
HAL Id: hal-01576290
https://hal.science/hal-01576290v1

Submitted on 22 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Region of attraction estimation using invariant sets and
rational Lyapunov functions
Giorgio Valmorbida, James Anderson

To cite this version:
Giorgio Valmorbida, James Anderson. Region of attraction estimation using invariant sets and ratio-
nal Lyapunov functions. Automatica, 2017, 75, pp.37-45. �10.1016/j.automatica.2016.09.003�. �hal-
01576290�

https://hal.science/hal-01576290v1
https://hal.archives-ouvertes.fr


RegionofAttractionEstimationUsing Invariant Sets and

Rational LyapunovFunctions ⋆

Giorgio Valmorbida a, James Anderson b,
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Abstract

This work addresses the problem of estimating the region of attraction (RA) of equilibrium points of nonlinear dynamical
systems. The estimates we provide are given by positively invariant sets which are not necessarily defined by level sets of a
Lyapunov function. Moreover, we present conditions for the existence of Lyapunov functions linked to the positively invariant
set formulation we propose. Connections to fundamental results on estimates of the RA are presented and support the search
of Lyapunov functions of a rational nature. We then restrict our attention to systems governed by polynomial vector fields
and provide an algorithm that is guaranteed to enlarge the estimate of the RA at each iteration.

Key words: Estimates of Region of Attraction, Polynomial systems, Invariant sets, Sum-of-squares.

1 Introduction

The problem of computing the region of attraction (RA)
of asymptotically stable equilibria, or inner estimates
to this set (ERA) [6], is central in several applications
and its relevance is immediately clear for many practical
nonlinear systems for which we can only guarantee local
properties of operating points.

With a converse Lyapunov theorem [22, Theorem 19],
Zubov answered the question “[...] Is it possible, with
the help of the Lyapunov function to find a region of
variation of the initial values x0 such that ‖φ(t, x0)‖ →
0 as t→∞ ?” [22, p.3]. The theorem states that if S
is the RA of an equilibrium then the existence of a Lya-
punov function (LF) satisfying some conditions on such
a set S is necessary and sufficient. However, comput-
ing the LF and the exact RA following Zubov’s theorem
requires the solution of a partial differential equation,
which is difficult to obtain in all but simple cases. How-
ever, local solutions (in a compact set around the equi-
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librium point) to the conditions can be obtained more
easily and yield ERAs for the equilibrium point of inter-
est. In this context, a method to approximate solutions
to the conditions of [22, Theorem 19] is obtained with a
series expansion of the LF [22, p.91] and is now referred
to as Zubov’s Method.

In [20], Zubov’s theorem was modified to consider Lya-
punov functions mapping R

n to R≥0 (the original re-
sult is stated in terms of a map from R

n to the interval
[−1, 0]). One of the conditions in [20] imposes that the
LF V (x) satisfies V (x) → ∞ whenever x → ∂S (the
boundary of the RA) or whenever ‖x‖ → ∞. Such a
property is described by the observation that “the can-
didate must in effect ‘blow up’ near the boundary of the
domain of attraction”. These functions were called max-
imal Lyapunov functions (MLFs). One of the key ob-
servations was that rational functions could be used to
approximate MLFs and therefore be used to obtain esti-
mates of the RA. As a matter of fact, the class of ratio-

nal functions of the form V (x) = VN (x)
VD(x) where VN and

VD are polynomials, were considered as LF candidates
in the algorithm proposed in [20] with the boundary of
the ERA characterised by the set {x ∈ R

n | VD(x) = 0}.

At this point, for the sake of clarity, it is important to
distinguish between two similar sounding yet very differ-
ent objects: a maximal Lyapunov function (MLF) and a
maximal Lyapunov set (MLS). An MLF is a Lyapunov

Preprint submitted to Automatica 28 July 2016



function which satisfies a strict set of conditions (cf. Def-
inition 1 in Section 3). In contrast, a MLS is defined as
the largest level set of a given LF contained in a speci-
fied set. Computing the MLS is of course of interest since
one might wish to compute the best ERA achievable for
a given Lyapunov function [3, 5]. Further to the choice
of the class of the LF, conservativeness is introduced by
imposing the level sets of the Lyapunov function to be
the ERA, as observed in [9, p.320]“Estimating the region
of attraction by Ωc = {x|V (x) ≤ c} is simple but usually
conservative. According to LaSalles’s theorem [...] we can
work with any compact set Ω ⊂ D provided we can show
that Ω is positively invariant.”The statement highlights
the fact that contractiveness of the function defining the
ERA is restrictive.

In recent years, sufficient conditions for local stability
analysis, requiring invariance and contractiveness of
a set led to numerical methods for the estimation of
the RA with polynomial Lyapunov functions [15–17].
These methods rely on the solution of non-convex
sum-of-squares (SOS) constraints constructed with the
Positivstellensatz [10, Theorem 2.14]. The solutions to
these problems require a coordinate-wise search since
the non-convex nature results from the fact that some
polynomial variables appear multiplying the Lyapunov
function which is itself a variable. For a detailed descrip-
tion of sum-of-squares methods for RA estimation the
reader is referred to [4]. For the case of a given LF, the
computation of the MLS was pursued in [5]. In [8] the
theory of moments is used to estimate the RA of uncer-
tain polynomial systems. We also find in the literature
numerical methods exploiting topological properties
of the boundary of the RA requiring the computation
of trajectories and equilibrium points. However the
complexity of such methods has restricted them to 2-
dimensional examples [6]. Recently, in [21], set advection
methods are described for polynomial systems.

In this paper we derive conditions based on Lyapunov
stability results that guarantee that trajectories initiated
from an positively invariant set converge to a level set of
the LF which is contractive and invariant therefore guar-
anteeing such a positively invariant set to be an ERA. In
addition to the positively invariant estimates, we present
conditions to obtain LF certificates of a specific form
which specializes to rational functions in case of polyno-
mial data. We then propose a numerical method based
on the solution of SOS constraints for the case of polyno-
mial systems and estimates in the form of semi-algebraic
sets (sets defined by polynomial constraints). The work
in this paper extends the work of [18] and connects the
concept of maximal Lyapunov functions [20] to polyno-
mial optimization techniques based on sum-of-squares
programming. To the best of the authors knowledge this
is the first work to offer a theoretical link between maxi-
mal Lyapunov functions, which completely characterise
the ERA (and can be approximated to arbitrary accu-
racy by rational functions) and sum-of-squares methods

for rational LF construction. Note that rational Lya-
punov functions were considered in [5] to obtain MLSs.

