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Generating Visual Representations for Zero-Shot Classification

This paper addresses the task of learning an image classifier when some categories are defined by semantic descriptions only (e.g. visual attributes) while the others are defined by exemplar images as well. This task is often referred to as the Zero-Shot classification task (ZSC). Most of the previous methods rely on learning a common embedding space allowing to compare visual features of unknown categories with semantic descriptions. This paper argues that these approaches are limited as i) efficient discriminative classifiers can't be used ii) classification tasks with seen and unseen categories (Generalized Zero-Shot Classification or GZSC) can't be addressed efficiently. In contrast, this paper suggests to address ZSC and GZSC by i) learning a conditional generator using seen classes ii) generate artificial training examples for the categories without exemplars. ZSC is then turned into a standard supervised learning problem. Experiments with 4 generative models and 5 datasets experimentally validate the approach, giving state-of-the-art results on both ZSC and GZSC.

Introduction and related works

Zero-Shot Classification (ZSC) [START_REF] Christoph H Lampert | Attribute-Based Classification for Zero-Shot Visual Object Categorization[END_REF] addresses classification problems where not all the classes are represented in the training examples. ZSC can be made possible by defining a high-level description of the categories, relating the new classes (the unseen classes) to classes for which training examples are available (seen classes). Learning is usually done by leveraging an intermediate level of representation, the attributes, that provide semantic information about the categories to classify. As pointed out by [START_REF] Romera | An embarrassingly simple approach to zero-shot learning[END_REF] this paradigm can be compared to how human can identify a new object from a description of it, leveraging similarities between its description and previously learned concepts.

Recent ZSC algorithms (e.g. [START_REF] Akata | Multi-cue Zero-Shot Learning with Strong Supervision[END_REF][START_REF] Bucher | Improving semantic embedding consistency by metric learning for zero-shot classiffication[END_REF]) do the classification by defining a zero-shot prediction function that outputs the class y having the maximum compatibility score with the image x: f (x) = arg max y S(x, y). The compatibility function, for its part, is often defined as S(x, y; W ) = θ(x) t W φ(y) where θ and φ are two projections and W is a bilinear function relating the two in a common embedding. There are different variants in the recent literature on how the projections or the similarity measure are computed [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF][START_REF] Changpinyo | Synthesized classifiers for zero-shot learning[END_REF][START_REF] Frome | DeViSE: A Deep Visual-Semantic Embedding Model[END_REF][START_REF] Norouzi | Zero-shot learning by convex combination of semantic embeddings[END_REF][START_REF] Romera | An embarrassingly simple approach to zero-shot learning[END_REF][START_REF] Weston | Wsabie: scaling up to large vocabulary image annotation[END_REF][START_REF] Xian | Latent embeddings for zero-shot classification[END_REF][START_REF] Zhang | Zero-Shot Learning via Semantic Similarity Embedding[END_REF], but in all cases the class is chosen as the one maximizing the compatibility score. This embedding and maximal compatibility approach, however, does not exploit, in the learning phase, the information potentially contained in the semantic representation of the unseen categories. The only step where a discriminating capability is exploited is in the final label selection which uses an arg max y decision scheme, but not in the setting of the compatibility score itself.

A parallel can be easily done between the aforementioned approaches and generative models such as defined 1 in the machine learning community. Generative models estimate the joint distribution p(y, x) of images and classes, often by learning the class prior probability p(y) and the class-conditional density p(x|y) separately. However, as it has been observed for a long time [START_REF] Ulusoy | Generative versus Discriminative Methods for Object Recognition[END_REF], discriminative approaches trained for predicting directly the class label have better performance than model-based approaches as long as the learning database reliably samples the target distribution.

Despite one can expect discriminative methods to give better performance [START_REF] Ulusoy | Generative versus Discriminative Methods for Object Recognition[END_REF], they can't be used directly in the case of ZSC for obvious reasons: as no images are available for some categories, discriminative classifiers cannot be learned out-of-the-box.

