, 7, 8, 9},

Π1(ξ),Π2(ξ) > 0 ∀ξ and k1, k2 satisfy (13). Define
the piecewise polynomial candidate Lyapunov function
W (x) = V (x, dz(u(x))). Function W is continuous and
piecewise smooth, and it is non differentiable in a set
of measure zero. Based on the reasoning in [9, page
99], it is sufficient to guarantee a uniform decrease,
or dissipativity condition on W almost everywhere in
R

n. From (13a) we have W (x) ≥ ǫ|x|k1 which proves
positive definiteness and radial unboundedness of W .
From (13c) we have, from Lemma 2 that E(V, ρ) ⊆ H
holds with Π = Πi and h = hi, i = 1, 2, which, from
Lemma 1, implies that Ωi(Πi(ξ)) ≥ 0, i = 1, 2 for all
x ∈ {x|V (x, dz(u(x))) ≤ ρ}. Moreover, since the non-
negativity of Ωi(Πi(ξ)), i = 1, . . . , 5, established in
(6)-(8), holds along any solution of (1), constraint (13b)
implies the following, respectively, in the three cases.

1) With w = 0, q = θ and Ψ = 0 we have Ẇ (x) ≤
−ǫ|x|k2 for almost all x. Global asymptotic stability of
the origin then follows from standard Lyapunov deriva-
tions.
2) With Ψ = −(wTw)m, set Ẇ (x,w) := 〈∇xW (x), Ax

+ Bqdz(y(x,w)) + Bww〉. Then Ẇ (x,w) − (wTw)m ≤

−ǫ|x|k2 for almost all x, w, which implies Ẇ (x,w) ≤
(wTw)m for almost all x, w. Considering x(0) = 0
and integrating both sides of the previous inequality
along any solution x to (1) under an input w with

L2m norm bounded by ρ
1

2m , we obtain W (x(t)) ≤
∫ t

0
(w(τ)Tw(τ))mdτ = (‖w‖2m)2m ≤ ρ for all t ≥ 0.

3) With Ψ = γd(z
T z)m − (wTw)m, we have Ẇ (x,w) +

γd(z
T z)m−(wTw)m ≤ −ǫ|x|k2 for almost all x, w which

implies Ẇ (x,w) + γd(z
T z)m ≤ (wTw)m for almost all

x, w. Considering x(0) = 0 and w ∈ L2m, integrating
both sides from 0 to t and taking the limit as t → ∞,

we have that ‖z‖2m ≤
(

1
γd

)
1

2m

‖w‖2m. ⋄

The key difference of the above result with respect to [2,
Theorem 3.2] is that the inequalities (13) are affine on
the problem variables whereas the inequalities describ-
ing the inclusion condition and the regional sector in-
equalities used in [2, Theorem 3.2] are not affine. This
affine dependence on the variables allows for the convex
optimization formulation described in the next section.
Note that the choice of k1 and k2 in (13) has to be com-
patible with m in items 2 and 3 and the degree of the
polynomial V . For instance, in Example 2 in the next
section it is sufficient to choose k1 = k2 = 2 for m = 1.

3 SOS relaxations and Numerical Results

We compute estimates of the L2m gain solving the in-
equalities in item 3 of Theorem 1. For fixed values of ρ
the SOS relaxation of the inequalities (13) (analogous to
the relaxations in [2, Prop. 3.2]) yield polynomial con-
straints that are affine on the decision variables, which

are convex constraints. We solve the associated SDP
(semi-definite program) by maximizing the value of γd,
which implies the minimization of the upper-bound on
the gain for bounded values of the disturbance. When
compared to the constraints of [2, Prop. 3.2], the in-
equalities (13) introduce variables, Πi, i ∈ {0, 6, 7, 8, 9},
thus increasing the number of variables of the underly-
ing SDPs to be solved. The algorithm proposed to build
the gain curve in [2] requires a line search to compute the
induced gain for each fixed value of ρ. Conversely, the
approach proposed here simplifies the computation for a
fixed ρ, thanks to the inclusion conditions of Lemma 2,
requiring the solution of a single SDP (a comparisonwith
the results of [2] is reported in Example 3 below).

The following example provides estimates of the global
L2m gain, which are obtained by considering the SOS
relaxation of inequalities (13a)-(13b) and by imposing
h1 = h2 = 0.

