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Abstract—Due to their linear and highly symmetrical struc-
ture, lattices are becoming of a great interest as potential
transmission schemes. Lattice codes suggest a common view of
channel and source coding and new tools for the analysis of
information network problems. Several constructions have been
proposed to build these lattices, some of which are based on
multi-level coding and multistage decoding such as constructions
D and πD . Soft-decision decoders corresponding to the different
nested error-correcting codes used to construct such lattices need
at each stage the computation of a soft input, namely Log-
Likelihood Ratios. In this paper, we give an efficient computation
of LLRs based on Jacobi theta functions for three different types
of constructions; Binary construction D, Quaternary construction
D and Binary construction πD .

I. INTRODUCTION

In Gaussian multiple access channels (MAC), where two
or more users transmit information to the same receiver over
a gaussian channel, interference has always been considered
as nuisance. Several methods have been developed to avoid
interference in MAC such as orthogonal access to the channel
techniques (FDMA,TDMA..). However, avoiding interference
may impact data rates as they decrease when the network
size increases. Physical-layer network coding introduced in
2006 by Zhang et al. in [1], comes up with a revolutional
concept allowing to harness interference instead of avoiding
it. Based on this new concept, B. Nazer and M. Gastpar in
[2], proposed a new strategy, Compute and Forward, that
enables relays to decode linear equations of the transmitted
messages using the noisy linear combinations provided by
the channel. In order to be decoded reliably, the messages
must be lattice points whose algebraic structure enables that
integer linear combinations of these points remain a lattice
point. Several binary and M-ary lattice constructions have
been proposed to construct lattices such as construction A
and other equivalent constructions namely B, D, πA and πD.
One of the main drawbacks of construction A is that in order
to be good for AWGN channel, the underlying linear codes
have to be implemented over very large prime fields which in
turn result in high decoding complexity. Constructions D and
πD which are based on multi-level coding guarantee a low-
complexity encoding scheme as well as a practical decoding
based on multistage decoding. Different error-correcting codes
are used in these lattice constructions. For construction D and
for construction πD, one must have respectively a family of
nested codes and a family of equivalent codes. At the receiver
side, in order to decode one lattice point, we must decode

all the codewords corresponding to the different used error-
correcting codes. In the binary case, Log-Likelihood Ratios
(LLRs) which are the inputs for the soft-decoding algorithms
must be calculated at each stage of the multistage lattice
decoder.

LLR = log
P(y′ij |xij = 0)

P(y′ij |xij = 1)
(1)

where y′ij and xij are respectively the jth received bit after
the modulo operation and the jth transmitted bit at the ith

level of the multistage decoder. For Compute and Forward,
decoding is performed over the whole lattice, therefore LLRs
are computed over the whole lattice which induce an infinite
sum of exponentials. Thus, the computations of exact LLRs
are very complex for a practical implementation.
In this paper, we propose an LLR computation for gaussian
channels based on Jacobi theta functions. To calculate LLRs,
we only need to know the value of two types of theta functions.
These values can be precalculated easily and stored in lookup
tables.
This paper is organized as follows; In the second section, we
give some basic definitions on lattices and different construc-
tions as well as the system model. We will also provide some
fundamental computation rules of theta functions that we will
exploit to perform our calculations. In section three, we will
deal with the Gaussian channels and give our LLR expressions
as functions of Jacobi theta functions for three different lattice
constructions.
Throughout this paper, vectors and matrices are denoted by
lowercase and uppercase bold letters, such as a and A,
respectively. The probability of a given event E is denoted
by P(E).

II. PRELIMINARIES AND SYSTEM MODEL

An n−dimensional euclidean lattice Λ is an additive dis-
crete subgroup of Rn. Roughly speaking, a lattice is a periodic
arrangement of points in the n−dimensional Euclidean space
[3]. The fundamental Voronoi region, RΛ, of a lattice Λ, is the
set of all points in Rn that are closest to the zero vector. A pair
of euclidean lattices (Λ1,Λ2) is nested if Λ2 ⊆ Λ1, and the
finite quotient group Λ1/Λ2 is called a lattice partition whith
index |Λ1/Λ2|. The partition index is the number of cosets
of Λ2 in Λ1. A family of r nested lattices defines a lattice



partition chain Λ1/Λ2/...../Λr.
Multi-level coding is a practical encoding scheme for lattices.
It uses several error-correcting codes and the transmitted
symbols are constructed by combining symbols of codewords
of these codes [4]. It has been proved in [5] that multi-level
coding (MLC) and multistage decoding (MSD)[6] suffice to
approach capacity if the rates at each level are appropriately
chosen. Construction D is based on this multi-level nature.
As an example, let us consider the lattice partition chain
Zn/2Zn/4Zn/..../2rZn and the linear binary code Ci(n, ki),
the code associated to the partition 2iZn/2i+1Zn. We consider
as well a family of r nested codes C0 ⊆ C1 ⊆ ..... ⊆ Cr−1.
Then the lattice Λ can be defined as follows:

Λ1 = 2rZn + 2r−1Cr−1(n, kr−1) + ......+ C0(n, k0) (2)

On the receiver side, a practical decoding algorithm is used,
known as multistage decoding. The idea behind is that every
code is decoded individually, in other words, we decode C0,
and then based on the estimated codeword we decode C1 and
so forth, until we have decoded all the codewords. To decode
code Ci, we implement a soft-decision decoding algorithm,
therefore, at each stage we need to calculate a soft-input which
is the Log-Likelihood Ratio. However, LLR computations
induce infinite sums of exponentials. It is then time and
energy consuming [7]. In this paper, we deal with several
lattice constructions each corrresponding to different lattice
partition chain. The choice of such construction is related to
ideals and their factorization; Hereinafter, we consider fields
of characteristic 2. For example F2, F4,F8. We also consider
lattices based on complex constellations Z[β] where β is a
complex root of a quadratic polynomial with coefficients in
Z.
The choice of the construction is based on the prime factor-
ization of the principal ideal generated by 2; we have three
different cases:
• 2 ramifies in Z[β],so we have 2Z[β] = I2, where I is the

prime ideal: Binary construction D
• 2 remains inert over Z[β], so we have 2Z[β] is a prime

over Z[β]: Quaternary construction D
• 2 splits into two distinct prime ideals over Z[β], so we

have 2Z[β] = I · Ī: Binary construction πD
For each of these three cases, we consider one example:
• 2 ramifies: β = i
• 2 is inert: β = ω = −1+i

√
3

2

• 2 splits: β = 1+
√
−7

2

The prime ideals resulting from the factorization of 2 have
a lattice structure and are in fact sublattices of Λ1, let’s call
them Λ2

1) System Model: The n−dimensional lattice point x is
sent through an AWGN channel giving the received point
y = x + w, where w is a length-n vector of zero-mean σ2-
variance gaussian distributed independant random variables.
We consider a constellation carved out from a lattice Λ1 and

we consider the lattice partition Λ1/Λ2. A multistage decoding
algorithm was introduced in [8] and [9] which feeds soft values
of the received observation y into the binary decoder at each
level. Each level of the construction D may be viewed as
construction A. We consider the previous example (2) and the
received signal y = x+w so MSD can be described as follows:
• First y is reduced to y′1 ≡ y mod 2, only the codeword

corresponding to the code of the smallest rate remains.
• The soft-inputs to the decoder are then calculated based

on the value of y′1. Based on these values, the decoder of
the code C0 finds a decoded codeword ĉ0. The estimated
codeword is then substracted from y to give ỹ = y− ĉ0

• The next step will be to divide ỹ by 2, the modulo
operation is again performed to get ỹ′2 and the LLRs are
calculated based on the values of ỹ′2

• All the steps listed above are repeated until we get all the
estimated codewords that correspond to the nested codes
Ci

• Finally, only the element of Zn that we call b remains.
Then a decoder for Zn finds a sequence b̂ and we get the
estimated lattice point ŷ

So as we can see, due to the structure of the multistage
decoder, the received signal is, at each level, subject to a
modulo 2 operation. The resulting signal can be written as
follows:

y′ = y mod 2 = x mod 2 + w mod 2 = c0 + w′ (3)

It follows from (3) that c0 ∈ C0. The modulo 2 operation
folds up the Gaussian Noise resulting in a vector w′ distributed
according to the Wrapped Normal distribution [10]. Its prob-
ability density function (PDF) fσ2(w′). Let gσ2(w) be the
probability density function of the Gaussian noise w ∈ Rn.
gσ2(w) and fσ2(w′) can be written as follows:

gσ2(w) = (2πσ2)
−n
2 e

−‖w‖2

2σ2 (4)

fσ2(w′) =
∑
b∈2Zn

gσ2(w′ + b) (5)

w′ lives in the fundamental Voronoi region of 2Zn that we
call RV (2Zn).
To decode ci we use a soft-decision decoder, consequently
we must at each stage calculate the decoder soft-inputs which
are Log-Likelihood Ratios. The caculations are very complex
especially when we have several levels. Thus to simplify
the multistage decoding algorithm, we propose an efficient
computation of LLRs based only on Jacobi theta functions. In
the non-binary case LLR vectors will be defined.