This paper proposes to overcome this difficulty by generating training features for the unseen classes, in such a way that standard discriminative classifiers can be learned (Fig. 1). Generating data for machine learning tasks has been studied in the literature e.g., [START_REF] Guo | Learning from imbalanced data sets with boosting and data generation -the DataBoost-IM approach[END_REF] or [START_REF] Bahy Bader-El-Den | Hierarchical classification for dealing with the Class imbalance problem[END_REF] to compensate for imbalanced training sets. Generating novel training examples from the existing ones is also at the heart of the technique called Data Augmentation, frequently used for training deep neural networks [START_REF] Lecun | Gradientbased learning applied to document recognition[END_REF]. When there is no training data at all for some categories, some underlying parametric representation can be used to generate missing training data, assuming a mapping from the underlying representation to the image space. [START_REF] Eggert | On the Benefit of Synthetic Data for Company Logo Detection[END_REF] generated images by applying warping and other geometric / photometric transformations to prototypical logo exemplars. A similar idea was also presented in [START_REF] Jaderberg | Reading Text in the Wild with Convolutional Neural Networks[END_REF] for text spotting in images. [START_REF] Maria | Embodied gesture learning from one-shot[END_REF] capture what they call The Gist of a Gesture by recording human gestures, representing them by a model and use this model to generate a large set of realistic gestures.

We build in this direction, in the context of ZSC, the underlying representation being some attribute or text based description of the unseen categories, and the transformation from attributes to image features being learned from the examples of the seen classes. A relevant way to learn this transformation is to use generative models such as denoising auto encoders [START_REF] Bengio | Generalized denoising auto-encoders as generative models[END_REF] and generative adversarial nets (GAN) [START_REF] Goodfellow | Generative adversarial nets[END_REF] or their variants [START_REF] Tong Che | Mode Regularized Generative Adversarial Networks[END_REF][START_REF] Makhzani | Adversarial autoencoders[END_REF]. GANs consist in estimating generative models via an adversarial process simultaneously learning two models, a generative model that captures the data distribution, and a discriminative model that estimates the probability that a sample came from the training data rather than the generator. The Conditional Generative Adversarial Nets of [START_REF] Mirza | Conditional Generative Adversarial Nets[END_REF] is a very relevant variant adapted to our problem.

In addition to the advantage of using discriminative classifiers -which is expected to give better performance -our approach, by nature, can address the more realistic task of Generalized Zero-Shot Classification (GZSC). This problem, introduced in [START_REF] Chao | An empirical study and analysis of generalized zeroshot learning for object recognition in the wild[END_REF], assumes that both seen and unseen categories are present at test time, making the traditional approaches suffering from bias decision issues. In contrast, the proposed approach uses (artificial) training examples of both seen and unseen classes during training, avoiding the aforementioned issues.

Another reason to perform classification inference directly in the visual feature space rather than in an abstract attribute or embedding space is that data are usually more easily separated in the former, especially when using discriminant deep features that are now commonly available.

This paper experimentally validates the proposed strategy on 4 standard Zero-Shot classification datasets (Animals with Attributes (AWA) [START_REF] Christoph H Lampert | Attribute-Based Classification for Zero-Shot Visual Object Categorization[END_REF], SUN attributes (SUN) [START_REF] Patterson | Sun attribute database: Discovering, annotating, and recognizing scene attributes[END_REF], Apascal&Ayahoo (aP&Y) [START_REF] Farhadi | Describing objects by their attributes[END_REF] and Caltech-UCSD Birds-200-2011 (CUB) [START_REF] Wah | The caltech-ucsd birds-200-2011 dataset[END_REF]), and gives insight on how the approach scales on large datasets such as ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF]. It shows state-of-the-art performance on all datasets for both ZSC and GZSC.

Approach

Zero shot classification

As motivated in the introduction, we address in this paper the problem of learning a classifier capable of discriminating between a given set of classes where empirical data is only available for a subset of it, the so-called seen classes. In the vocabulary of zero-shot classification, the problem is usually qualified as inductive -we do not have access to any data from the unseen classes -as opposed to transductive where the unseen data is available but not the associated labels. We do not address in this paper the transductive setting, considering that the availability of target data is a big constraint in practice.

The learning dataset D s is defined by a series of triplets {x s i , a s i , y s i } Ns i=1 where x s i ∈ X is the raw data (image or features), y s i ∈ Y s is the associated class label and a s i is a rich semantic representation of the class (attributes, word vector or text) belonging to A s . This semantic representation is expected to i) contain enough information to discriminate between classes by itself, ii) be predictable from raw data and iii) infer unambiguously the class label y = l(a).

In an inductive ZSC problem, all that is known regarding the new target domain is the set of semantic class representations A u of the unseen classes. The goal is to use this information and the structure of the semantic representation space to design a classification function f able to predict the class label ŷ = f (x; A u , D s ). The classification function f is usually parametric and settled by the optimization of an empirical learning criterion.