The paper is organised as follows: We present some def-
initions and the problem statement in Section 2 and de-
scribe the main theoretical results in Section 3. Narrow-
ing our attention to systems described by polynomial
vector fields we describe a computational method for
constructing ERAs based on sum-of-squares program-
ming in Section 4 which is illustrated by numerical ex-
amples in Section 5.

2 Preliminaries

Let R,R≥0,R>0 and R
n denote the sets of real num-

bers, non-negative real numbers, positive real numbers
and the n-dimensional Euclidean space respectively. The
function f : R

n → R is positive definite if f(x) > 0
for all non-zero x ∈ R

n, similarly if f(x) ≥ 0 for all
x ∈ R

n then f is positive semidefinite. The set of func-
tions g : Rn → R which is n-times continuously differen-
tiable is denoted Cn. co(X ) denotes the convex hull of the
setX ,X ◦ its interior, ∂X its boundary, andX its closure.
The minimum (maximum) of a scalar function S(x) in
a compact set Y is denoted min

x∈Y
(S(x)) (max

x∈Y
(S(x))). We

also use max to denote the function taking the maximum
of its arguments. For x ∈ R

m the ring of polynomials in
m variables is denoted by R[x]. For p ∈ R[x], deg(p) de-
notes the degree of p. A polynomial p(x) is said to be a
sum-of-squares if there exists a finite set of polynomials

g1(x), . . . , gk(x) such that p(x) =
∑k

i=1 g
2
i (x). The set of

SOS polynomials in x is denoted by Σ[x1, . . . , xm] which
can be abbreviated to Σ[x]. Equivalently p(x) is SOS if
there exists a positive semidefinite matrix Q such that
p(x) = ZT (x)QZ(x) where Z(x) is a vector of monomi-
als [13]. Note that the search for Q can be formulated as
a semidefinite programme and thus solved using convex
optimization techniques [19].

Consider the dynamical system

ẋ = f(x) (1)

where f : D → R
n is a locally Lipschitz map from a do-

main D ⊂ R
n to R

n, with 0 ∈ D. Let us assume x = 0
is an equilibrium point, i.e. 0 ∈ {x ∈ R

n|f(x) = 0}.
Denote by φ(t, x(0)) the solution to (1) that is initi-
ated from the point x(0) at time t = 0, the set L is
said to be invariant with respect to (1) provided x(0) =
φ(0, x(0)) ∈ L ⇒ x(t) = φ(t, x(0)) ∈ L, ∀t ∈ R. Fur-
thermore, L is said to be positively invariant with re-
spect to (1) if the previous implication holds for all
t ≥ 0. Given a (continuous) function R : R

n → R

we define the set E(R, γ) := {x ∈ R
n | R(x) ≤ γ} for

some γ > 0 and so E◦(R, γ) = {x ∈ R
n | R(x) < γ} for

the same γ > 0. Additionally, provided that a function
V : Rn \ {0} → R>0 satisfies V̇ (x) = ∂V

∂x
f(x) < 0 on
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E(V, γ) then the set E(V, γ) is said to be contractive and
invariant, furthermore the function V is said to be a Lya-
punov function [9, Chapter 4]. We assume throughout
this work that any function used to define a contractive
set is in C1. The region of attraction of an asymptotically
stable equilibrium point x∗ of (1) is defined as the set

S :=

{
x ∈ R

n

∣∣∣∣∣
φ(t, x) is defined ∀t ≥ 0,

limt→∞ φ(t, x) = x∗

}
, (2)

without loss of generality, we will assume throughout
this paper that the equilibrium point of interest is at the
origin, i.e. x∗ = 0.

The focus of this paper is to construct inner estimates
of S by computing positively invariant sets.

3 Main results

In this section we present conditions to certify that a
compact set is a postively invariant set and provides an
estimate of the RA for the origin of (1). It is also shown
how, under a different condition, one can obtain an alter-
native Lyapunov function. We then extend these results
to the case where the system under study is affected by
parametric uncertainty.

3.1 Region of Attraction Estimates

The following theorem is used to verify that a compact
set is positively invariant and defines an estimate of the
RA of the equilibrium point at the origin and to obtain
functions of which the denominator provides the RA es-
timate.

Theorem 1 Given R : Rn → R, R ∈ C1 and γ > 0,
satisfying

E(R, γ) ⊂ D is compact and 0 ∈ E(R, γ), (3a)

−〈∇R(x), f(x)〉 > 0 ∀x ∈ ∂E(R, γ), (3b)

if there exists VN : Rn → R, VN (0) = 0, VN ∈ C
1, such

that
VN (x) > 0 ∀x ∈ E(R, γ) \ {0}, (4a)

−〈∇VN (x), f(x)〉 > 0 ∀x ∈ E(R, γ) \ {0} , (4b)

then

(I) the solutions x(t) = φ(t, x0) to (1), with x0 ∈
E(R, γ) satisfy x(t′) ∈ S ∀t′ ∈ [0,∞).

Moreover, if (3a), (4a) and

− 〈[∇VN (x)(γ −R(x)) + VN (x)∇R(x)] , f(x)〉 > 0

∀x ∈ E(R, γ) \ {0} (5)

hold and there exists a positive scalar ǭ such that 0 ∈
E◦(R, γ − ǭ) then

(II) the function

V (x) =
VN (x)

γ −R(x)
(6)

is a Lyapunov function for (1) and gives E◦(R, γ) as an
estimate of S.

Proof. Proof of (I). Part 1 (Contractiveness of a level set
of VN ): by assumption E(R, γ) is compact thus we can
compute α = min

x∈∂E(R,γ)
VN (x), then from (4a), α > 0.

Define U = E(VN , α)∩E(R, γ), from (4a), (4b) we have

VN (x) > 0 ∀x ∈ U \ {0} ,

−〈∇VN (x), f(x)〉 > 0 ∀x ∈ U \ {0} .

