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Abstract—Lattice codes used under the Compute-and-Forward
paradigm suggest an alternative strategy for the standard
Gaussian multiple-access channel (MAC). It has been proven
that decoding an integer linear combination of the transmitted
codewords enables higher data rates compared to decoding the
messages individually. Recent work of Gasptar et al. proposed a
new multiple access channel technique that they called Compute-
and-Forward Multiple Access Channel (CFMA). The authors
proved that, in the case of a two-user MAC and without time
sharing, the entire capacity region is achieved using CFMA and
a single-user decoder for signal to noise ratios above 1 +

√
2.

Throughout this paper, we will work within the Compute-
and-Forward framework. The strategy relies on lattice codes,
here we will construct lattices using a multi-level coding based
construction called construction D. To decode the lattice points, a
multi-stage decoder (MSD) should be implemented at the receiver
part. In this paper, we propose a new decoding strategy that helps
to perform the standard MSD algorithm in a less complex way.
The new technique is called Binary Subchannel Decomposition
(BSCD). Since, we make use of MSD, we need at each level of the
decoder to compute soft-inputs: Log-Likelihood ratios. However
the calculations are very complex since we must compute infinite
sums of exponentials at each stage. Hereinafter we give efficient
LLR approximation for multi-stage decoders. Simulation results
about the performance of BSCD are included and compared to
the performance of the standard multi-stage decoder.

I. INTRODUCTION

Future 5G mobile networks rise many challenges for re-
searchers due to the high requirements that they target; Mainly,
the future mobile communication system must deal with
very high data rates, very dense crowds of users as well as
higher requirements on the end-to-end performance and user
experience. To meet these goals, several methods and strategies
already adopted in existing wireless communication systems
must be reconsidered. One key element of any cellular com-
munication system is the multiple access technology that is
used. Finding the appropriate channel access method is one of
the challenges for future 5G systems. Channel access methods
have evolved from one mobile generation to another; going
from FDMA/TDMA in the 2G, through CDMA implemented
in 3G, to recently OFDMA used in recent 4G systems. There
are several candidate systems that are being considered as
the 5G multiple access scheme. They include a variety of
different ideas; one of the most promising methods is the non-
orthogonal access to the multiple access channel. Compute-
and-Forward used along with lattice codes is one of the non-

orthogonal access methods that was shown to yield promising
results [9]. Compute-and-forward was firstly introduced in [2]
and it was based on physical-layer network coding which
is a revolutional concept introduced by Zhang in 2006 [1].
Many cooperative schemes have been also proposed after the
invention of physical-layer network coding, but most of them
rely on three core relaying strategies, which are: Decode-and-
Forward, Compress-and-Forward and Amplify-and-Forward.
The key idea is that users help relay each other’s messages
by exploiting the broadcast and multiple-access properties of
the wireless medium. However, these strategies have certain
limitations. B. Nazer and M. Gasptar, introduced in [2], the
Compute-and-Forward strategy which enables relays to decode
integer linear combinations of the transmitted messages using
the noisy linear combinations provided by the channel. In order
to be decoded reliably, the transmitted messages should be
nested lattice codes whose algebraic structure ensures that in-
teger linear combination of lattice points is also a lattice point.
It was proven later in [9] that Compute-and Forward (CF) is
not only a good relaying strategy but also a good multiple
access technique for Gaussian multiple access channels; In
this case, the receiver decodes the linear combinations of the
codewords and once it gets enough equations it decodes the
transmitted codewords.
In this paper, we will use Compute-and-Forward for the
Gaussian multiple access channel (MAC) using a different
approach for the receiver rather than the one described in
[9]. Remember that a multiple access channel model consists
of several senders and receivers, each sender transmits infor-
mation to each receiver over the same physical resource [4].
We will consider lattice codes constructed using multi-level
coding (MLC) which requires a multi-stage decoder (MSD)
at the receiver part. The construction is referred to as binary
construction D. Our main contribution will be within the MSD,
we will upgrade the decoder by adding a binary subchannel
decomposition (BSCD) method which consists on mapping
the decoding algorithm from Z[i]/(1 + i)mZ[i] to F2[u]/um,
where m is the number of levels of the multi-stage decoder.
We performed this new method for the simple case when three
users are transmitting uncoded messages to one single receiver
and we got promising results. Our method allows less complex
decoding and serves as a basis for more complex schemes
especially since we map data from non-binary to binary rings.