Discriminative approach for ZSC

In ZSC, the main problem is precisely the fact that no data is available for the unseen classes. The approach taken in this paper is to artificially generate data for the unseen classes given that seen classes and their semantic representations provide enough information to do so, and then apply a discriminative approach to learn the class predictor.

The availability of data for the unseen classes has two main advantages: it can make the classification of seen and unseen classes as a single homogeneous process, allowing to address Generalized Zero Shot Classification as a single supervised classification problem; it potentially allows a larger number of unseen classes, which is for instance required for datasets such ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF].

Let

D u = {x u i , a u i , y u i }
Nu i=1 be a database generated to account for the unseen semantic class representation a u ∈ A u . The ZSC classification function becomes: ŷ = f D (x; D u , D s ) and can be used in association with the seen data D s , to learn a homogeneous supervised problem.

Generating unseen data

Our generators of unseen data build on the recently proposed approaches for conditional data generation as presented in section 1. The idea is to learn globally a parametric random generative process G using a differentiable criterion able to compare, as a whole, a target data distribution and a generated one.

Given z a random sample from a fixed multivariate prior distribution, typically uniform or Gaussian, and w the set of parameters, new sample data consistent with the semantic description a are generated by applying the function: x = G(a, z; w). A simple way to generate conditional x data is to concatenate the semantic representation a and the random prior z as the input of a multi-layer network, as shown in Fig. 2.

We now present 4 different strategies to design such a conditional data generator, the functional structure of the generator being common to all the described approaches.

Generative Moment Matching Network A first approach is to adapt the Generative Moment Matching Network (GMMN) proposed in [START_REF] Li | Generative moment matching networks[END_REF] to conditioning. The generative process will be considered as good if for each semantic description a two random populations X (a) from D s and X (a; w) sampled from the generator have low maximum mean discrepancy which is a probability divergence measure between two distributions. This divergence can be approximated using a Hilbert kernel based statistics [START_REF] Gretton | A kernel two-sample test[END_REF] typically a linear combination of Gaussian functions with various widths -which has the big advantage of being differentiable and may be thus exploited as a machine learning cost. Network parameters w are then obtained by optimizing the differentiable statistics by stochastic gradient descent, using batches of generated and real data conditioned by the semantic description a. Conditional Generative adversarial models Our second model builds on the principles of the generative adversarial networks (GAN), which is to learn a discrepancy measure between a true and a generated distributions -the Discriminator -simultaneously with the data generator. One extension allowing to produce conditional distributions is the AC-GAN [START_REF] Odena | Conditional image synthesis with auxiliary classifier gans[END_REF] (Fig. 2) where the generated and the true distributions are compared using a binary classifier, and the quality of the conditional generation is controlled by the performance of this auxiliary task. This model bears similarities with the GMMN model, the key difference being that in the GMMN distributions of true and generated data are compared using the kernel based empirical statistics while in the AC-GAN case it is measured by a learned discriminative parametric model.

Denoising Auto-Encoder Our third generator relies on the work presented in [START_REF] Bengio | Generalized denoising auto-encoders as generative models[END_REF], where an encoder/decoder structure is proposed to design a data generator, the latent code playing the role of the random prior z used to generate the data. A simple extension able to introduce a conditional data generation control has been developed by concatenating the semantic representation a to the code that is fed to the decoder (Fig. 2).

In practice, this model is learned as a standard autoencoder, except that i) some noise is added to the input and ii) the semantic representation a is concatenated to the code in the hidden layer. For generating novel examples, only the decoder part, i.e. the head of the network using z and a as input to produce x is used. encoder. It introduces an adversarial criterion to control the latent code produced by the encoder part, so that the code distribution matches a fixed prior distribution. This extra constraint is expected to ensure that all parts of the sampling prior space will produce meaningful data.

During training, both the auto-encoder and the discriminator are learned simultaneously. For generating novel examples, as for the denoising auto-encoder, only the decoder part is used.

Implementing the generators

We implemented our 4 generative models with neural networks, whose architectures are illustrated Fig. 2. Hidden layers are fully connected (FC) with leaky-relu nonlinearity [START_REF] Andrew L Maas | Rectifier nonlinearities improve neural network acoustic models[END_REF] (leakage coefficient of 0.2). For the models using a classifier (the AC-GAN and the Adversarial autoencoder), the classifier is a linear classifier (fully connected layer + Softmax activation function). The loss used to measure the quality of the reconstruction in the two autoencoders is the L2 norm.