Following [9, Theorem 4.1] we have that the origin is
asymptotically stable and an inner approximation of
its region of attraction is given by U , that is trajecto-
ries φ(t, x0) with x0 ∈ U exist, are unique, and satisfy
φ(t, x0)→ 0 as t→∞.

Part 2 (Positively Invariance of E(R, γ)): since E(R, γ)
is compact and f(x) is locally Lipschitz in any compact
set, we have existence and uniqueness of solutions to
ẋ = f(x), for all x0 ∈ E(R, γ), provided every solution
lies in E(R, γ). Let us prove that for all T ∈ [0,∞) we
have x(T ) ∈ E(R, γ). Assume there exists x0 ∈ E(R, γ)
for which the solution leaves the set, then, there must
exist a T ∗ such that x(T ∗) = φ(T ∗, x0) that satisfies
R(x(T ∗)) > γ. From the continuity of solutions and con-
tinuity ofR(x) there must exist T̄ , 0 < T̄ < T ∗ such that

R(x(T̄ )) = γ and Ṙ(x(T̄ )) = 〈∇R(x(T̄ )), f(x(T̄ ))〉 ≥ 0,
which contradicts (3b). Hence E(R, γ) is a positively in-
variant set.

Part 3 (Convergence of trajectories starting in E(R, γ)\
E◦(VN , α) to U): Finally let us now prove that every
trajectory satisfying x(0) ∈ E(R, γ) \ E◦(VN , α) enters
the positively invariant and contractive set U , that is,
that there exists a T such that x(T ) ∈ U . Let β =

max
x∈∂E(R,γ)

VN (x). Since (4b) holds in E(R, γ) \ E◦(VN , α)

let λ = − max
x∈E(R,γ)\E◦(VN ,α)

〈∇VN , f(x)〉. Note that λ ex-

ists because a continuous function has a maximum over
any compact set, moreover λ > 0. From (4b) we also get

VN (x(t)) = VN (x(0))+

∫ t

0

V̇N (x(τ))dτ ≤ VN (x(0))−λt.

Since VN (x(0)) ≤ β we have VN (x(t)) ≤ β − λt in the
set E(R, γ) \ E◦(VN , α), letting t → ∞ we arrive at a
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contradiction because VN should be positive on the set.
This implies that ∃T ≥ 0 satisfying T ≤ β−α

λ
such that

VN (x(T )) = α and hence x(T ) ∈ U .

Proof of (II): From (4a) we have that V (x) > 0 ∀x ∈
E◦(R, γ) \ {0}. The time-derivative of (6) along the tra-
jectories of (1) is given by

V̇ (x) =
〈∇VN (x)(γ −R(x)) + VN (x)∇R, f(x)〉

(γ −R(x))2
(7)

which satisfies−V̇ (x) > 0 ∀x ∈ E◦(R, γ)\{0} if (5) holds
true. Thus V is a Lyapunov function for the equilibrium
point at the origin of (1). What is left to show is that the
level curves of V define the stated estimate of the ERA.

We have that V (x) and V̇ (x) are not defined in ∂E(R, γ),
thus it is not possible to compute scalars α and β as in
Parts 1 and 3 in the above Proof of (I). Consider the
arbitrarily small scalar, ǫ that defines the set E(R, γ− ǫ)
and assume it satisfies ǫ ≤ ǭ.Then, as E(R, γ) is compact
it follows that so is E(R, γ − ǫ). We can then follow the
same steps of Proof of (I), Part 1 and compute a positive
scalar αǫ = min

x∈∂E(R,γ−ǫ)
V (x). Define Uǫ = E(V, αǫ) ∩

E(R, γ − ǫ), since V (x) > 0 ∀x ∈ E◦(R, γ) \ {0} and

−V̇ (x) > 0 ∀x ∈ E◦(R, γ) \ {0} we have

V (x) > 0 ∀x ∈ Uǫ \ {0} ,

−〈∇V (x), f(x)〉 > 0 ∀x ∈ Uǫ \ {0} .

Then following [9, Theorem 4.1] the origin is asymptot-
ically stable and an inner approximation of its region
of attraction is given by Uǫ, that is trajectories φ(t, x0)
with x0 ∈ Uǫ exist, are unique, and satisfy φ(t, x0)→ 0
as t→∞.

Using (6), we obtain

E(V, αǫ) =

{
x ∈ R

n | R(x) ≤ γ −
VN (x)

αǫ

}
.

Since

αǫ = min
x∈∂E(R,γ−ǫ)

V (x)

= min
x∈∂E(R,γ−ǫ)

VN (x)

γ −R(x)

= min
x∈∂E(R,γ−ǫ)

VN (x)

γ − (γ − ǫ)

=
1

ǫ

(
min

x∈∂E(R,γ−ǫ)
VN (x)

)

we then have

E(V, αǫ) =



x ∈ R

n | R(x) ≤ γ − ǫ
VN (x)

min
x∈∂E(R,γ−ǫ)

VN (x)



 .

(8)

Define a positive scalar δ as follows:

δ :=

max
x∈E(R,γ)

VN (x)

min
x∈E(R,γ)\E◦(R,γ−ǭ)

VN (x)

then it is immediate that δ ≥ 1. As ǫ ≤ ǭ we
have ∂E(R, γ − ǫ) ⊂ E(R, γ) \ E◦(R, γ − ǭ), thus

min
x∈∂E(R,γ−ǫ)

VN (x) ≥ min
x∈E(R,γ)\E◦(R,γ−ǭ)

VN (x) and hence

δ≥
VN (x)

min
x∈∂E(R,γ−ǫ)

VN (x)
, ∀x ∈ E(R, γ).

Since ǫ is positive, the set containment

E(R, γ−ǫδ)⊆



x ∈ R

n | R(x) ≤ γ − ǫ
VN (x)

min
x∈∂E(R,γ−ǫ)

VN (x)





holds true. Using (8) we have E(R, γ − ǫδ) ⊂ E(V, αǫ),
thus E(R, γ−ǫδ) = E(R, γ−ǫδ)∩E(R, γ−ǫ)⊆E(V, αǫ)∩
E(R, γ−ǫ) = Uǫ which, using the fact that Uǫ ⊂ E(R, γ),
we obtain

E(R, γ − ǫδ)⊆Uǫ ⊂ E(R, γ).