This is specifically useful for schemes using the message
passing algorithm (MPA) [13] such as the sparce code multiple
access technique [12]. Since we used MSD, we calculated at
each stage a soft-input for the decoders called Log-Likelihood
Ratio (LLR) which is defined as follows:

LLR = log
P(y′ij |xij = 0)

P(y′ij |xij = 1)
(1)

where y′ji and xji are respectively the jth received bit after
a modulo operation and the jth transmitted bit at the ith

level of the multistage decoder. For Compute and Forward,
decoding is performed over the whole lattice, therefore LLRs
are computed over the whole lattice which induce an infinite
sum of exponentials. Thus, the computations of exact LLRs
are very complex for a practical implementation. To solve
this complexity problem, we proposed hereinafter an efficient
approximation of LLRs.
Throughout this paper, vectors and matrices are denoted by
lowercase and uppercase bold letters, such as a and A,
respectively. The probability of a given event E is denoted by
P(E). Let C denote the complex field and h∗ the hermitian
transpose of a complex vector h ∈ Cn

II. SYSTEM MODEL AND RECEIVER STRUCTURE:

A. Received Signal:

Let us consider K users transmitting length-n, complex-
valued messages {x1,x2, ....xK} to one receiver over a Gaus-
sian channel. At the receiver part, the received signal y ∈ Cn
is expressed as follows:

y =

K∑
j=1

hjxj + z (2)

Where hj ∈ C are the channel coefficients and z is a length-n
σ2-variance additive white Gaussian noise (AWGN).
In order to decode the transmitted codewords, we will use the
Compute-and-Forward strategy [2] which consists in decod-
ing an interger linear combination of the codewords instead
of decoding individual messages (fig.1). To ensure reliable
decoding, each user uses a nested lattice code as in [2]. A
nested lattice code is the set of all fine lattice codes within
the Voronoi region of the coarse lattice centered in the origin.
Note that a lattice Λ is said to be nested in a lattice Λ1 if
Λ ⊂ Λ1, in this case Λ is called the coarse lattice and Λ1 is
the fine lattice. In our system model, the transmitted codewords
xj ,j ∈ {1, 2, ...K} are carved from the same lattice that we
call Λ.

B. Compute-and-Forward for Multiple Access:

Compute and Forward is based on nested lattice codes.
Each user’s encoder maps length-k messages w from a
prime-size finite field Fkp to a lattice Λ. At the receiver part,
the received signal is a noisy combination of the transmitted

codewords (eq.2). To decode these latter ones, we must have
K linearly independent equations while trying to make each
of these noisy equations as close as possible to an integer
noiseless combination of the codewords. Since we consider
a complex channel model, this is made by approximating
the channel coefficients hj by Gaussian integers aij ∈ Z[i],
j ∈ {1, 2, ...K} and i ∈ {1, 2, ...K} such that the synthesized
received noiseless signals are in the lattice Λ.

yi =

K∑
j=1

aijxj ∈ Λ, i ∈ {1, 2...,K} (3)

Fig. 1. A single receiver decoding an equation of K transmitted messages
coming from K users

Since we have to decode K users, we need, at the receiver part,
K linearly independent equations with coefficients in Z[i]. For
each equation, we scale the received signal by a factor αi
which is judiciously chosen through an optimization process
(that we will detail later on in this section). The equations can
be expressed as follows: for any i ∈ {1, 2, ...K}:

ỹi = αiy =

K∑
j=1

aijxj +

K∑
j=1

(αihj − aij)xj + αiz︸ ︷︷ ︸
z̃i

(4)

As we mentioned earlier, αi and aij can be easily found
through a judiciously-solved optimization problem. In fact,
since we need a good approximation of the received signal,
the variance of the effective noise z̃i must be minimized:

αi = arg minE(|z̃i|2) (5)

The result corresponds to αMMSE (Minimum Mean Square
Error)

αi = αMMSE =
Ph∗ai

1 + P‖h‖2
(6)



where h = [h1, h2, ...., hK ] is the channel coefficient vector
and ai = [ai1, ai2, ...., aiK ] is the vector of Gaussian integers
corresponding to equation i ∈ {1, 2, ...,K} and P is the
power.
On the other hand, for each equation, we associate a compu-
tation rate Ri which is a function of αi and ai.

