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Abstract

This paper addresses the task of learning an image clas-
sifier when some categories are defined by semantic de-
scriptions only (e.g. visual attributes) while the others are
defined by exemplar images as well. This task is often re-
ferred to as the Zero-Shot classification task (ZSC). Most
of the previous methods rely on learning a common embed-
ding space allowing to compare visual features of unknown
categories with semantic descriptions. This paper argues
that these approaches are limited as i) efficient discrimi-
native classifiers can’t be used ii) classification tasks with
seen and unseen categories (Generalized Zero-Shot Clas-
sification or GZSC) can’t be addressed efficiently. In con-
trast, this paper suggests to address ZSC and GZSC by i)
learning a conditional generator using seen classes ii) gen-
erate artificial training examples for the categories without
exemplars. ZSC is then turned into a standard supervised
learning problem. Experiments with 4 generative models
and 5 datasets experimentally validate the approach, giving
state-of-the-art results on both ZSC and GZSC.

1. Introduction and related works
Zero-Shot Classification (ZSC) [22] addresses classifi-

cation problems where not all the classes are represented
in the training examples. ZSC can be made possible by
defining a high-level description of the categories, relating
the new classes (the unseen classes) to classes for which
training examples are available (seen classes). Learning is
usually done by leveraging an intermediate level of repre-
sentation, the attributes, that provide semantic information
about the categories to classify. As pointed out by [32] this
paradigm can be compared to how human can identify a
new object from a description of it, leveraging similarities
between its description and previously learned concepts.

Recent ZSC algorithms (e.g. [1, 5]) do the classifica-
tion by defining a zero-shot prediction function that outputs
the class y having the maximum compatibility score with

seen and unseen 
classes

feature spaceimage generator
classifier

discriminative

Our generative approach

Traditional Zero-Shot Learning

images of 
seen classes

images of 
unseen classes

common embedding

descriptions 
of seen 
classes

car, bike
horse,

pedestrian
desriptions of 

unseen classes

decoder

class 
attributes

noise

- car
- horse

learned using images and 
attributes from seen classes

Figure 1: Our method consists in i) learning an image fea-
ture generator capable of generating artificial image repre-
sentations from given attributes ii) learning a discriminative
classifier from the artificially generated training data.

the image x: f(x) = argmaxy S(x, y). The compatibil-
ity function, for its part, is often defined as S(x, y;W ) =
θ(x)tWφ(y) where θ and φ are two projections and W is
a bilinear function relating the two in a common embed-
ding. There are different variants in the recent literature on
how the projections or the similarity measure are computed
[11, 8, 15, 29, 32, 40, 41, 43], but in all cases the class is
chosen as the one maximizing the compatibility score. This
embedding and maximal compatibility approach, however,
does not exploit, in the learning phase, the information po-
tentially contained in the semantic representation of the un-
seen categories. The only step where a discriminating capa-
bility is exploited is in the final label selection which uses
an argmaxy decision scheme, but not in the setting of the
compatibility score itself.

A parallel can be easily done between the aforemen-
tioned approaches and generative models such as defined
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in the machine learning community. Generative models es-
timate the joint distribution p(y, x) of images and classes,
often by learning the class prior probability p(y) and the
class-conditional density p(x|y) separately. However, as it
has been observed for a long time [37], discriminative ap-
proaches trained for predicting directly the class label have
better performance than model-based approaches as long as
the learning database reliably samples the target distribu-
tion.

Despite one can expect discriminative methods to give
better performance [37], they can’t be used directly in the
case of ZSC for obvious reasons: as no images are avail-
able for some categories, discriminative classifiers cannot
be learned out-of-the-box.