Regarding how to sample the noise z, we did not observe any difference between sampling it from a Gaussian distribution or from a uniform distribution.

Experiments

In this section, after presenting the datasets and the experimental settings, we start by comparing the different generative models described in the previous section. We then show how our approach can be used for the Generalized Zero-shot Classification Task, which is one of the key contributions of the paper, provide some experiments on a large scale zero shot classification task, and finally compare our approach with state-of-the art Zero-Shot approaches on the regular Zero-shot Classification Task.

Datasets and Settings

A first experimental evaluation is done on 4 standard ZSC datasets: Animals with Attributes (AWA) [START_REF] Christoph H Lampert | Attribute-Based Classification for Zero-Shot Visual Object Categorization[END_REF], SUN attributes (SUN) [START_REF] Patterson | Sun attribute database: Discovering, annotating, and recognizing scene attributes[END_REF], Apascal&Ayahoo (aP&Y) [START_REF] Farhadi | Describing objects by their attributes[END_REF] and Caltech-UCSD Birds-200-2011 (CUB) [START_REF] Wah | The caltech-ucsd birds-200-2011 dataset[END_REF] . These benchmarks exhibit a great diversity of concepts; SUN and CUB are for fine-Grained categorization, and include respectively birds and scenes images; AwA contains images of animals from 50 different categories; finally, aP&Y has broader concepts, from cars to animals. For each dataset, attributes descriptions are given, either at the class level or at image level. aP&Y, CUB and SUN have per image binary attributes that we average to produce per class real valued representations. In order to make comparisons with other works, we follow the same training/testing splits for AwA [START_REF] Christoph H Lampert | Attribute-Based Classification for Zero-Shot Visual Object Categorization[END_REF], CUB [START_REF] Akata | Evaluation of Output Embeddings for Fine-Grained Image Classification[END_REF] and aP&Y [START_REF] Farhadi | Describing objects by their attributes[END_REF]. For SUN we experiment two different settings: one with 10 unseen classes as in [START_REF] Jayaraman | Zero-shot recognition with unreliable attributes[END_REF], a second, more competitive, with ten different folds randomly chosen and averaged, as proposed by [START_REF] Changpinyo | Synthesized classifiers for zero-shot learning[END_REF] (72/71 splits).

Image features are computed using two deep networks, the VGG-VeryDeep-19 [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] and the GoogLeNet [START_REF] Szegedy | Going deeper with convolutions[END_REF] networks. For the VGG-19 we use the 4,096-dim top-layer hidden unit activations (fc7) while for the GoogLeNet we use the 1,024-dim top-layer pooling units. We keep the weights learned on ImageNet fixed i.e., we don't apply any fine-tuning.

The classifiers are obtained by adding a standard Fully Connected with Softmax layer to the pre-trained networks. We purposively chose a simple classifier to better observe the behavior of the generators. In all our experiments we generated 500 artificial image features by class, which we consider to be a reasonable trade-off between accuracy and training time; we have not observed any significant improvement when adding more images.

Each architecture has its own set of hyper-parameters (typically the number of units per layer, the number of hidden layers, the learning rate, etc.). They are obtained trough a 'Zero-shot' cross-validation procedure. In this procedure, 20% of the seen classes are considered as unseen (hence used as validation set), allowing to choose the hyperparameters maximizing the accuracy on this so-obtained validation set. In practice, typical values for the number of neurons (resp. the number of hidden layers) are in the range of [500-2000] (resp. 1 or 2).

Model parameters are initialized according to a centered Gaussian distribution (σ = 0.02). They are optimized with the Adam solver [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with a cross-validated learning rate (typically of 10 -4 ), using mini-batches of size 128 except for the GMMN where each batch contains all the training images of one class, to make the estimation of the statistics more reliable. In order to avoid over-fitting, we used dropout [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF] at every layer (probability of drop of 0.2 for the inputs layers and of 0.5 for the hidden layers). Input data (both image features and w2c vectors) are scaled to [0,1] by applying an affine transformation. With the Ten-sorFlow framework [START_REF] Abadi | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF] running on a Nvidia Titan X pascal GPU, the learning stage takes around 10 minutes for a given set of hyper-parameters. Our code will be made publicly available. Our code will be made publicly available. 1