Ri(h,ai) = max
αi∈C

log+(
P

|αi|2 + P‖αih− ai‖2
) (7)

Replacing αi by αMMSE we get:

Ri(h,ai) = log(‖ai‖2
SNR|h∗ai|2

1 + SNR‖h‖2
) (8)

The computation rate must be maximized with respect to ai in
order to get better performance. Maximizing the comptation
rate is equivalent to minimizing the positive-definite hermitian
matrix Q which can be seen as the Gram matrix of a lattice
that we call L.

âi = arg min
ai 6=0
{atiQai} (9)

where:

Q = I− SNR
1 + SNR‖h‖2

H (10)

where H = [Hlm] = hlh∗m, 1 ≤ m, l ≤ K.
Finding the K best linearly independent equations is equivalent
to find a reduced basis of L. The Lenstra-Lenstra-Lovasz
(LLL) reduction algorithm [6] enables the computation of this
reduced basis that we call A. Since we are working within
the complex channel model, we will use and implement the
complex LLL reduction which was introduced in [10].
Once we have the matrix U , which is a transformation of the
reduced lattice basis A, the scaling factors αi, i ∈ {1, 2, ...,K}
as well as the decoded lattice points ŷ , we will only have to
invert the K×K unimodular matrix U to get the K decoded
codewords x̂.

x̂ = U−1ŷ (11)

III. CONSTRUCTION D OF LATTICES:

We cannot cite or mention all related works on lattices
here but we can point the interested reader to an excellent
survey by Zamir [3]. By reading this survey, the reader will be
able to understand the usefulness of lattices, their definitions,
applications and interests. Notice that in this survey, the main
focus was on Z-lattices, however in our paper our fundamental
interest will be on Z[i]-lattices. It goes without saying that any
Z[i]-lattice can be seen as two Z-lattices.
An Hermitian n-dimensional lattice Λ is an additive discrete

subgroup (of maximal rank) of an Hermitian space [8]. One
way to define a lattice is using its generator matrix:

Λ = {y ∈ Cn;y =

n∑
i=1

bixi = Bx, xi ∈ Z[i]} (12)

y are points of the lattice, bi are the generating vectors where
each corresponds to the ith column of the n × n generator
matrix B. Each Gaussian integer xi is an element of the
column vector x. Thus a lattice is the span of column space of
the generator matrix B. A pair of euclidean lattices (Λ1,Λ2)
is nested if Λ2 ⊆ Λ1, and the finite quotient group Λ1/Λ2

is called a lattice partition with index |Λ1/Λ2|. The partition
index is the number of cosets of Λ2 in Λ1. A family of m
nested lattices defines a lattice partition chain Λ1/Λ2/...../Λm.
There are several lattice constructions. Binary construction A
is one of the less complex ways to build lattices. However,
since it has several limitations in terms of coding gain, it is
better to go for more sophisticated constrcutions such as binary
construction D [7]. Binary construction D produces lattice
packings from a family of nested binary linear codes and is
well-known for the construction of Barnes-Wall lattices from
Reed-Muller codes. It is based on multi-level coding and can
be decoded using multistage decoding. This multilevel nature
allows lower complexity decoders in comparison with other
constructions. The signal flow of the multi-stage decoding
scheme is shown in figure 2.
As an example, let us consider the lattice partition chain
Zn[i]/(1 + i)Zn[i]/2Zn[i]/..../(1 + i)mZn[i] and the linear
binary code Cj(n) of length n, the code associated to the
partition (1 + i)jZn[i]/(1 + i)j+1Zn[i]. We consider as well
a family of m nested codes C0 ⊆ C1 ⊆ ..... ⊆ Cm−1. Then
the lattice Λ can be defined as follows:

Λ = (1+i)mZn[i]+(1+i)m−1Cm−1(n)+......+C0(n) (13)

Note that binary construction D with m levels can also be
represented as a construction A over the polynomial ring
F2[u]/um, the ring of polynomials with binary coefficients
and degree m.
Hereinafter, the considered transmitted messages will be
carved out from a lattice Λ constructed using construction D
(which also can be seen as contruction A over F2[u]/um).