This paper proposes to overcome this difficulty by gen-
erating training features for the unseen classes, in such a
way that standard discriminative classifiers can be learned
(Fig. 1). Generating data for machine learning tasks has
been studied in the literature e.g., [18] or [3] to compensate
for imbalanced training sets. Generating novel training ex-
amples from the existing ones is also at the heart of the tech-
nique called Data Augmentation, frequently used for train-
ing deep neural networks [23]. When there is no training
data at all for some categories, some underlying paramet-
ric representation can be used to generate missing training
data, assuming a mapping from the underlying representa-
tion to the image space. [12] generated images by applying
warping and other geometric / photometric transformations
to prototypical logo exemplars. A similar idea was also pre-
sented in [19] for text spotting in images. [7] capture what
they call The Gist of a Gesture by recording human ges-
tures, representing them by a model and use this model to
generate a large set of realistic gestures.

We build in this direction, in the context of ZSC, the un-
derlying representation being some attribute or text based
description of the unseen categories, and the transforma-
tion from attributes to image features being learned from
the examples of the seen classes. A relevant way to learn
this transformation is to use generative models such as de-
noising auto encoders [4] and generative adversarial nets
(GAN) [16] or their variants [10, 26]. GANs consist in esti-
mating generative models via an adversarial process simul-
taneously learning two models, a generative model that cap-
tures the data distribution, and a discriminative model that
estimates the probability that a sample came from the train-
ing data rather than the generator. The Conditional Gen-
erative Adversarial Nets of [28] is a very relevant variant
adapted to our problem.

In addition to the advantage of using discriminative clas-
sifiers – which is expected to give better performance – our
approach, by nature, can address the more realistic task of
Generalized Zero-Shot Classification (GZSC). This prob-
lem, introduced in [9], assumes that both seen and unseen

categories are present at test time, making the traditional
approaches suffering from bias decision issues. In contrast,
the proposed approach uses (artificial) training examples of
both seen and unseen classes during training, avoiding the
aforementioned issues.

Another reason to perform classification inference di-
rectly in the visual feature space rather than in an abstract
attribute or embedding space is that data are usually more
easily separated in the former, especially when using dis-
criminant deep features that are now commonly available.

This paper experimentally validates the proposed strat-
egy on 4 standard Zero-Shot classification datasets (Ani-
mals with Attributes (AWA) [22], SUN attributes (SUN)
[31], Apascal&Ayahoo (aP&Y) [14] and Caltech-UCSD
Birds-200-2011 (CUB) [38]), and gives insight on how the
approach scales on large datasets such as ImageNet [11]. It
shows state-of-the-art performance on all datasets for both
ZSC and GZSC.

2. Approach
2.1. Zero shot classification

As motivated in the introduction, we address in this pa-
per the problem of learning a classifier capable of discrim-
inating between a given set of classes where empirical data
is only available for a subset of it, the so-called seen classes.
In the vocabulary of zero-shot classification, the problem is
usually qualified as inductive — we do not have access to
any data from the unseen classes — as opposed to transduc-
tive where the unseen data is available but not the associated
labels. We do not address in this paper the transductive set-
ting, considering that the availability of target data is a big
constraint in practice.

The learning dataset Ds is defined by a series of triplets
{xsi , asi , ysi }

Ns

i=1 where xsi ∈ X is the raw data (image or fea-
tures), ysi ∈ Ys is the associated class label and asi is a rich
semantic representation of the class (attributes, word vector
or text) belonging to As. This semantic representation is
expected to i) contain enough information to discriminate
between classes by itself, ii) be predictable from raw data
and iii) infer unambiguously the class label y = l(a).

In an inductive ZSC problem, all that is known regarding
the new target domain is the set of semantic class represen-
tations Au of the unseen classes. The goal is to use this
information and the structure of the semantic representation
space to design a classification function f able to predict the
class label ŷ = f(x;Au,Ds). The classification function f
is usually parametric and settled by the optimization of an
empirical learning criterion.

2.2. Discriminative approach for ZSC

In ZSC, the main problem is precisely the fact that no
data is available for the unseen classes. The approach taken
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in this paper is to artificially generate data for the unseen
classes given that seen classes and their semantic represen-
tations provide enough information to do so, and then apply
a discriminative approach to learn the class predictor.

