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In classical General Relativity, the way to exhibit the equations for the gravitational waves is based on two " tricks " allowing to transform the Einstein equations after linearizing them over the Minkowski metric. With specific notations used in the study of Lie pseudogroups of transformations of an n-dimensional manifold, let Ω = (Ω ij = Ω ji ) be a perturbation of the non-degenerate metric ω = (ω ij = ω ji ) with det(ω) = 0 and call ω -1 = (ω ij = ω ji ) the inverse matrix appearing in the Dalembertian operator

The second important idea is to notice that the composite second order linearized Einstein operator

is the linearized Ricci operator with trace tr(R) = ω ij R ij is reduced to 2 Ωij when ω rs d ri Ωsj = 0. The purpose of this short but striking paper is to revisit these two results in the light of the differential duality existing in Algebraic Analysis, namely a mixture of differential geometry and homological agebra, providing therefore a totally different interpretation. In particular, we prove that the above operator Ω → E is nothing else than the formal adjoint of the Ricci operator Ω → R and that the map Ω → Ω is just the formal adjoint (transposed) of the defining tensor map R → E. Accordingly, the Cauchy operator (stress equations) can be directly parametrized by the formal adjoint of the Ricci operator and the Einstein operator is no longer needed.

1) INTRODUCTION

In order to make the paper rather self-contained, we recall a few notations and definitions on linear systems of partial differential (PD) equations [START_REF] Pommaret | Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach[END_REF][START_REF] Pommaret | Differential Galois Theory[END_REF][START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF][START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF][START_REF] Pommaret | Partial Differential Control Theory[END_REF][START_REF] Pommaret | Algebraic Analysis and Mathematical Physics[END_REF][START_REF] Pommaret | Differential Algebra and Mathematical Physics[END_REF][START_REF] Spencer | Overdetermined Systems of Partial Differential Equations[END_REF]. If E is a vector bundle over the base manifold X with projection π and local coordinates (x, y) = (x i , y k ) projecting onto x = (x i ) for i = 1, ..., n and k = 1, ..., m, identifying a map with its graph, a (local) section f : U ⊂ X → E is such that π•f = id on U and we write y k = f k (x) or simply y = f (x). For any change of local coordinates (x, y) → (x = ϕ(x), ȳ = A(x)y) on E, the change of section is y = f (x) → ȳ = f (x) such that f l (ϕ(x) ≡ A l k (x)f k (x). The new vector bundle E * obtained by changing the transition matrix A to its inverse A -1 is called the dual vector bundle of E. We may introduce the tangent bundle T , the cotangent bundle T * , the vector bundle S q T * of q-symmetric covariant tensors and the vector bundle ∧ r T * of r-skewsymmetric covariant tensors or r-forms. Differentiating with respect to x i and using new coordinates y k i in place of ∂ i f k (x), we obtain ȳl

r ∂ i ϕ r (x) = A l k (x)y k i + ∂ i A l k (x)y k .
Introducing a multi-index µ = (µ 1 , ..., µ n ) with length | µ |= µ 1 +...+µ n and prolonging the procedure up to order q, we may construct in this way a vector bundle J q (E) over X, called the jet bundle of order q with local coordinates (x, y q ) = (x i , y k µ ) with 0 ≤| µ |≤ q and y k 0 = y k . For a later use, we shall set µ + 1 i = (µ 1 , ..., µ i-1 , µ i + 1, µ i+1 , ..., µ n ) and define the operator j q : E → J q (E) : f → j q (f ) on sections by the local formula j q (f ) : (x) → (∂ µ f k (x) | 0 ≤| µ |≤ q, k = 1, ..., m). Finally, as the background will always be clear enough, we shall use the same notation for a vector bundle and its set of sections. DEFINITION 1.1: A system of PD equations of order q on E is a vector subbundle R q ⊂ J q (E) locally defined by a constant rank system of linear equations for the jets of order q of the form a τ µ k (x)y k µ = 0. Its first prolongation R q+1 ⊂ J q+1 (E) will be defined by the equations