2) Jacobi Theta Functions: To each lattice Λ we can
associate a Jacobi theta function ΘΛ. Jacobi theta functions are
the elliptic analogues of the exponential functions. There are
several closely related functions called Jacobi theta functions,
and many different and incompatible systems of notation for
them. One Jacobi theta function defined as a function of two
variables u and τ , where u is a complex number and τ is
defined in the upper half plane.



ΘΛ(u, q) =

∞∑
n=−∞

qn
2

e2inu (6)

where q = eiπτ . There are four different types of elementary
Jacobi theta functions. Hereinafter, we will be interested in ϑ2

and ϑ3. Note that these two types are even functions of the
variable u

ϑ3(u, q) =

∞∑
k=−∞

qk
2

e2iku (7)

ϑ2(u, q) =

∞∑
k=−∞

q(k+ 1
2 )2e(2k+1)iu (8)

3) Computation rules of theta functions: Here we introduce
some fundamental Jacobi theta functions’computation rules
that we will exploit later for the calculation of the different
LLRs.
• Scaling: ΘαΛ1

(u, q) = ΘΛ1
(αu, qα

2

) ; α > 0
• Direct Sum: ΘΛ1⊕Λ2(u, q) = ΘΛ1(u1, q)ΘΛ2(u2, q)

u = (u1, u2)
• Union: ΘΛ1∪Λ2

(u, q) = ΘΛ1
(u, q) + ΘΛ2

(u, q)

III. EFFICIENT LLR COMPUTATION BASED ON JACOBI
THETA FUNCTIONS FOR GAUSSIAN CHANNELS

A. Binary Construction D

1) Real Case: In this section, we consider the one-
dimensional partition chain Z/2Z/4Z....../2rZ. As we can
see, the quotient ring Z/2Z has index 2, and Z is the disjoint
union of two cosets 2Z and 2Z+1. We define the set of coset
representatives as A = {0, 1}. Here, Log-Likelihood Ratios
are defined as follows:

LLR = log
P(y′ij |xij = 0)

P(y′ij |xij = 1)
(9)

The theta functions of Z and Z + 1
2 can be written in terms

of ϑ3 and ϑ2. Known that ϑ2 can also be written in terms of
ϑ3, all the given results can be reduced to functions of ϑ3.

ΘZ(y, σ2) =
∑
x∈Z

e2i iy
2σ2

xe
−x2

2σ2

= ϑ3(
iy

2σ2
, e
−1

2σ2 )

(10)

ΘZ+ 1
2
(y, σ2) =

∑
x∈Z

e2i iy
2σ2

(2x+1)e
−(x+1

2
)2

2σ2

= ϑ2(
iy

2σ2
, e
−1

2σ2 )

(11)

Now, using the computation rules given above, we have the
following results for the cosets 2Z and 2Z + 1:
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Fig. 1. LLRs for the binary real construction D for σ = 0.2db

Θ2Z(y, σ2) =
∑
x∈Z

e2i iy
σ2
xe
−2x2

σ2 (12)

Θ2Z+1(y, σ2) =
∑
x∈Z

e2i iy
σ2

(2x+1)e
−2(x+1

2
)2

σ2 (13)

Then Log-Likelihood Ratios can be defined as follows:

P(y|x = 0) =
1√
2πσ

∑
k∈Z

e
−‖y−2k‖2

2σ2

=
e
−‖y‖2

2σ2

√
2πσ

∑
k∈Z

e
2yk

σ2 e
−2k2

σ2

=
e
−‖y‖2

2σ2

√
2πσ

ϑ3(
iy

σ2
, e
−2

σ2 )

(14)

P(y|x = 1) =
∑
k∈Z

e
−‖y−(2k+1)‖2

2σ2

=
e
−‖y‖2

2σ2

√
2πσ

∑
k∈Z

e
y(2k+1)

σ2 e
−2(k+1

2
)2

σ2

=
e
−‖y‖2

2σ2

√
2πσ

ϑ2(
iy

σ2
, e
−2

σ2 )

(15)

LLR = log
P(y|x = 0)

P(y|x = 1)

= log
ϑ3( iyσ2 , e

−2

σ2 )

ϑ2( iyσ2 , e
−2

σ2 )

(16)

LLRs in the case of a real binary construction D are shown
in figure 1.