The availability of data for the unseen classes has two
main advantages: it can make the classification of seen and
unseen classes as a single homogeneous process, allowing
to address Generalized Zero Shot Classification as a sin-
gle supervised classification problem; it potentially allows
a larger number of unseen classes, which is for instance re-
quired for datasets such ImageNet [11].

Let D̂u = {x̂ui , aui , yui }
Nu

i=1 be a database generated
to account for the unseen semantic class representation
au ∈ Au. The ZSC classification function becomes: ŷ =
fD(x; D̂u,Ds) and can be used in association with the seen
data Ds, to learn a homogeneous supervised problem.

2.3. Generating unseen data

Our generators of unseen data build on the recently pro-
posed approaches for conditional data generation as pre-
sented in section 1. The idea is to learn globally a para-
metric random generative process G using a differentiable
criterion able to compare, as a whole, a target data distribu-
tion and a generated one.

Given z a random sample from a fixed multivariate prior
distribution, typically uniform or Gaussian, and w the set
of parameters, new sample data consistent with the seman-
tic description a are generated by applying the function:
x̂ = G(a, z;w). A simple way to generate conditional x̂
data is to concatenate the semantic representation a and the
random prior z as the input of a multi-layer network, as
shown in Fig. 2.

We now present 4 different strategies to design such a
conditional data generator, the functional structure of the
generator being common to all the described approaches.

Generative Moment Matching Network A first ap-
proach is to adapt the Generative Moment Matching Net-
work (GMMN) proposed in [24] to conditioning. The gen-
erative process will be considered as good if for each se-
mantic description a two random populations X (a) from
Ds and X̂ (a;w) sampled from the generator have low max-
imum mean discrepancy which is a probability divergence
measure between two distributions. This divergence can be
approximated using a Hilbert kernel based statistics [17] –
typically a linear combination of Gaussian functions with
various widths — which has the big advantage of being dif-
ferentiable and may be thus exploited as a machine learn-
ing cost. Network parameters w are then obtained by opti-
mizing the differentiable statistics by stochastic gradient de-
scent, using batches of generated and real data conditioned
by the semantic description a.

(2) AC-GAN

(4) Adversarial Auto-Encoder

(1) GMMN

(3) Denoising Auto-Encoder

FC + lrelu

FC + lrelu

FC + lrelu

FC + lrelu

FC + lrelu FC + lrelu

FC + lrelu

FC + lrelu

FC + lrelu

Figure 2: Architecture of the different generative models
studied.

Conditional Generative adversarial models Our second
model builds on the principles of the generative adversarial
networks (GAN), which is to learn a discrepancy measure
between a true and a generated distributions — the Discrim-
inator — simultaneously with the data generator. One ex-
tension allowing to produce conditional distributions is the
AC-GAN [30] (Fig. 2) where the generated and the true dis-
tributions are compared using a binary classifier, and the
quality of the conditional generation is controlled by the
performance of this auxiliary task.

This model bears similarities with the GMMN model,
the key difference being that in the GMMN distributions
of true and generated data are compared using the kernel
based empirical statistics while in the AC-GAN case it is
measured by a learned discriminative parametric model.

Denoising Auto-Encoder Our third generator relies on
the work presented in [4], where an encoder/decoder struc-
ture is proposed to design a data generator, the latent code
playing the role of the random prior z used to generate the
data. A simple extension able to introduce a conditional
data generation control has been developed by concatenat-
ing the semantic representation a to the code that is fed to
the decoder (Fig. 2).

In practice, this model is learned as a standard auto-
encoder, except that i) some noise is added to the input and
ii) the semantic representation a is concatenated to the code
in the hidden layer. For generating novel examples, only the
decoder part, i.e. the head of the network using z and a as
input to produce x̂ is used.