Thus E(R, γ−ǫδ) is an estimate of the RA of (1). Since δ
is bounded and ǫ can be chosen to be arbitrarily small,
we have that the set E◦(R, γ) is an estimate of the RA
of (1). �

A consequence of the assumption imposed in Theorem 1
that the set E(R, γ) is compact, is that E(R, γ) will be
connected. This follows from the fact that (3b) makes
E(R, γ) a positively invariant set, and by (4a), VN (x) is
strictly positive on E(R, γ)\{0}, and finally (4b) ensures
its derivative is strictly negative on E(R, γ) \ {0}.

Remark 1 Note that R(x) is not required to be posi-
tive definite, however it is required that E(R, γ) is com-
pact and contains the origin. This requirement guaran-
tees that, in the proof of Part 1, min∂E(R,γ)(V (x)) is
well-defined, such that E(V, α) ⊆ E(R, γ). y

Remark 2 The boundedness of the set E(R, γ) also
guarantees the uniqueness of solutions in the set if the
vector field is not globally Lipschitz (as for instance, the
polynomial vector fields). y

Remark 3 In the case R(x) = VN (x), (4b) implies (3b)
and the set E(VN , γ) has to be compact as required
by (3a). y

The proposition below presents sufficient conditions to
satisfy the constraints of Theorem 1 formulated in terms
of inequalities and the definition of E(R, γ).
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Proposition 1 Given R ∈ C1, R : Rn → R, γ > 0,
satisfying

E(R, γ) is compact, 0 ∈ E(R, γ), (9)

if there exist VN : Rn → R, VN ∈ C
1, VN (0) = 0 and

m0 : Rn → R≥0,m1 : Rn → R≥0, p : R
n → R, such that

−〈∇R(x), f(x)〉 > p(x)(γ −R(x)) ∀x ∈ D (10a)

VN (x) > m0(x)(γ −R(x)) ∀x ∈ D
′ (10b)

−〈∇VN (x), f(x)〉 > m1(x)(γ −R(x)) ∀x ∈ D
′ (10c)

whereD′ := D\{0}, then E(R, γ) is an ERA of the origin.
If (9), (10b), (10a) hold and there exist m2 : Rn → R≥0

such that

−〈∇VN (x), f(x)〉+VN (x)p(x) > m2(x)(γ−R(x)) (11)

holds, then (6) is a Lyapunov function for (1) and
E◦(R, γ) is an ERA of the origin.

Proof. From the non-negativity ofm0(x), andm1(x) we
have that (10b), (10c) imply that (4a), (4b) hold. Since
at ∂E(R, γ) we have γ − R(x) = 0, (10a) implies (3b),
and, according to Theorem 1 Claim (I), E(R, γ) is an
ERA of the origin. The time derivative of V (x), as in (6),
is given by (7). Since we have VN (x) > 0 in E(R, γ) if
(10b) holds, inequality (10a) provides a lower bound for

−V̇ as follows

−V̇ (x) = −
〈∇VN (x), f(x)〉

(γ −R)
−
VN (x) 〈∇R(x), f(x)〉

(γ −R)2

> −
〈∇VN (x), f(x)〉

(γ −R)
+
VN (x)p(x)

(γ −R)
,

therefore, if there exists m2 : Rn → R>0 satisfying

(−〈∇VN (x), f(x)〉 + VN (x)p(x))

(γ −R)
> m2(x),

that is (11), then −V̇ (x) > 0 (and (5) holds true). Fol-
lowing Theorem 1, Claim (II), V (x) is a Lyapunov func-
tion for (1) in E◦(R, γ), thus providing an ERA for the
origin of (1). �

Before developing the theory further in order to take
into account non-smooth set descriptions and ERAs for
uncertain systems we first compare the above condi-
tions to the classical results of Zubov via Vannelli and
Vidyasagar’s maximal Lyapunov function [20] frame-
work which characterises the region of attraction S.

Definition 1 A function Vm : Rn → R>0 ∪ {∞} that
for the system (1) satisfies

(1) Vm(0) = 0, Vm(x) > 0 if x ∈ S \ {0},
(2) Vm(x) <∞ iff x ∈ S,

(3) Vm(x)→∞ as x→ ∂S and/or ‖x‖ → ∞,

(4) V̇m(x) < 0 and well defined for all x ∈ S \ {0},

is called a maximal Lyapunov function.

The main result from [20] is summarised by the following
theorem:

Theorem 2 Suppose we can find a set A ⊆ R
n which

contains x = 0 in its interior, a continuously differen-
tiable function Vm : A → R>0 and a positive definite
function ψ(x) such that

(1) Vm(0) = 0, Vm(x) > 0 if x ∈ A \ {0},

(2) V̇m(x) = −ψ(x) for all x ∈ A,
(3) Vm(x)→∞ as x→ ∂A and/or ‖x‖ → ∞,

then A = S.

Clearly an MLF satisfies the properties of Theorem 2,
however in [20] the authors constructively provide a
method for extending any LF for (1) into an MLF (the
assumption is that ψ(x) has been constructed). They

then show that rational LFs of the form V (x) = VN (x)
VD(x)

with polynomial numerator and denominator can ar-
bitrarily approximate an MLF. Furthermore the set
{x | VD(x) = 0} defines an inner approximation the
boundary of S.

In comparison to Theorem 2, Theorem 1 shows that the
zero level set of a rational Lyapunov function can be used
to compute an estimate of the RA. The main difference
between the two results is that our theorem provides an
estimate of the RA whilst the MLF provides the exact
RA (albeit at the cost of having to solve a partial differ-
ential equation, namely item 2 of Theorem 2). Thus the
LF (6) is not necessarily an MLF. In the remainder of
this section we develop further the results of Theorem 1.

3.2 Piece-wise Lyapunov Functions

The following result parallels Theorem 1 and considers
positively invariant regions defined by the maximum of
a set of differentiable functions.