Example 1 Consider the system from [3, Example 1],
for which no L2-gain could be computed when imposing

P =
[

P11 P12

PT

12
P22

]

> 0 in the quadratic function V (x, θ) =

[ xT θT ]P [ xθ ]. The proposed inequality (13a) relaxes the
conditions imposed on the matrix P . The bound on the
global L2-gain turns out to be γ2 = 2.71 and the matrix
P is defined by

P11 =
[

2.1406 −0.2324 −0.4720
−0.2324 0.9320 −0.5652
−0.4720 −0.5652 1.2056

]

;P12 =
[

−0.1112 −0.0588
0.6144 0.2306
−0.6267 −0.4603

]

;

P22 =
[

−0.0064 0.0235
0.0235 −0.1412

]

.

Note that the P22 block is negative definite. We also
compute a bound on the globalL4-gain, γ4 = 2.54, which
significantly improves the bound γ4 = 105 computed
in [3].

Example 2 Consider the linear saturating sys-
tem with an algebraic loop studied in [1, Example
2], where the proposed piecewise quadratic func-
tion structure was compared to previous quadratic
and non-quadratic LF structures from the litera-
ture. However, in [1] instead of (13a), the LF is
required to satisfy V (x, θ) − ǫ| [ xθ ] |

2 ≥ 0. The
example showed performance curves for Dyq ∈
{

Dyq1 =
[

−2 −1
−2 −4

]

, Dyq2 =
[

−2 −1.3
−2.3 −4

]

, Dyq3 =
[

−2 −1
−2 −4

]}

.
For all these cases, the solutions of [1] outperformed the
bounds obtained from previous results in the literature.
Table 1 reports a comparison between the proposed
conditions for the global L2 performance and the results
in [1]. Figure 1 depicts the nonlinear L2 gain curve as a
function of the norms of the disturbances for the case
Dyq = Dyq1. Similar curves were obtained for Dyq2 and
Dyq3.

Example 3 In [2], a coordinate-wise approach has been
used to compute bounds on the nonlinear L4-gain for
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Table 1
Global bounds from [1] and from this paper.

Lyapunov function Dyq1 Dyq2 Dyq3

PW-quadratic in [1] 15.13 17.19 25.86

PW-quadratic satisfying (13a) 12.04 12.39 17.79

10
−1

10
0

10
1

10
2

10
3

10
1

 

 

γ2

ρ

Proposed solution
Results in [1]

Fig. 1. Nonlinear L2 gain estimates with Dyq1 obtained by
solving inequalities (13) (blue line) and from [1] (red line).

the linear system described in [2, Example 5.2] by solv-
ing suitable BMI conditions. For the the same system,
we have solved the LMI conditions associated to the
SOS relaxations of the inequalities in (13) to compute
bounds on the L4-gain curve. The points on this curve
were obtained by selecting different values of the scalar
ρ that appear in terms Ω1 and Ω2, which establishes a
bound on the disturbance and also establish bounds of
the disturbance as ‖w‖4 ≤ ρ

1

4 . Note that, from item 2 of
Theorem 1, ρ defines upper-bounds for the L2m bound
of the disturbance. The gain curves are depicted in Fig-
ure 2, highlighting the improvement of the obtained re-
sults with respect to the results reported in [2].

10
−2

10
−1

10
0

10
1

10
2

10
1

 

 

γ4

ρ

Proposed solution
Solution in [2]

Fig. 2. Upper bounds of the nonlinear L4-gain for the sys-
tem studied in [2, Example 5.2] obtained by solving inequal-
ities (13) (blue line) and obtained with the coordinate-wise
search to solve the BMIs in [2] (red line).

4 Conclusion

Wepresented convex conditions for regional stability and
nonlinear L2m gain analysis of linear systems subject to
saturation. In addition to providing polynomial tools for
stability/performance analysis, our results extend and

improve the existing results also for the quadratic case
(L2 gain). Including the treatment of parametric uncer-
tainties is a straightforward extension of the results pre-
sented in this paper, by following the approach for the
global case presented in [3]. We are currently investigat-
ing the use of piecewise quadratic functions for the non-
linear state feedback design with algebraic loops.
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[7] T. Hu, A.R. Teel, and L. Zaccarian. Stability and performance
for saturated systems via quadratic and nonquadratic
Lyapunov functions. IEEE Transactions on Automatic
Control, 51(11):1770–1786, Nov 2006.

[8] S. Tarbouriech, G. Garcia, J.M. Gomes da Silva Jr., and
I. Queinnec. Stability and stabilization of linear systems with
saturating actuators. Springer-Verlag London Ltd., 2011.

[9] A.R. Teel and L. Praly. On assigning the derivative
of a disturbance attenuation control Lyapunov function.
Mathematics of Control, Signals, and Systems (MCSS),
13(2):95–124, 2000.

5