Adversarial Auto-Encoder Our fourth generator is in-
spired by [26], which is an extension of the denoising auto-
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encoder. It introduces an adversarial criterion to control the
latent code produced by the encoder part, so that the code
distribution matches a fixed prior distribution. This extra
constraint is expected to ensure that all parts of the sam-
pling prior space will produce meaningful data.

During training, both the auto-encoder and the discrimi-
nator are learned simultaneously. For generating novel ex-
amples, as for the denoising auto-encoder, only the decoder
part is used.

2.4. Implementing the generators

We implemented our 4 generative models with neural
networks, whose architectures are illustrated Fig. 2. Hid-
den layers are fully connected (FC) with leaky-relu non-
linearity [25] (leakage coefficient of 0.2). For the models
using a classifier (the AC-GAN and the Adversarial auto-
encoder), the classifier is a linear classifier (fully connected
layer + Softmax activation function). The loss used to
measure the quality of the reconstruction in the two auto-
encoders is the L2 norm.

Regarding how to sample the noise z, we did not observe
any difference between sampling it from a Gaussian distri-
bution or from a uniform distribution.

3. Experiments

In this section, after presenting the datasets and the ex-
perimental settings, we start by comparing the different gen-
erative models described in the previous section. We then
show how our approach can be used for the Generalized
Zero-shot Classification Task, which is one of the key con-
tributions of the paper, provide some experiments on a large
scale zero shot classification task, and finally compare our
approach with state-of-the art Zero-Shot approaches on the
regular Zero-shot Classification Task.

3.1. Datasets and Settings

A first experimental evaluation is done on 4 standard
ZSC datasets: Animals with Attributes (AWA) [22], SUN
attributes (SUN) [31], Apascal&Ayahoo (aP&Y) [14] and
Caltech-UCSD Birds-200-2011 (CUB) [38] . These bench-
marks exhibit a great diversity of concepts; SUN and CUB
are for fine-Grained categorization, and include respectively
birds and scenes images; AwA contains images of animals
from 50 different categories; finally, aP&Y has broader con-
cepts, from cars to animals. For each dataset, attributes
descriptions are given, either at the class level or at im-
age level. aP&Y, CUB and SUN have per image binary
attributes that we average to produce per class real valued
representations. In order to make comparisons with other
works, we follow the same training/testing splits for AwA
[22], CUB [2] and aP&Y [14]. For SUN we experiment two
different settings: one with 10 unseen classes as in [20], a

Table 1: Zero-Shot classification accuracy (mean) on the
validation set, for the 4 generative models.

Model aP&Y AwA CUB SUN Avg
Denois. Auto-encod. [4] 62.0 66.4 42.8 82.5 63.4
AC-GAN [30] 55.2 66.0 44.6 83.5 62.3
Adv. Auto-encod. [26] 59.5 68.4 49.8 83.7 65.3
GMMN [24] 65.9 67.0 52.4 84.0 67.3

second, more competitive, with ten different folds randomly
chosen and averaged, as proposed by [8] (72/71 splits).

Image features are computed using two deep networks,
the VGG-VeryDeep-19 [34] and the GoogLeNet [36] net-
works. For the VGG-19 we use the 4,096-dim top-layer
hidden unit activations (fc7) while for the GoogLeNet we
use the 1,024-dim top-layer pooling units. We keep the
weights learned on ImageNet fixed i.e., we don’t apply any
fine-tuning.

The classifiers are obtained by adding a standard Fully
Connected with Softmax layer to the pre-trained networks.
We purposively chose a simple classifier to better observe
the behavior of the generators. In all our experiments we
generated 500 artificial image features by class, which we
consider to be a reasonable trade-off between accuracy and
training time; we have not observed any significant im-
provement when adding more images.

Each architecture has its own set of hyper-parameters
(typically the number of units per layer, the number of
hidden layers, the learning rate, etc.). They are obtained
trough a ’Zero-shot’ cross-validation procedure. In this pro-
cedure, 20% of the seen classes are considered as unseen
(hence used as validation set), allowing to choose the hyper-
parameters maximizing the accuracy on this so-obtained
validation set. In practice, typical values for the number
of neurons (resp. the number of hidden layers) are in the
range of [500-2000] (resp. 1 or 2).