Comparing the different generative models

Our first round of experiments consists in comparing the performance of the 4 generative models described in Section 2.3, on the regular Zero-shot classification task. Our intention is to select the best one for further experiments. Performance on the validation set is reported Table 1. We can see that the GMMN model outperforms the 3 others on average, with a noticeable 5% improvement on aP&Y. Its optimization is also computationally more stable than the adversarial versions. We consequently chose this generator for the following. We explain the superiority of the GMMN model by the fact it aligns the distributions by using an explicit model of the divergence of the distributions while the adversarial autoencoder and the AC-GAN have to learn it. For its part, the denoising autoencoder doesn't have any guaranty that the distributions are aligned, explaining its weak performance compared to the 3 other generators.

Generalized Zero-Shot Classification task

In this section, we follow the Generalized Zero-Shot Learning (GZSC) protocol introduced by Chao et al. [START_REF] Chao | An empirical study and analysis of generalized zeroshot learning for object recognition in the wild[END_REF]. In this protocol, test data are from any classes, seen or unseen. This task is more realistic and harder, as the number of class candidates is larger.

We follow the notations of [START_REF] Chao | An empirical study and analysis of generalized zeroshot learning for object recognition in the wild[END_REF], i.e. u → u: test images from unseen classes, labels of unseen classes (conventional ZSC) s → s: test images from seen classes, labels of seen classes (multi-class classication for seen classes) u → a: test images from unseen classes, labels of seen and unseen classes (GZSC) s → a: test images from seen classes, labels of seen and unseen classes (GZSC)

In the first two cases, only the seen/unseen classes are used in the training phase. In the last two cases, the classifier is learned with training data combining images generated for all classes (seen and not seen).

Most of the recent ZSC works e.g., [START_REF] Akata | Evaluation of Output Embeddings for Fine-Grained Image Classification[END_REF][START_REF] Bucher | Hard negative mining for metric learning based zero-shot classification[END_REF][START_REF] Bucher | Improving semantic embedding consistency by metric learning for zero-shot classiffication[END_REF][START_REF] Romera | An embarrassingly simple approach to zero-shot learning[END_REF] are focused on improving the embedding or the scoring function. However, [START_REF] Chao | An empirical study and analysis of generalized zeroshot learning for object recognition in the wild[END_REF] has shown that this type of approach is unpractical with GZSC. Indeed the scoring function is in this case biased toward seen classes, leading to very low accuracy on the unseen classes. This can be seen on Table 2 and 3 (u → a column), where the accuracy drops significantly compared to regular ZSC performance. The data distribution of the ZSC datasets are strongly subject to this bias, as unseen classes are very similar to seen classes both in terms of visual appearance and attribute description. When seen and unseen classes are candidates, it becomes much harder to distinguish between them. For example, the horse (seen) and the zebra classes (unseen) of the AwA dataset cannot be distinguished by standard ZSC methods.

As we can see on Table 2 and 3, our generative approach outperforms any other previous approach. In the hardest case, u → a, it gives the accuracy of 30% (resp. 10%) higher than state-of-the-art approaches on the AwA (resp. CUB) dataset. It can be easily explained by the fact that it doesn't suffer from the scoring function problem we mentioned, as the Softmax classifier is learned to discriminate both seen and unseen classes, offering a decisive solution to the bias problem.

Large Scale Zero-Shot Classification

We compared our approach with state-of-the-art methods on a large-scale Zero-Shot classification task. These experiences mirror those presented in [START_REF] Frome | DeViSE: A Deep Visual-Semantic Embedding Model[END_REF]: 1000 classes from those of the ImageNet 2012 1K set [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF] are chosen for training (seen classes) while 20.345 others are considered to be unseen classes with no image available. Image features are computed with the GoogLeNet network [START_REF] Szegedy | Going deeper with convolutions[END_REF].

In contrast with ZSC datasets, no attributes are provided for defining unseen classes. We represent those categories using a skip-gram language model [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF]. This model is learned on a dump of the Wikipedia corpus (≈3 billion words). Skip-gram is a language model learned to predict context from words. The neural network has 1 input layer, 1 hidden layer and 1 output layer having the size of the vocabulary (same size as the input layer). The hidden layer has 500 neurons in our implementation. In the literature, the hidden layer has been reported to be an interesting embedding space for representing word. Conse- quently, We use this hidden layer to describe each class label by embedding the class name into this 500-dimensional space. Some classes cannot be represented as their name is not contained in the vocabulary established by parsing the Wikipedia corpus. Such classes are ignored, bringing the number of classes from 20,842 to 20,345 classes. For fair comparison, we take the same language model as [START_REF] Changpinyo | Synthesized classifiers for zero-shot learning[END_REF] with the same classes excluded.