Let d be a finite positive integer and functions
Ri(x), . . . , Rd(x) be given. The point-wise maximum of
these functions at x is defined as

RM (x) := max(R1(x), . . . , Rd(x)). (12)

Theorem 3 Given Ri : R
n → R, Ri ∈ C

1 i = 1, . . . , d
and a positive scalar γ, satisfying

E(RM , γ) is compact and 0 ∈ E(RM , γ), (13a)

−〈ξ, f(x)〉 > 0 ∀x ∈ ∂E(RM , γ), ∀ξ ∈
∂RM (x)

∂x
(13b)
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where ∂RM (x)
∂x

denotes the subdifferential of RM (x) at x,
if there exists a function VN : Rn → R≥0, VN (0) = 0,
VN ∈ C

1 such that

VN (x) > 0 ∀x ∈ E(RM , γ) \ {0} (14a)

−〈∇VN (x), f(x)〉 > 0 ∀x ∈ E(RM , γ) \ {0} (14b)

then

(I) all trajectories of (1) initiated from the set
E(RM , γ) converge to the origin.

Moreover, if (14a), and

−〈[∇VN (x)(γ −RM (x)) + VN (x)∇RM (x)] , f(x)〉 > 0

∀x ∈ E(RM , γ) (15)

hold, and there exists a positive scalar ǭ such that 0 ∈
E◦(R, γ − ǭ) then

(II) the function

V (x) =
VN (x)

γ −RM (x)
(16)

is a Lyapunov function for (1) and gives
E◦(RM , γ) as an estimate of S.

Remark 4 To characterise the set E(RM , γ), notice
that RM (x) = Ri(x) ∀x ∈ {x ∈ R

n|Ri(x) − Rj(x) ≥
0, j = 1, . . . , d}. By defining

Mi(RM , γ) := {x ∈ R
n|Ri(x) ≤ γ,

Ri(x) −Rj(x) ≥ 0, j = 1, . . . , d}.

we can write E(RM , γ) =
⋂d

i=1Mi(RM , γ). y

The subdifferential for the function RM (x) is defined as
∂RM (x)

∂x
:= co{∇Rℓ(x), ℓ ∈ I(x)}, where I(x) = {i ∈

{1, . . . , d}|Ri(x) = RM (x)} denotes the set of “active”
functions at point x. Notice that RM (x) is not differen-
tiable at points x where ∃i, j ∈ I(x), i 6= j, that is,
at points satisfying RM (x) = Ri(x) = Rj(x), i 6= j. At

such points ∂RM (x)
∂x

defines a set, hence (13b) describe a
set of inequalities. Whenever I(x) contains only one el-

ement, say I(x) = {k}, ∂RM (x)
∂x

is a singleton given by

∇Rk, which exists since Ri(x) ∈ C
1, ∀i = 1, . . . , d.

The proof of Theorem 3 follows closely the proof of The-
orem 1 and is therefore omitted. The only difference is
related to the lack of differentiability of RM (x) which

gives ṘM (x(t)) ∈
〈

∂RM (x(t))
∂x

, f(x(t))
〉
. Therefore pro-

vided (13b) holds we can use it to arrive at a contradic-
tion as in the proof of Claim (I) of Theorem 1.

The proposition below parallels Proposition 1 and is pre-
sented without proof. It introduces sufficient conditions
to satisfy the conditions of Theorem 3. These conditions
are formulated in terms of inequalities and the descrip-
tion of the set ∂E(RM , γ).

Proposition 2 Given Ri : R
n → R, Ri ∈ C

1 i =
1, . . . , d and a positive scalar γ, if there exist VN : Rn →
R, VN ∈ C

1, VN (0) = 0, and m0 : Rn → R≥0, m1 :
R

n → R≥0, p : R
n → R such that

E(RM , γ) is compact, 0 ∈ E(RM , γ) (17a)

−〈ξ, f(x)〉 > p(x)(γ −RM (x)) ∀ξ ∈
∂RM (x)

∂x
(17b)

VN (x) > m0(x)(γ −RM (x)) (17c)

−〈∇VN (x), f(x)〉 > m1(x)(γ −RM (x)) (17d)

then E(RM , γ) is an ERA of the origin. If (17a), (17c),
(17b) hold and there exist m2 : Rn → R≥0 such that

−〈∇VN (x), f(x)〉 + VN (x)p(x) > m2(x)(γ −RM (x))
(18)

hold, then (16) is a LF for (1) in the set E◦(RM , γ).

3.3 Uncertain systems

Consider uncertain dynamical systems of the form

ẋ = f(x, θ), θ ∈ Θ ⊂ R
np (19)

where f : D × Θ → R
n and Θ denotes the uncertainty

set.We assume that f satisfies conditions so as to provide
uniqueness and local existence of solutions 1 . We shall
also assume that x∗ = 0 is the equilibrium of interest,
and require that f(0, θ) = 0 ∀θ ∈ Θ.

We are interested in determining a robust estimate for
region of attraction i.e. an estimate of the RAs for all
dynamical systems of the form (19) with a fixed θ ∈ Θ

Sθ :=

{
x0 ∈ R

n

∣∣∣∣∣
φ(t, x, θ) is defined ∀t ≥ 0

limt→∞ φ(t, x0, θ) = x∗, ∀θ ∈ Θ

}
,

where φ(t, x0, θ) is a solution to (19) starting from x0
at time t with fixed θ ∈ Θ. We establish conditions for
positively invariant sets to be estimates of the region of
attraction for parametrically uncertain systems. Whilst
we will consider parameter dependent Lyapunov func-
tions (PDLFs), our ERAs will be defined by positively
invariant sets which are not dependent on the system
parameters.

1 This requires f to be continuous in (x, θ, t) and locally
Lipschitz in x (uniformly in θ and t) on a bounded domain.
Exact conditions can be found in [9, Theorem 3.5]
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PDLFs have been shown to be an effective tool for certi-
fying the stability of linear system with parametric un-
certainties [2, 7, 11]. They have also been successfully
applied to obtain certificates for the local stability of
polynomial systems leading to parameter-dependent es-
timates of the RA. In those results, a robust estimate is
then obtained as the intersection of the estimates given
for each fixed parameter value [3,17], which is in contrast
to the result in this section where the estimate does not
depend on the parameters but the Lyapunov function
does, thus avoiding the computation of the intersection
of the parametrised estimates.