Model parameters are initialized according to a centered
Gaussian distribution (σ = 0.02). They are optimized with
the Adam solver [21] with a cross-validated learning rate
(typically of 10−4), using mini-batches of size 128 except
for the GMMN where each batch contains all the training
images of one class, to make the estimation of the statis-
tics more reliable. In order to avoid over-fitting, we used
dropout [35] at every layer (probability of drop of 0.2 for
the inputs layers and of 0.5 for the hidden layers). Input
data (both image features and w2c vectors) are scaled to
[0,1] by applying an affine transformation. With the Ten-
sorFlow framework [13] running on a Nvidia Titan X pas-
cal GPU, the learning stage takes around 10 minutes for a
given set of hyper-parameters. Our code will be made pub-
licly available.
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Table 2: Generalized Zero-Shot classification accuracy on
AWA. Image features are obtained with the GoogLeNet.
[36] CNN.

AwA
Method u → u s → s u → a s → a

Lampert et al. [22]dap 51.1 78.5 2.4 77.9
Lampert et al. [22]iap 56.3 77.3 1.7 76.8
Norouzi et al. [29] 63.7 76.9 9.5 75.9
Changpinyo et al. [8]o−vs−o 70.1 67.3 0.3 67.3
Changpinyo et al. [8]struct 73.4 81.0 0.4 81.0
Ours 77.12 82.73 32.32 81.32
Ours. (VGG-19) 87.78 85.61 38.21 83.14

Table 3: Generalized Zero-Shot classification accuracy on
CUB. Image features are obtained with the GoogLeNet [36]
CNN.

CUB
Method u → u s → s u → a s → a

Lampert et al. [22]dap 38.8 56.0 4.0 55.1
Lampert et al. [22]iap 36.5 69.6 1.0 69.4
Norouzi et al. [29] 35.8 70.5 1.8 69.9
Changpinyo et al. [8]o−vs−o 53.0 67.2 8.4 66.5
Changpinyo et al. [8]struct 54.4 73.0 13.2 72.0
Ours. 60.10 72.38 26.87 72.00
Ours. (VGG-19) 59.70 71.21 20.12 69.45

3.2. Comparing the different generative models

Our first round of experiments consists in comparing the
performance of the 4 generative models described in Sec-
tion 2.3, on the regular Zero-shot classification task. Our
intention is to select the best one for further experiments.
Performance on the validation set is reported Table 1. We
can see that the GMMN model outperforms the 3 others on
average, with a noticeable 5% improvement on aP&Y. Its
optimization is also computationally more stable than the
adversarial versions. We consequently chose this generator
for the following.

We explain the superiority of the GMMN model by the
fact it aligns the distributions by using an explicit model of
the divergence of the distributions while the adversarial au-
toencoder and the AC-GAN have to learn it. For its part, the
denoising autoencoder doesn’t have any guaranty that the
distributions are aligned, explaining its weak performance
compared to the 3 other generators.

3.3. Generalized Zero-Shot Classification task

In this section, we follow the Generalized Zero-Shot
Learning (GZSC) protocol introduced by Chao et al. [9].
In this protocol, test data are from any classes, seen or un-
seen. This task is more realistic and harder, as the number
of class candidates is larger.

We follow the notations of [9], i.e.
u → u: test images from unseen classes, labels of unseen
classes (conventional ZSC)

s→ s: test images from seen classes, labels of seen classes
(multi-class classication for seen classes)
u→ a: test images from unseen classes, labels of seen and
unseen classes (GZSC)
s → a: test images from seen classes, labels of seen and
unseen classes (GZSC)

In the first two cases, only the seen/unseen classes are
used in the training phase. In the last two cases, the classi-
fier is learned with training data combining images gener-
ated for all classes (seen and not seen).