IV. BINARY SUBCHANNEL DECOMPOSITION WITH
MULTISTAGE DECODING:

A lattice Λ constructed using construction D is written as
follows:

Λ = (1 + i)mZ[i]n + CF2[u]/um(n) (14)

where CF2[u]/um(n) is a linear code of length n and m is a
positive integer which represents the number of levels of the
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Fig. 2. The signal flow of the multistage decoding for the lattice partition Zn[i]|(1 + i)Zn[i]|......(1 + i)mZn[i]

multi level coder. Hereinafter, CF2[u]/um(n) will be called CR
and will be defined as follows:

CR = C0
F2

+ uC1
F2

+ u2C2
F2

+ .......+ um−1Cm−1
F2

(15)

The decoding algorithm is mapped from Z[i]/(1 + i)mZ[i] to
the polynomial ring F2[u]/um which is posssible thanks to
the ring isomorphism τ : (1 + i) 7→ u.
Note that a ring isomorphism τ is defined as follows:
• τ(a+ b) = τ(a) + τ(b)
• τ(a.b) = τ(a).τ(b)

τ : Z[i]/(1 + i)mZ[i]→ F2[u]/um

ŷi 7→ ti

Each component of the resulting point is written as follows:

ti = bi,0 + ubi,1 + u2bi,2 + ....+ um−1bi,m−1 (16)

bi,k ∈ {0, 1}, k ∈ {0, 1, ...(m − 1)}. To decode the system
of K linearly independent equations defined in section two,
we will use a multistage decoder. The received signal y ∈ C
undergo the process described in section two, the resulting
system of equations will be mapped to the polynomial ring
F2[u]/um. The output of this mapping is the system ti
defined in (eq.16). For each level k, we decode all the codes
corresponding to this level k ∈ {1, 2, ...(m − 1)}, in each
equation ti, i ∈ {1, 2, ...K}. Once the level is decoded, we
decode the corresponding level of the transmitted messages by
inverting the matrix defined in (eq.11) U which is also mapped
to F2[u]/um. The resulting decoded subchannel will serve as a
side information for the decoding of the next subchannels. The
operation is performed for all m levels till we decode the whole

codewords. In other words, each equation, of the system of K
equations, will be split into m binary parallel subchannels.
Each subchannel will be decoded for each equation and will
be sent to the next subchannel to decode it.
For this multistage decoder used along with binary subchannel
decomposition, we need at each stage soft-input values which
are the log-likelihood ratios defined by:

LLR = log
P(y′i|xi = 0, x̂î)

P(y′i|xi = 1, x̂î)
(17)

where y′i is the image of the observation y in F[u]/u4 and xi
is the transmitted message at the level i and where x̂î are the
decoded bits at levels î < i. However, exact LLR computation
taking into account all lattice points is very complex and
is time and energy consuming. Hereinafter, we propose an
efficient LLR approximation which is simply a function of
hyperbolic and circular cosines.

V. AN EFFICIENT LLR APPROXIMATION:

In a previous work, we have given efficient LLR computa-
tions for different lattice constructions [5]; The computations
were expressed in terms of sums and products of Jacobi Theta
functions. In the case of real binary construction D, LLRs are
expressed as follows:

LLR = log(

∑
k∈Z e

−‖y−2k‖2

2σ2∑
k∈Z e

−‖y−(2k+1)‖2
2σ2

)

= log
ϑ3( iyσ2 ; e

−2

σ2 )

ϑ2( iyσ2 ; e
−2

σ2 )

(18)

where the Jacobi Theta functions of type 2 and type 3 are
defined in the general case as follows [11]:



ϑ2(u; q) =

∞∑
k=−∞

q(k+ 1
2 )2e(2k+1)iu (19)

ϑ3(u; q) =

∞∑
k=−∞

qk
2

e2iku (20)

Note that Jacobi Theta functions are the elliptic analogs of the
exponential functions and that they are defined as functions of
two complex variables u and q.
In this paper, we will further simplify these expressions and
we will propose an efficient LLR approximation which will
only be expressed in terms of circular and hyperbolic cosines.
This approximation makes the calculations much easier and
as we will prove in this section, allows to get the same results
as the real expressions of the log-likelihood ratios. As for the
LLR computations, we begin by giving the approximations of
the Theta functions of the sublattices and lattice translates 2Z,
2Z+1 as well as 4Z and all its translates. Notice here that we
limited ourselves to the 16-QAM constellation but the results
can be easily extended.