As in [START_REF] Changpinyo | Synthesized classifiers for zero-shot learning[END_REF][START_REF] Frome | DeViSE: A Deep Visual-Semantic Embedding Model[END_REF] our model is evaluated on three different scenarios, with an increasing number of unseen classes: i) 2-hop: 1,509 classes ii) 3-hop: 7,678 classes, iii) All: all unseen categories.

For this task we use the Flat-Hit@K metric, the percentage of test images for which the model returns the true labels in the top K prediction scores.

Table 4 summarizes the performance on the 3 hops. As one can see, our model gets state-of the art performance for each configuration. As it can be observed from these experiments, our generative model is very suitable for this large scale GZSC problem e.g., our approach improves by 5% best competitors for the Flat-Hit 1 metric on the 2-hop scenario.

Classical Zero-Shot Classification task

In this last section, we follow the protocol of the standard ZSC task: during training, only data from seen classes are available while at test time new images (from unseen classes only) have to be assigned to one of the unseen classes.

As explained in the introduction, the recent ZSC literature [START_REF] Akata | Evaluation of Output Embeddings for Fine-Grained Image Classification[END_REF][START_REF] Bucher | Hard negative mining for metric learning based zero-shot classification[END_REF][START_REF] Bucher | Improving semantic embedding consistency by metric learning for zero-shot classiffication[END_REF][START_REF] Romera | An embarrassingly simple approach to zero-shot learning[END_REF] mostly focuses on developing a good embedding for comparing attributes and images. One of our With the VGG network, our method give above state-ofthe-art performance on each dataset, with a noticeable improvement of more than 15% on CUB. On the SUN dataset, Changpinyo et al. [START_REF] Changpinyo | Synthesized classifiers for zero-shot learning[END_REF]'s seems to give better performance but used the MIT Places dataset to learn the features. It has been recently pointed out in sec. 5.1 of Xiang et al. [START_REF] Xian | Zero-shot learning-the good, the bad and the ugly[END_REF] that this database "intersects with both training and test classes of SUN, which could explain their better results compared to ours.

Conclusions

This paper introduces a novel way to address Zero-Shot Classification and Generalized Zero-Shot Classification tasks by learning a conditional generator from seen data and generating artificial training examples for the categories without exemplars, turning ZSC into a standard supervised learning problem. This novel formulation addresses the two main limitation of previous ZSC method i.e., their intrinsic bias for Generalized Zero-Shot Classification tasks and their limitations in using discriminative classifiers in the deep image feature space. Our experiments with 4 generative models and 5 datasets experimentally validate the approach and give state-of-the-art performance.

Figure 1 :

 1 Figure 1: Our method consists in i) learning an image feature generator capable of generating artificial image representations from given attributes ii) learning a discriminative classifier from the artificially generated training data.

Figure 2 :

 2 Figure 2: Architecture of the different generative models studied.

Table 1 :

 1 Zero-Shot classification accuracy (mean) on the validation set, for the 4 generative models.

	Model	aP&Y AwA CUB SUN	Avg
	Denois. Auto-encod. [4]	62.0	66.4	42.8	82.5	63.4
	AC-GAN [30]	55.2	66.0	44.6	83.5	62.3
	Adv. Auto-encod. [26]	59.5	68.4	49.8	83.7	65.3
	GMMN [24]	65.9	67.0	52.4	84.0	67.3

Table 2 :

 2 Generalized Zero-Shot classification accuracy on AWA. Image features are obtained with the GoogLeNet.[START_REF] Szegedy | Going deeper with convolutions[END_REF] CNN.