Most of the recent ZSC works e.g., [2, 6, 5, 32] are fo-
cused on improving the embedding or the scoring function.
However, [9] has shown that this type of approach is un-
practical with GZSC. Indeed the scoring function is in this
case biased toward seen classes, leading to very low accu-
racy on the unseen classes. This can be seen on Table 2 and
3 (u → a column), where the accuracy drops significantly
compared to regular ZSC performance. The data distribu-
tion of the ZSC datasets are strongly subject to this bias, as
unseen classes are very similar to seen classes both in terms
of visual appearance and attribute description. When seen
and unseen classes are candidates, it becomes much harder
to distinguish between them. For example, the horse (seen)
and the zebra classes (unseen) of the AwA dataset cannot be
distinguished by standard ZSC methods.

As we can see on Table 2 and 3, our generative approach
outperforms any other previous approach. In the hardest
case, u → a, it gives the accuracy of 30% (resp. 10%)
higher than state-of-the-art approaches on the AwA (resp.
CUB) dataset. It can be easily explained by the fact that it
doesn’t suffer from the scoring function problem we men-
tioned, as the Softmax classifier is learned to discriminate
both seen and unseen classes, offering a decisive solution to
the bias problem.

3.4. Large Scale Zero-Shot Classification

We compared our approach with state-of-the-art methods
on a large-scale Zero-Shot classification task. These expe-
riences mirror those presented in [15]: 1000 classes from
those of the ImageNet 2012 1K set [33] are chosen for train-
ing (seen classes) while 20.345 others are considered to be
unseen classes with no image available. Image features are
computed with the GoogLeNet network [36].

In contrast with ZSC datasets, no attributes are provided
for defining unseen classes. We represent those categories
using a skip-gram language model [27]. This model is
learned on a dump of the Wikipedia corpus (≈3 billion
words). Skip-gram is a language model learned to pre-
dict context from words. The neural network has 1 input
layer, 1 hidden layer and 1 output layer having the size
of the vocabulary (same size as the input layer). The hid-
den layer has 500 neurons in our implementation. In the
literature, the hidden layer has been reported to be an in-
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Table 4: Zero-shot and Generalized ZSC on ImageNet.

Flat Hit @K
Scenario Method 1 2 5 10 20
2-hop Frome [15] 6.0 10.0 18.1 26.4 36.4

Norouzi [29] 9.4 15.1 24.7 32.7 41.8
Changpinyo [8] 10.5 16.7 28.6 40.1 52.0
Ours. 13.05 21.52 33.71 43.91 57.31

2-hop Frome [15] 0.8 2.7 7.9 14.2 22.7
(+1K) Norouzi [29] 0.3 7.1 17.2 24.9 33.5

Ours. 4.93 13.02 20.81 31.48 45.31
3-hop Frome [15] 1.7 2.9 5.3 8.2 12.5

Norouzi [29] 2.7 4.4 7.8 11.5 16.1
Changpinyo [8] 2.9 4.9 9.2 14.2 20.9
Ours. 3.58 5.97 11.03 16.51 23.88

3-hop Frome [15] 0.5 1.4 3.4 5.9 9.7
(+1K) Norouzi [29] 0.2 2.4 5.9 9.7 14.3

Ours. 1.99 4.01 6.74 11.72 16.34
All Frome [15] 0.8 1.4 2.5 3.9 6.0

Norouzi [29] 1.4 2.2 3.9 5.8 8.3
Changpinyo [8] 1.5 2.4 4.5 7.1 10.9
Ours. 1.90 3.03 5.67 8.31 13.14

All Frome [15] 0.3 0.8 1.9 3.2 5.3
(+1K) Norouzi [29] 0.2 1.2 3.0 5.0 7.5

Ours. 1.03 1.93 4.98 6.23 10.26

teresting embedding space for representing word. Conse-
quently, We use this hidden layer to describe each class la-
bel by embedding the class name into this 500-dimensional
space. Some classes cannot be represented as their name is
not contained in the vocabulary established by parsing the
Wikipedia corpus. Such classes are ignored, bringing the
number of classes from 20,842 to 20,345 classes. For fair
comparison, we take the same language model as [8] with
the same classes excluded.