Θ2Z(y, q) = ϑ3(
iy

σ2
; e
−2

σ2 ) ' eρcos(πy)

2I0(ρ)

Θ2Z+1(y, q) = ϑ2(
iy

σ2
; e
−2

σ2 ) ' eρcos(π(y−1))

2I0(ρ)

(21)

where I0(ρ) is the modified Bessel function of first order and
ρ is the positive solution of the equation

eρ

2I0(ρ)
= ϑ3(e

−4

2σ2 ) (22)

In the general case, any Jacobi Theta function of a binary
sublattice of Z can be expressed as follows:

Θ2mZ '
eρ2mcos(

2π
2m y)

2mI0(ρ2m)
(23)

It is also easy to prove that the Jacobi Theta function of each
translate of a sublattice of Z can be expressed as follows:
Let us define first:

φΛ(y) = (
1√
2πσ

)n
∑
x∈Λ

e
−‖y−x‖2

2σ2 (24)

Then for any translation vector y0, we have:

φΛ+y0(y) = (
1√
2πσ

)n
∑

x∈Λ+y0

e
−‖y−x‖2

2σ2 (25)

if we suppose x = u− y0, then:
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Fig. 4. Approximation of the Jacobi Theta function of Z for σ = 0.6

Fig. 5. Representation of the estimation of LLR for the partition Z2|D2 and
for σ = 0.6

φΛ+y0(y) = (
1√
2πσ

)n
∑

u∈Λ+y0

e
−‖(y−y0)−u‖2

2σ2

= φ(y − y0)

(26)

We conclude then, that computing the approximation of the
Jacobi Theta function that corresponds to the coset 0 is
sufficient. Those corresponding to the other cosets are simple
translations of the coset 0. Hereinafter, since we will consider
the 16-QAM constellation, we will deal with the partition
chain Z2\D2\2Z2..... Two main LLRs correspond to the latter
partition chain. LLRs corresponding to the D2-like cosets and
LLRs corresponding to the Z2-like cosets (see fig.3), they can
be expressed respectively as follows:

LLRD2 ' log(
cosh(ρ2m(cos( 2π

2m
(y1 − k1))) + cos( 2π

2m
(y2 − k2)))

cosh(ρ2m(cos( 2π
2m

(y1 − k1)))− cos( 2π
2m

(y2 − k2)))
)

(27)

LLRZ2 ' 2ρ2m(cos(
2π

2m
(y1−k1))+cos(

2π

2m
(y2−k2))) (28)

where y = (y1, y2) and k = (k1, k2) is the translation vector.
Log-likelihood ratios and Jacobi theta function’s estimations
are represented in figures 4 and 5 in the one dimensional and
two-dimensional cases.
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C&F with Binary SubChannel Decomposition
h1= −0.40708−2.2949i; h2= 1.1063−1.9999i; h3=−3.5777−2.3143i

C&F without Binary SubChannel Decomposition
h1= −0.40708−2.2949i; h2= 1.1063−1.9999i; h3=−3.5777−2.3143i

Fig. 6. Comparison between CF with BSCD and CF without BSCD in the uncoded case

VI. SIMLATION RESULTS FOR BSCD:

For our simulations, we chose to work with one sin-
gle receiver and three users. Each user sends its messages
independently to the receiver, however all the transmitted
codewords belong to the same lattice. The lattice is constructed
according to a construction based on multi level coding and
a multistage decoding and it is called construction D. The
transmitted messages are carved out from an uncoded lattice
Z[i]|(1 + i)4Z[i] (16-QAM constellation) and the number of
levels is chosen to be m = 4. At the receiver part, we
performed binary subchannel decomposition (BSCD) along
with the MSD. The results are almost similar to when we
perform only Compute-and-Forward without BSCD over the
same system. Simulation results are shown in figure 6. As
you can notice, the performance of multi-stage decoding with
BSCD is very close to the standard multi-stage decoding.
However, in our case the complexity is significantly reduced.

VII. CONCLUSION:

In this paper, we considered Compute-and-Forward for
the Gaussian multiple access channel and we presented a
different approach for the receiver. We introduced as well
a new technique called binary subchannel decomposition to

perform the multi-stage decoding algorithm of Compute-and-
Forward. The results show that we have the same performance
as the original decoding algorithm of Compute-and-Forward.
Binary subchannel decomposition allows important gains in
complexity. It can serve as a basis for more complex schemes
such as sparce code multiple access (SCMA), which was
recently introduced in [12]. In this case of SCMA, we use
the message passing algorithm (MPA) muti-user detection
technique. Since, the BSCD allows us to deal only with binary
data, as we map the whole decoding algorithm to the field
F2[u]/um,this can largely simplify the decoding algorithm
used in such multiple access strategy. To further simplify the
multi-stage decoder, we also gave useful LLR approximations
based on the LLR expressions given in a previous work [5].
The LLR approximations are simple functions of circular and
hyperbolic cosines.
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