a τ µ k (x)y k µ = 0, a τ µ k (x)y k µ+1i + ∂ i a τ µ k (x)y k µ =
0 which may not provide a system of constant rank. A system R q is said to be formally integrable if the R q+r are vector bundles ∀r ≥ 0 (regularity condition) and no new equation of order q + r can be obtained by prolonging the given PD equations more than r times, ∀r ≥ 0. The symbols g q+r = R q+r ∩S q+r T * ⊗E only depend on g q [START_REF] Pommaret | Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach[END_REF][START_REF] Pommaret | Differential Galois Theory[END_REF][START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF][START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF][START_REF] Pommaret | Partial Differential Control Theory[END_REF][START_REF] Spencer | Overdetermined Systems of Partial Differential Equations[END_REF]. DEFINITION 1.2: Considering the short exact sequence 0 → R q → J q (E) Φ -→ F 0 → 0 where Φ : j q (E) → J q (E)/R q is the canonical projection, we may thus introduce the linear operator D = Φ • j q : E → F 0 . However, as F 0 is only defined up to an isomorphism, things may not be so simple when q = 1 and there is no zero order PD equations. We have the commutative and exact diagram:

0 0 0 ↓ ↓ ↓ 0 → g 1 → T * ⊗ E σ(Φ) -→ F 0 → 0 ↓ ↓ 0 → R 1 → J 1 (E) Φ -→ F 0 → 0 ↓ ↓ ↓ 0 → E = E → 0 ↓ ↓ 0 0
where σ(Φ) is the induced symbol epimorphism.

EXAMPLE 1.3:

The infinitesimal isometries of the non-degenerate metric ω ∈ S 2 T * with det(ω) = 0 are defined by the kernel Θ of the linear first order Killing operator T → S 2 T * : ξ → Dξ = L(ξ)ω = Ω, which involves the Lie derivative L and provides twice the so-called infinitesimal deformation tensor of continuum mechanics when ω is the Euclidean metric. We may consider the linear first order system of general infinitesimal Lie equations in Medolaghi form, also called system of Killing equations [START_REF] Pommaret | Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach[END_REF][START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF][START_REF] Vessiot | Sur la Théorie des Groupes Infinis[END_REF]:

Ω ij ≡ (L(ξ)ω) ij ≡ ω rj (x)∂ i ξ r + ω ir (x)∂ j ξ r + ξ r ∂ r ω ij (x) = 0
which is in fact a family of systems only depending on the geometric object ω and its derivatives. Introducing the Christoffel symbols γ, we may differentiate once and add the operator L(ξ)γ = Γ ∈ S 2 T * ⊗ T with the well known Levi-Civita isomorphism j 1 (ω) = (ω, ∂ x ω) (ω, γ) in order to obtain the linear second order system of general infinitesimal Lie equations in Medolaghi form:

Γ k ij ≡ (L(ξ)γ) k ij ≡ ∂ ij ξ k + γ k rj (x)∂ i ξ r + γ k ir (x)∂ j ξ r -γ r ij (x)∂ r ξ k + ξ r ∂ r γ k ij (x) = 0
This system is formally integrable if and only if ω has a constant Riemannian curvaure [START_REF] Eisenhart | Riemannian Geometry[END_REF][START_REF] Pommaret | Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach[END_REF][START_REF] Pommaret | Differential Galois Theory[END_REF][START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF][START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF]. In the diagram, E = T, F 0 = S 2 T * and σ(Φ) : T * ⊗ T → S 2 T * : ξ k i → ω rj (x)ξ r i + ω ir (x)ξ r j . Similarly, introducing the Jacobian determinant ∆(x) = det(∂ i f k (x)) and the metric density

ωij = | det(ω) | -1 n ω ij ⇒ det(ω) = ±1
as a new geometric object, rather than by eliminating a conformal factor as usual, the infinitesimal conformal isometries are defined by the kernel Θ of the conformal Killing operator ξ → Dξ = L(ξ)ω = Ω. We may consider the first order system of general infinitesimal Lie equations in Medolaghi form, also called system of conformal Killing equations [START_REF] Pommaret | The Mathematical Foundations of General Relativity Revisited[END_REF][START_REF] Pommaret | The Mathematical Foundations of Gauge Theory Revisited[END_REF]:

Ωij ≡ ωrj (x)∂ i ξ r + ωir (x)∂ j ξ r - 2 n ωij (x)∂ r ξ r + ξ r ∂ r ωij (x) = 0
With first prolongation obtained by eliminating the arbitrary 1-form (A i (x)dx i ) ∈ T * in:

(L(ξ)γ) k ij = δ k i A j + δ k j A i -ω ij ω kr A r
We may introduce the trace tr(Ω) = ω ij Ω ij with standard notations and obtain therefore tr(

Ω) = 0 because Ωij = | det(ω) | -1 n (Ω ij -1
n ω ij tr(Ω)) by linearization. This system is formally integrable if and only if the corresponding Weyl tensor vanishes [START_REF] Pommaret | Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach[END_REF][START_REF] Pommaret | Differential Galois Theory[END_REF][START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF].