The following result extends Theorem 1 to the case of
uncertain systems of the form (19).

Theorem 4 Consider the uncertain dynamical system
described by (19) where Θ is a compact set and x∗ = 0.
Given a function R : Rn → R, R ∈ C1 and a positive
scalar γ, which defines a compact set E(R, γ), and satisfy

−〈∇R(x), f(x, θ)〉 > 0 ∀(x, θ) ∈ ∂E(R, γ)×Θ, (20)

if there exists a function VN : Rn×Θ → R, VN (0, ·) = 0,
VN ∈ C

1 such that

VN (x, θ) > 0 ∀(x, θ) ∈ E(R, γ) \ {0} ×Θ (21)

−〈∇VN (x, θ), f(x, θ)〉 > 0 ∀(x, θ) ∈ E(R, γ) \ {0} ×Θ

then the solutions to (19), φ(t, x0, θ) for any x0 ∈ E(R, γ)
and θ ∈ Θ lie in the set Sθ with respect to x∗ = 0.

Moreover, if both (21) and

−〈[∇VN (x, θ)(γ −R(x)) + VN (x, θ)∇R(x)] , f(x)〉 > 0

∀(x, θ) ∈ ∂E(R, γ)×Θ (22)

hold, and there exists a positive scalar ǭ such that 0 ∈
E◦(R, γ − ǭ) then the function

V (x, θ) =
VN (x, θ)

γ −R(x)
(23)

is a Lyapunov function for (19) for all θ ∈ Θ in the set
E◦(R, γ).

The proof is similar to that of Theorem 1 and so is omit-
ted.

4 Computational Methods for Estimating
the RA

We now present a computational method for construct-
ing positively invariant estimates of the RA. First a
method for estimating the RA via maximal Lyapunov
sets is reported and then algorithms that implement the
main results of the paper are described.

4.1 Maximal Lyapunov Sets

Recall that for a locally asymptotically stable equilib-
rium point of (1), converse Lyapunov theorems tells us
there exist a Lyapunov function V and a set D ⊂ R

n,
0 ∈ D, satisfying V : D → R such that V (x) > 0
∀x ∈ D \ {0}, V (0) = 0 and 〈∇V (x), f(x)〉 < 0
∀x ∈ D \ {0}, see for example [9, Section 4.7]. Based on
this fact, a common (but conservative) approach to find-
ing an ERA for systems of the form (1) is to compute a
Lyapunov function certifying the local asymptotic sta-
bility of the origin and obtain the largest (maximal) level
set of a Lyapunov function that is contained within the
set D which the LF is constructed on. We can describe a
general algorithm based on the Lyapunov function com-
putations to obtain ERAs in the form E(V, γ) as follows:

Algorithm 1

Input k = 0, a compact set D0, {0} ∈ D0.
Step 1 (Lyapunov function computation): Given Dk,
compute a Lyapunov function Vk for (1).
Step 2 (Maximization of Lyapunov level set): Given Vk
and Dk, solve

maximize γ subject to E(Vk, γ) ⊂ Dk, γ > 0 (24)

Step 3 (Update of search domain): If stopping criteria
is satisfied then return E(Vk, γ

∗), with γ∗ the solution
to (24), as the ERA else specify Dk+1, set k ← (k + 1)
go to Step 1. �

Whilst the algorithm above may look simple enough,
observe that: i) in general, constructing Lyapunov func-
tions for nonlinear dynamical systems is a non-trivial
task. ii) Existing formulations for the optimization prob-
lem in Step 2 are typically non-convex. iii) Determin-
ing the update for Dk+1 typically relies on some heuris-
tic. As a general rule, by necessity {0} ∈ Dk+1, the set
should be connected, and should contain points that are
not already in Dk. In Section 4.3 we will specialise the
above algorithm and explicitly describe how to update
the search domain, and in the case of polynomial sys-
tems construct all the required functions.

Step 1 asks for 〈∇Vk(x), f(x)〉 < 0 ∀x ∈ Dk. In gen-
eral there is no guarantee that every x(0) ∈ Dk satisfies
φ(t, x(0)) ∈ Dk ∀t > 0. Extra conditions must hold for
Dk to be a positively invariant set. We will expand upon
this point in the next section.

Denote the ERA and the search domain from iteration k
of the above algorithm by E(Vk, γk) and Dk respectively.
Note that Dk ⊂ Dk+1 does not necessarily guarantee
E(Vk, γk) ⊂ E(Vk+1, γk+1). Satisfying such constraints is
desirable as it guarantees improvement of the ERA. For
polynomial systems, we describe next how such criteria
can be enforced.
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4.2 Estimating the RA With Invariant Sets

We now illustrate how Theorem 1, Claim (I) can be im-
plemented in an algorithmic manner to obtain estimates
for the RA. We start by presenting a generic algorithm,
analogous to Algorithm 1 with the exception that the
obtained ERA is not given by Lyapunov level sets:

Algorithm 2

Input: k = 0, a function R0 satisfying the (3a) in The-
orem 1.
Step 1 (Invariant set enlargement): Maximize γ sub-
ject to (3b), (4) with R = Rk.
Step 2 (Update function R): If stopping criteria is sat-
isfied then return ERA given by the set E(Rk, γ); else
computeR∗ satisfying E(R∗, δ) ⊇ E(Rk, γ

∗) , where γ∗ is
the optimal solution to Step 1 and δ > 0. Set k ← k+1;
γ ← δ ; Rk ← R∗; go to Step 1. �

Note that any function R0 that satisfies (3) can be used
to initiate Algorithm 2 provided the set E(R0, γ) is in-
variant. A straightforward choice forR0 is any Lyapunov
function V , which provides a (possibly arbitrarily small)
level set E(V, γ) which is invariant and also contractive
(although such a property is not required for E(R0, γ)).
We take such an approach in the examples in Section 5.

Observe that the update of function R parallels the up-
date of the domain in Algorithm 1, with the difference
that it defines an ERA itself. In the next subsection we
describe a specific strategy for the update R∗ of function
R from step 2.