2) Complex Case: (2 ramifies): Complex binary construc-
tion D is also another way to construct lattices. In this
case, we consider the two-dimensional lattice partition chain
Z[i]/(1 + i)Z[i]/2Z[i]..., where Z[i] is the ring of Gaussian
integers. As in the real case the set of coset representatives is
defined this way A = {0, 1}.
Known that, Z[i]/(1 + i)Z[i] is equivalent to Z2/D2 where

D2 = 2Z2+(2, 1)F2
= (2Z⊕2Z)∪((2Z+1)⊕(2Z+1)) (17)



Fig. 2. A-posteriori probability of the first coset D2 corresponding to σ =
0.4db

We can calculate ΘD2
this way:

ΘD2
(y, σ2) = Θ2Z(y1, σ

2)Θ2Z(y2, σ
2)

+ Θ2Z+1(y1, σ
2)Θ2Z+1(y2, σ

2)

= ϑ3(
iy1

σ2
, e
−2

σ2 )ϑ3(
iy2

σ2
, e
−2

σ2 )

+ ϑ2(
iy1

σ2
, e
−2

σ2 )ϑ2(
iy2

σ2
, e
−2

σ2 )

(18)

where y = (y1, y2).
The a posteriori probability can be written as follows:

P(y|x ∈ D2) =
e
−(y21+y22)

2σ2

2πσ
(ϑ3(

iy1

σ2
, e
−2

σ2 )ϑ3(
iy2

σ2
, e
−2

σ2 )

+ ϑ2(
iy1

σ2
, e
−2

σ2 )ϑ2(
iy2

σ2
, e
−2

σ2 ))

(19)

An illustration of the a posteriori probability of D2 is given
in figure 2.
The second coset is a simple translation of the first one. Then

LLRs have this expression:

LLR = log
P(y|x ∈ D2)

P(y|D2 + (1, 0)F2)
(20)

B. Quaternary Construction D

(2 is inert): By choosing a bigger alphabet size, one can
increase coding gain. Quaternary contruction D is based on
partition chains of the densest lattice in dimension 2 which
is the hexagonal lattice A2. Here we consider the two-
dimensional, four-way partition Z[ω]/2Z[ω]/4Z[ω].., where
ω = e

2iπ
3 . Z[ω] is called the ring of the Eisenstein integers.

Log-Likelihood Ratios can be defined as length-three vectors
normalized with respect to P(y|x = 0):

LLR =


log P(y|x=1)

P(y|x=0)

log P(y|x=α)
P(y|x=0)

log P(y|x=α2)
P(y|x=0)


Here, the partition index is |Z[ω]/2Z[ω]| = 4 and the quotient
ring Z[ω]/2Z[ω] is isomomorphic to F4(see Table I)
We consider Z[ω]/2Z[ω] which is equivalent to Z2/2A2.

TABLE I
COSET REPRESENTATIVES OF ELEMENTS OF F4

Z[ω] F4

0 0
1 1
ω α
ω2 α2

A2 = (Z⊕
√

3Z) ∪ ((Z +
1

2
)⊕ (Z +

1

2
)
√

3) (21)

Then:

ΘA2
(u, q) = ϑ3(u1, q)ϑ3(

√
3u2, q

3) + ϑ2(u1, q)ϑ2(
√

3u2, q
3)

(22)

And

Θ2A2
(u, q) = ϑ3(2u1, q

4)ϑ3(2
√

3u2, q
12)

+ ϑ2(2u1, q
4)ϑ2(2

√
3u2, q

12)
(23)

Now, known that cosets 2A2 +ω and 2A2 + ω̄ have the same
Jacobi theta function:

Θ2A2+1(u, q) = ϑ3(u1, q)ϑ2(
√

3u2, q
3)

+ ϑ2(u1, q)ϑ3(
√

3u2, q
3)

(24)

Where the variables u = (u1, u2) such that u1 = iy1
σ2 , u2 = iy2

σ2

and q = e
−1

2σ2 as they were defined for the theta functions
associated to Z and Z + 1

2 . Then:

Θ2A2+ω(u, q) = Θ2A2+ω̄(u, q)