		AwA			
	Method	u → u s → s u → a s → a
	Lampert et al. [22] dap	51.1	78.5	2.4	77.9
	Lampert et al. [22] iap	56.3	77.3	1.7	76.8
	Norouzi et al. [29]	63.7	76.9	9.5	75.9
	Changpinyo et al. [8] o-vs-o 70.1	67.3	0.3	67.3
	Changpinyo et al. [8] struct	73.4	81.0	0.4	81.0
	Ours	77.12	82.73	32.32	81.32
	Ours. (VGG-19)	87.78	85.61	38.21	83.14

Table 3 :

 3 Generalized Zero-Shot classification accuracy on CUB. Image features are obtained with the GoogLeNet [36] CNN. Lampert et al. [22] dap

		38.8	56.0	4.0	55.1
	Lampert et al. [22] iap	36.5	69.6	1.0	69.4
	Norouzi et al. [29]	35.8	70.5	1.8	69.9
	Changpinyo et al. [8] o-vs-o 53.0	67.2	8.4	66.5
	Changpinyo et al. [8] struct	54.4	73.0	13.2	72.0
	Ours.	60.10	72.38	26.87	72.00
	Ours. (VGG-19)	59.70	71.21	20.12	69.45

CUB Method u → u s → s u → a s → a

Table 4 :

 4 Zero-shot and Generalized ZSC on ImageNet.

				Flat	Hit	@K	
	Scenario Method	1	2	5	10	20
	2-hop	Frome [15]	6.0	10.0	18.1	26.4	36.4
		Norouzi [29]	9.4	15.1	24.7	32.7	41.8
		Changpinyo [8] 10.5	16.7	28.6	40.1	52.0
		Ours.	13.05 21.52 33.71 43.91 57.31
	2-hop	Frome [15]	0.8	2.7	7.9	14.2	22.7
	(+1K)	Norouzi [29]	0.3	7.1	17.2	24.9	33.5
		Ours.	4.93	13.02 20.81 31.48 45.31
	3-hop	Frome [15]	1.7	2.9	5.3	8.2	12.5
		Norouzi [29]	2.7	4.4	7.8	11.5	16.1
		Changpinyo [8] 2.9	4.9	9.2	14.2	20.9
		Ours.	3.58	5.97	11.03 16.51 23.88
	3-hop	Frome [15]	0.5	1.4	3.4	5.9	9.7
	(+1K)	Norouzi [29]	0.2	2.4	5.9	9.7	14.3
		Ours.	1.99	4.01	6.74	11.72 16.34
	All	Frome [15]	0.8	1.4	2.5	3.9	6.0
		Norouzi [29]	1.4	2.2	3.9	5.8	8.3
		Changpinyo [8] 1.5	2.4	4.5	7.1	10.9
		Ours.	1.90	3.03	5.67	8.31	13.14
	All	Frome [15]	0.3	0.8	1.9	3.2	5.3
	(+1K)	Norouzi [29]	0.2	1.2	3.0	5.0	7.5
		Ours.	1.03	1.93	4.98	6.23	10.26

Table 5 :

 5 Zero-shot classification accuracy (mean±std) on 5 runs. We report results with VGG-19 and GoogLeNet features. SUN dataset is evaluated on 2 different splits (see 3.1). *[START_REF] Changpinyo | Synthesized classifiers for zero-shot learning[END_REF] features extracted from an MIT Places[START_REF] Zhou | Learning deep features for scene recognition using places database[END_REF] pretrained model. motivations for generating training images was to make the training of discriminative classifiers possible, assuming it would result in better performance. This section aims at validating this hypothesis on the regular ZSC task. Table5summarizes our experiments, reporting the accuracy obtained by state of the art methods on the 4 ZSC datasets, with 2 different deep image features. Each entry is the mean/standard deviation computed on 5 different runs.

	Feat. Method	aP&Y AwA	CUB SUN
	GoogLe Net[36]	Lampert et al. [22] Akata et al. [2] Changpinyo et al. [8] ---Xian et al. [41] -	60.5 66.7 72.9 71.9	39.1 50.1 54.7 45.5	-/44.5 -/-90.0/62.8* -
			Ours.	55.34	77.12 60.10 85.50/56.41
	VGG-VeryDeep	[34]	Lampert et al. [22] Romera-Paredes [32] 24.22 38.16 Zhang et al. [43] 46.23 Zhang et al. [44] 50.35 Wang et al. [39] -Bucher et al. [5] 53.15 Bucher et al. [6] 56.77	57.23 -75.32 -76.33 30.41 82.50/-72.00/-82.10/-80.46 42.11 83.83/-78.3 48.6 -/-77.32 43.29 84.41/-86.55 45.87 86.21/-
			Ours.	57.19	87.78 59.70 88.01/-

https://github.com/maximebucher
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