4.3 Polynomial systems

For the remainder of the paper it is assumed that the
vector field f in (1) and the functions VN , R and RM in
Theorems 1 and 3 are multivariate polynomials. For this
class of systems, [4] presents a comprehensive set of re-
sults on estimates of the domain of attraction with poly-
nomial Lyapunov functions with Sum-of-Squares based
approaches [1].

The following corollary to Proposition 1 provides suffi-
cient conditions for Theorem 1 to hold which are verifi-
able using convex optimization.

Corollary 1 Let VN and R be given multivariable poly-
nomials and γ a given positive constant. Then, if there
exist sum-of-squares polynomials m0,m1 and a polyno-
mial p such that

−〈∇R(x), f(x)〉 − p(x)(γ −R(x)) ∈ Σ[x] (25a)

VN (x)−m0(x)(γ −R(x)) ∈ Σ[x] (25b)

−〈∇VN (x), f(x)〉 −m1(x)(γ −R(x)) ∈ Σ[x] (25c)

then the inequalities (10) are satisfied and E(R, γ) is an
ERA of the origin. If (25a), (25b) hold and there exist a

sum-of-squares polynomial m2 such that

−〈∇VN (x), f(x)〉+VN (x)p(x)−m2(x)(γ−R(x)) ∈ Σ[x]
(26)

hold, then (6) is a LF for (1) in the set E◦(R, γ).

As proven in Proposition 1, the fact that (25a) and (26)
hold is a sufficient condition for (5) and, if satisfied, it
certifies that the rational function V = VN

γ−R
is a Lya-

punov function on the set E◦(R, γ).

Sum-of-squares constraints such as those above can be
formulated using freely available software such as SOS-
TOOLS [12] and solved using a semidefinite programme
solver. Note that in (25), VN andR appear affinely in the
SOS constraints, and the only product between VN and
the set of multipliers is in (26) where it multiplies poly-
nomial p. This fact is central in developing coordinate-
wise search algorithms allowing VN to be a variable at
all steps of the algorithm iterations. Notice that is only
possible because in (25) there is no product between VN
and the multipliersm0, m1 and m2. When searching for
a rational LF certificate (by imposing (26)), the product
VNp is handled by fixing p from a solution to (25a).

Remark 5 Notice that, for a given rational V = VN

γ−R
,

(assuming polynomial dependence of VN and R on x)
straightforward formulations to compute the MLS of the
function V , as the set E(V,C), lead to inequalities as

−
〈∇VN (x)(γ −R(x)) + VN (x)∇R(x), f(x)〉

(γ −R)2

≥ m(x)

(
C −

VN (x)

γ −R(x)

)
.

withm(x) ≥ 0. In order to avoid the rational inequalities
of the form above, one can restrict the attention to the
set where (γ − R(x)) > 0, thus formulating polynomial
inequalities as

− 〈∇VN (x)(γ −R(x)) + VN (x)∇R(x), f(x)〉

≥ m(x)(C(γ −R(x))2 − VN (x)(γ −R(x))). (27)

Notice also that, in contrast to (27), (26) does not present
products VN (x)R(x) and R(x)2. Such a property also
allows the degree of the SOS constraints in (26) to be
lower than a SOS constraint obtained with (27). y

Remark 6 The analysis of polynomial systems with
polynomial LFs and level sets of the LF as ERAs are
a particular case of the conditions imposed and are ob-
tained by imposing R(x) = VN (x), m0(x) = 0, and
p(x) = m1(x) = m2(x). y

The proof of the following claims are straightforward
and, therefore, omitted.
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Corollary 2 If (25a) holds with p ∈ R[x], that also sat-
isfies p ∈ Σ[x] (i.e. a sum-of-squares polynomial), then
(26) is holds true with m2 = m1 + pm0.

Proposition 1 Given polynomials R̂, R and a scalar
γ > 0, if there exists a sum-of-squares polynomialm3(x)
such that

(γ −R(x))−m3(x)(γ − R̂(x)) ∈ Σ[x],m3 ∈ Σ[x]. (28)

then E(R̂, γ) ⊆ E(R, γ).

The constraints (25) and (28) can be used to formulate
the following bilinear sum-of-squares programme

maximize
VN ,R,mi,p

γ

subject to (25), (28), mi ∈ Σ[x], i ∈ {0, 1}.

From (28), any solution γ∗ to the above problem guaran-

tees that the set E(R, γ∗) is contained in the set E(R̂, γ∗)
which is an ERA since conditions in Theorem 1 are sat-
isfied when (25) is satisfied.

The algorithm below exploits this fact to specialize Al-
gorithm 2 and obtain ERAs for polynomial systems by
solving a sequence of sum-of-squares programmes.

Algorithm 3
Input: k = 0, a function R0 satisfying the condi-
tion (3a) of (I) in Theorem 1.
Step 1: With R = Rk, solve through a line search on γ:

maximize
VN ,m0,m1,p

γ subject to (25b)-(25a).

Step 2: If stopping criterion is satisfied, return E(Rk, γ)
else, usingm0,m1, p and the optimal γ∗ from Step 1, set

R̂(x) = R(x) and solve with a line search on γ:

maximize
VN ,R,m3

γ subject to (25), (28), γ ≥ γ∗, (29)

Set k ← k + 1; Rk ← R∗ with R∗ the optimizer of (29);
go to Step 1. �

Notice that the Lyapunov function VN is a decision vari-
able in every step of the above algorithms. This is not the
case if one imposes R = VN as mentioned in Remark 6.

Algorithm 3 guarantees a sequence of non-decreasing
ERAs and a function R(x) satisfying (25) is required
for its initialisation. This function can be taken as any
Lyapunov function satisfying the local stability of the
origin, for example a quadratic function of the form
V (x) = xTPx for some positive definite P if the lin-
earized system matrix A is Hurwitz. The estimate ob-
tained from running Algorithm 3 depends on the ini-
tial function R0, hence running Algorithm 3 with differ-
ent initialisations R0 may lead to better estimates, one

choice for R0 is the Lyapunov function VN produced by
the algorithm (see Example 2 in Section 5).