As in [8, 15] our model is evaluated on three different
scenarios, with an increasing number of unseen classes: i)
2-hop: 1,509 classes ii) 3-hop: 7,678 classes, iii) All: all
unseen categories.

For this task we use the Flat-Hit@K metric, the percent-
age of test images for which the model returns the true la-
bels in the top K prediction scores.

Table 4 summarizes the performance on the 3 hops. As
one can see, our model gets state-of the art performance
for each configuration. As it can be observed from these
experiments, our generative model is very suitable for this
large scale GZSC problem e.g., our approach improves by
5% best competitors for the Flat-Hit 1 metric on the 2-hop
scenario.

3.5. Classical Zero-Shot Classification task

In this last section, we follow the protocol of the standard
ZSC task: during training, only data from seen classes are
available while at test time new images (from unseen classes
only) have to be assigned to one of the unseen classes.

As explained in the introduction, the recent ZSC litera-
ture [2, 6, 5, 32] mostly focuses on developing a good em-

Table 5: Zero-shot classification accuracy (mean±std) on
5 runs. We report results with VGG-19 and GoogLeNet
features. SUN dataset is evaluated on 2 different splits (see
3.1). * [8] features extracted from an MIT Places[45] pre-
trained model.

Feat. Method aP&Y AwA CUB SUN
Lampert et al. [22] - 60.5 39.1 -/44.5
Akata et al. [2] - 66.7 50.1 -/-
Changpinyo et al. [8] - 72.9 54.7 90.0/62.8*

G
oo

gL
e

N
et

[3
6]

Xian et al. [41] - 71.9 45.5 -
Ours. 55.34 77.12 60.10 85.50/56.41
Lampert et al. [22] 38.16 57.23 - 72.00/-
Romera-Paredes [32] 24.22 75.32 - 82.10/-
Zhang et al. [43] 46.23 76.33 30.41 82.50/-
Zhang et al. [44] 50.35 80.46 42.11 83.83/-
Wang et al. [39] - 78.3 48.6 -/-
Bucher et al. [5] 53.15 77.32 43.29 84.41/-

V
G

G
-V

er
yD

ee
p

[3
4]

Bucher et al. [6] 56.77 86.55 45.87 86.21/-
Ours. 57.19 87.78 59.70 88.01/-

bedding for comparing attributes and images. One of our
motivations for generating training images was to make the
training of discriminative classifiers possible, assuming it
would result in better performance. This section aims at
validating this hypothesis on the regular ZSC task.

Table 5 summarizes our experiments, reporting the ac-
curacy obtained by state of the art methods on the 4 ZSC
datasets, with 2 different deep image features. Each entry is
the mean/standard deviation computed on 5 different runs.

With the VGG network, our method give above state-of-
the-art performance on each dataset, with a noticeable im-
provement of more than 15% on CUB. On the SUN dataset,
Changpinyo et al. [8]’s seems to give better performance
but used the MIT Places dataset to learn the features. It has
been recently pointed out in sec. 5.1 of Xiang et al. [42] that
this database ”intersects with both training and test classes
of SUN, which could explain their better results compared
to ours.

4. Conclusions
This paper introduces a novel way to address Zero-

Shot Classification and Generalized Zero-Shot Classifica-
tion tasks by learning a conditional generator from seen data
and generating artificial training examples for the categories
without exemplars, turning ZSC into a standard supervised
learning problem. This novel formulation addresses the two
main limitation of previous ZSC method i.e., their intrin-
sic bias for Generalized Zero-Shot Classification tasks and
their limitations in using discriminative classifiers in the
deep image feature space. Our experiments with 4 gener-
ative models and 5 datasets experimentally validate the ap-
proach and give state-of-the-art performance.
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