=
ΘA2

(u, q)−Θ2A2
(u, q)−Θ2A2+1(u, q)
2

(25)

The a posteriori probability expression is then equal to:

P(y|x = λ) =
1

2πσ
e
‖y‖2

2σ2 Θ2A2+λ(
iy

2σ2
, e
−1

2σ2 ) (26)

where λ ∈ {0, 1, ω, ω̄}

C. Binary construction πD
(2 splits): Construction πD is a generalization of all con-

structions, it subsumes construction A, construction D and
construction πA. It has been introduced in [11]. As for con-
struction D, this construction is based on multivel coding and
multistage decoding thus LLR calculations are needed at each
stage. The decoding algorithm is very close to the decoding
algorithm of construction D, however, in this case we have
two lattice partition chains; Z[α]/I/2Z[α] and Z[α]/Ī/2Z[α],
where α = 1+

√
−7

2 and we have a family of nested equivalent
codes. Coset representatives will be here couples (a1, a2) in
F2 × F2(see table II).
Z[α] can be written as the product of an ideal I and its
conjugate Ī , 2Z[α] = IĪ
The lattice Z[α] can be defined as follows:

Z[α] = (Z⊕
√

7Z) ∪ ((Z +
1

2
)⊕
√

7(Z +
1

2
)) (27)



LLR = log

[
ϑ3( iy1σ2 , e

−2

σ2 )ϑ3( iy2σ2 , e
−2

σ2 ) + ϑ2( iy1σ2 , e
−2

σ2 )ϑ2( iy2σ2 , e
−2

σ2 )

ϑ3( iy1σ2 , e
−2

σ2 )ϑ2( iy2σ2 , e
−2

σ2 ) + ϑ2( iy1σ2 , e
−2

σ2 )ϑ3( iy2σ2 , e
−2

σ2 )

]
(20)

TABLE II
COSET REPRESENTATIVES OF ELEMENTS OF F2 × F2

Z[α] F2 × F2

0 (0,0)
1 (1,1)
α (0,1)
ᾱ (1,0)

The Jacobi theta function associated to this lattice is:

ΘZ[α](y, σ2) = ϑ3(
iy1

2σ2
, e
−1

2σ2 )ϑ3(

√
7iy2

2σ2
, e
−7

2σ2 )

+ ϑ2(
iy1

2σ2
, e
−1

2σ2 )ϑ2(

√
7iy2

2σ2
, e
−7

2σ2 )

(28)

where y = (y1, y2). Now, Z[α] can be written as the union of
four disjoint cosets:

Z[α] = 2Z[α]∪ (2Z[α]+1)∪ (2Z[α]+α)∪ (2Z[α]+ ᾱ) (29)

(2Z[α] + α) and (2Z[α] + ᾱ) have the same theta function:

ΘZ[α](u, q) = Θ2Z[α](u, q)+Θ2Z[α]+1(u, q)+2Θ2Z[α]+α(u, q)
(30)

On the other hand, we have:

Θ2Z[α](y, σ2) = ϑ3(
2iy1

2σ2
, e
−2

σ2 )ϑ3(
2
√

7iy2

2σ2
, e
−14

σ2 )

+ ϑ2(
2iy1

2σ2
, e
−2

σ2 )ϑ2(
2
√

7iy2

2σ2
, e
−14

σ2 )

(31)

Θ2Z[α]+1(y, σ2) = ϑ3(
2iy1

2σ2
, e
−2

σ2 )ϑ2(
2
√

7iy2

2σ2
, e
−14

σ2 )

+ ϑ2(
2iy1

2σ2
, e
−2

σ2 )ϑ3(
2
√

7iy2

2σ2
, e
−14

σ2 )

(32)

where y = (y1, y2). Then:

Θ2Z[α]+α(u, q) = Θ2Z[α]+ᾱ(u, q)

=
ΘZ[α](u, q)−Θ2Z[α](u, q)−Θ2Z[α]+1(u, q)

2
(33)

IV. CONCLUSION

We showed in this paper that the knowledge of the value
of two types of Jacobi theta functions ϑ3 and ϑ2 is sufficient
for computing LLRs when constructions D or πD are used
to construct high dimensional lattice codes. Known that ϑ2

can be expressed in terms of ϑ3, the expressions of LLRs can
even be simpler. The calculation of Log-Likelihhod Ratios is
then simplified; instead of having to calculate infinite sums of
exponentials, one can have simple look-up tables containing
values of Jacobi theta function ϑ3.
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