After using Algorithm 3 to construct an ERA, it is de-
sirable to compute the corresponding rational LF of the
form (6). In order to do so, using the multiplier p, func-
tions R and γ from the final iteration of Algorithm 3
solve the feasibility problem

find
VN ,m0,m1,m2

VN subject to (25), (26), mi ∈ Σ[x],

i ∈ {0, 1, 2}. One important assumption in Theorem 1
is the compactness of set E(R, γ). In order to enforce
this property when computing R(x) ∈ R[x] we impose
a constraint of the form R(x) ≥ c(x) + κ‖x‖2k where
c(x) ∈ R[x], deg(c) ≤ 2k − 1, κ ∈ R≥0, k ∈ N.

5 Numerical Examples

We now illustrate our results with three numerical ex-
amples, we use SOSTOOLS and the semidefinite pro-
gramme solver SeDuMi [14].

Example 1: Consider system (1) with

f(x) =

[
−0.42x1 − 1.05x2 − 2.3x21 − 0.5x1x2 − x

3
1

1.98x1 + x1x2

]

which satisfies f(0) = 0. This system was studied
in [20, Example 4] in the context of maximal LFs and
in [15] with composite Lyapunov functions. It describes
a Lotka-Volterra system with its stable equilibrium
point translated to the origin.

With the initial function R obtained from the ERA
from [20], we apply Algorithm 3 (thus allowing the Lya-
punov function VN to be a variable at each step). With
the obtained positively invariant set E(R, γ) defining the
ERA and a multiplier p solving (25a), we compute VN
satisfying (25b), (25c), (26) and mi ∈ Σ[x], i ∈ {0, 1, 2}
thus yielding a rational LF as (6). The boundary of the
ERA and a sequence of nested level sets of the rational
LF V (x) are depicted in Figure 1. Figure 2 depicts the

sets {x|V̇N = 0} and the set {x|Ṙ = 0}, illustrating that
constraints (25c) and (25a) hold, that is, the intersection

of ∂E(R, γ) with {x|Ṙ ≥ 0} is empty. For comparison
purposes, Figure 3 depicts the ERA, the maximal level
set obtained with the numerator VN , which is strictly
contained in the ERA and the set {x|V̇N = 0}. This fea-
ture illustrates the conservativeness of the estimate ob-
tained by computing the MLS of a given polynomial LF.

Example 2: The following three-dimensional system
from [20, Example 5] presents a limit cycle and an stable
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−2 −1 0 1 2

−2

−1

0

1

2

x2

x1

Fig. 1. Dark blue line dark depicts the boundary of the ERA,
i.e. the set ∂E(R,γ). Level sets of the function V (x) are
also depicted. Trajectories depicted in green converge to the
origin.

−2 −1 0 1 2

−2

−1

0

1

2

x2

x1

Fig. 2. The dashed light blue lines depict the set of points
satisfying Ṙ(x) = 〈∇R(x), f(x)〉 = 0, the dashed black lines

depict the set V̇ (x) = 〈∇V (x), f(x)〉 = 0. The boundary of

the RA lies in the set where Ṙ(x) is negative.

−2 −1 0 1 2

−2

−1

0

1

2

x2

x1

Fig. 3. The boundary of the ERA, ∂E(R,γ), is depicted in

dark blue. The dashed black lines depict the set V̇N (x) = 0.
The solid black line depicts the MLS obtained with VN as
the LF.

equilibrium at the origin:

f(x) =




−x2

−x3

−0.915x1 + (1− 0.915x21)x2 − x3


 .

We apply Algorithm 3 starting with R given by
a quadratic LF for the linearised system and set
deg(VN ) = 4. We then use the obtained LF, VN , as the
initial invariant set function R and apply Algorithm 3
again. The obtained ERA of degree two and degree
four are depicted in Figure 4. We were unable to find
multipliers p and m2 that satisfy (26) for the computed
VN and R, hence we could not construct a rational LF
certificate of the form (6).

−1
0

1 −1
0

1

−1

0

1

x3

x1
x2

Fig. 4. The boundary of the ERA, ∂E(R,γ), of degree
deg(R) = 4 corresponds to the white surface while the
black surface corresponds to the largest ERA obtained with
deg(R) = 2. Trajectories are depicted in green (converging)
and red (diverging).

Example 3: In the following example we compute a
piece-wise positively invariant set. Consider now sys-
tem (1) with

f(x) =

[
−x1(1− x1x2)

−x2

]
. (30)

Despite the fact that only the origin is an equilibrium
point, its RA is not the whole of Rn nor is its bound-
ary defined by a limit-cycle. The boundary of the RA is
given by {x ∈ R

n|x1x2 = 2} (obtained from analytical
solution to Zubov’s equation [22, p.73]).

We fix the shape of the positively invariant sets by fix-
ing RM as in (12), d = 2 with R1 = 1

200 (x
2
1 − 2x1x2 +

x22), R2 = 2x1x2, and compute VN , deg(VN ) = 6 to
define a rational LF V = VN

γ−RM
. We formulate SOS con-

straints analogous to (25) for conditions in Theorem 3.
When solving the constraints we keep RM constant, i.e.
only the multipliers mi, p and the LF function VN are
updated while increasing γ. As a final step, we solve con-
straints with fixed γ, p, RM to obtain a rational LF of
which the level sets are depicted in Figure 5.
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−5 0 5
−5

0

5

x2

x1

Fig. 5. The boundary of the ERA, ∂E(R,γ), is depicted in
dark blue. Trajectories obtained with (30) are depicted in
green (converging) and red (diverging).

6 Conclusion

In this paper we presented conditions for a positively
invariant set to be anERAof the origin and for Lyapunov
certificates given by quotient of two functions where the
denominator characterizes the ERA. The main feature
of our results is that the positively invariant set defining
the ERA is not necessarily a level set of a Lyapunov
function. Provided a stronger condition is satisfied we
obtain a Lyapunov function interpretation of the ERA,
which for polynomial systems is a rational function. We
subsequently proposed an algorithm for the estimation
of the RA that guarantees the increment of the estimate
at each iteration.

We then applied the algorithm to the class of polyno-
mial vector fields and semi-algebraic sets for which the
steps are performed via the solution to Sum-of-Squares
programmes. The extension of the results to the class
of systems with parametric uncertainties was also pre-
sented. For this case, the positively invariant ERA does
not depend on the uncertain parameters while the asso-
ciated Lyapunov function can.
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