In the diagram E = T, F0 = { Ω ∈ S 2 T * | tr( Ω) = 0} and σ( Φ) : T * ⊗ T → F0 : ξ k i → ω rj (x)ξ r i + ω ir (x)ξ r j -2 n ω ij ξ r r . The inclusions R 1 ⊂ R1 ⇒ g 1 ⊂ ĝ1 induces an epimorphism F 0 → F0 described by Ω ij → Ωij = Ω ij -1
n ω ij tr(Ω). Contrary to the Abstract, this is the only combination having a purely mathematical meaning related to group theory but never invertible. It is only in the next Section that we shall understand the origin of this confusing fact.

Prolonging twice the the first diagram of this paper while using only the symbol top rows, we get the following commutative diagram where all the sequences are exact but the left column:

0 0 0 ↓ ↓ ↓ 0 → g 3 -→ S 3 T * ⊗ E -→ S 2 T * ⊗ F 0 -→ F 1 → 0 ↓ δ ↓ δ ↓ δ 0 → T * ⊗ g 2 -→ T * ⊗ S 2 T * ⊗ E -→ T * ⊗ T * ⊗ F 0 -→ 0 ↓ δ ↓ δ ↓ δ 0 → ∧ 2 T * ⊗ g 1 -→ ∧ 2 T * ⊗ T * ⊗ E -→ ∧ 2 T * ⊗ F 0 -→ 0 ↓ δ ↓ δ ↓ 0 → ∧ 3 T * ⊗ E = ∧ 3 T * ⊗ E -→ 0 ↓ ↓ 0 0
In the situations considered, we have

E = T , g 1 ⊂ T * ⊗ T ⇒ g 2 = 0 ⇒ g 3 = 0 ⇒ and ĝ1 ⊂ T * ⊗ T ⇒ ĝ2 T * ⇒ ĝ3 = 0, a result leading to F 1 H 2 1 (g 1 ) and F1 H 2 1 (ĝ 1 ).
We have explained in books [START_REF] Pommaret | Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach[END_REF][START_REF] Pommaret | Differential Galois Theory[END_REF][START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF][START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF][START_REF] Pommaret | Partial Differential Control Theory[END_REF][START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF] or papers [START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF][START_REF] Pommaret | The Mathematical Foundations of General Relativity Revisited[END_REF][START_REF] Pommaret | The Mathematical Foundations of Gauge Theory Revisited[END_REF][START_REF] Pommaret | From Thermodynamics to Gauge Theory: the Virial Theorem Revisited[END_REF][START_REF] Pommaret | Relative parametrization of Linear Multidimensional Systems[END_REF][START_REF] Pommaret | Einstein and Lanczos Potentials revisited[END_REF][START_REF] Pommaret | Deformation Theory of Algebraic and Geometric Structures[END_REF][START_REF] Pommaret | Algebraic Analysis and Mathematical Physics[END_REF][START_REF] Pommaret | Differential Algebra and Mathematical Physics[END_REF] how to construct a differential sequence:

0 → Θ → T D -→ F 0 D1 -→ F 1 D2 -→ F 2 → ...
where each operator generates the CC of the previous one, D is first order, D 1 is second order and is the linearization (R k l,ij ) of the Riemann tensor over a given flat metric like the Minkowski metric while D 2 is again first order and is the linearization of the Bianchi identities with:

dim(F 1 ) = dim(S 2 T * ⊗ F 0 ) -dim(S 3 T * ⊗ T ) = dim(∧ 2 T * ⊗ g 1 ) -dim(∧ 3 T * ⊗ T ) = n 2 (n 2 -1)/12
while D 2 is again first order and is the linearization of the Bianchi identities with:

dim(F 2 ) = dim(S 4 T * ⊗ T ) -dim(S 3 T * ⊗ F 0 ) + (dim(T * ⊗ F 1 ) = dim(∧ 3 T * ⊗ g 1 ) -dim(∧ 4 T * ⊗ T ) = n 2 (n 2 -1)(n -2)/24
The conformal situation is drastically different but not acknowledged today, because ĝ3 = 0, ∀n ≥ 3 and we have to study separately the cases n = 3, n = 4, n ≥ 5 even though D is still first order, because D1 is third order when n = 3 but still second order and is the linearization Σ k l,ij of the Weyl tensor when n ≥ 4 with:

dim( F1 ) = dim(S 2 T * ⊗ F0 ) -dim(S 3 T * ⊗ T ) = dim(∧ 2 T * ⊗ ĝ1 ) -dim(∧ 3 T * ⊗ T ) -dim(∧ 2 T * ⊗ ĝ2 ) = dim(F 1 ) -dim(S 2 T * ) = n(n + 1)(n + 2)(n -3)/12
while D2 is first order when n = 3, second order when n = 4 but again first order when n ≥ 5 [START_REF] Pommaret | Einstein and Lanczos Potentials revisited[END_REF][START_REF] Pommaret | Deformation Theory of Algebraic and Geometric Structures[END_REF][START_REF] Pommaret | Algebraic Analysis and Mathematical Physics[END_REF][START_REF] Pommaret | Differential Algebra and Mathematical Physics[END_REF]. For n ≥ 4, we have the commutative and exact diagram:

0 0 ↓ ↓ 0 → S 2 T * = S 2 T * → 0 ↓ ↓ ↓↑ 0 → S 3 T * ⊗ T → S 2 T * ⊗ F 0 → F 1 → 0 ↓ ↓↑ 0 → S 3 T * ⊗ T → S 2 T * ⊗ F0 → F1 → 0 ↓ ↓ ↓ 0 0 0
providing an epimorphism F 1 → F1 with kernel S 2 T * , induced by the epimorphism F 0 → F0 and the relation dim(F 1 ) -dim( F1 ) = n(n + 1)/2. Using again capital letters for the linearized objects, the central and right columns split with the usual contraction map

F 1 → S 2 T * : R k l,ij → R r i,rj = R ij = R ji and the tensorial lift F1 → F 1 : Σ k l,ij → R k l,ij because Σ r l,rj = 0.
However, describing such an elementary diagram while chasing in local coordinates needs a lot of work because no classical technique can be used. With more details, the trace map Ω → tr(Ω):

A → Ω ij = Aω ij → 1 n tr(Ω) = A
allows to split the central column as it can be extended by setting:

A ij → Ω rs,ij = A ij ω rs → 1 n ω rs Ω rs,ij = A ij
As it is known that the right column splits [START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF][START_REF] Pommaret | Einstein and Lanczos Potentials revisited[END_REF][START_REF] Pommaret | Deformation Theory of Algebraic and Geometric Structures[END_REF][START_REF] Pommaret | Algebraic Analysis and Mathematical Physics[END_REF][START_REF] Pommaret | Differential Algebra and Mathematical Physics[END_REF], the top isomorphism of the diagram may be described by the jet formulas:

nR ij = (n -2)A ij + ω ij ω rs A rs ⇒ tr(R) = 2(n -1)ω rs A rs
and the corresponding map which is thus injective is also surjective and we find back exactly the splitting formulas for the fundamental diagram II of [START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF][START_REF] Pommaret | Algebraic Analysis and Mathematical Physics[END_REF][START_REF] Pommaret | Differential Algebra and Mathematical Physics[END_REF] with τ ij in place of A ij but the identification is not evident because symmetric tensors are replaced by skewsymmetric tensors like in the preceding formulas allowing to compute dimensions. However, using the diagram of Definition 1.2, we obtain ker(F 0 → F0 ) ĝ1 /g 1 ∧ 0 T * (1 dilatation). Using the short exact sequence 0 → g 2 → S 2 T * ⊗ T → T * ⊗ F 0 → 0 and a similar sequence for the conformal group, we get ker(T * ⊗ F 0 → T * ⊗ F0 ) ĝ2 /g 2 T * ⊗ ĝ2 T * ⊗ T * (n elations). We may collect these results in the split short exact sequence:

0 → S 2 T * δ -→ T * ⊗ T * δ -→ ∧ 2 T * → 0 with (A ij = A ji ) → (A i,j = A j,i ) → A i,j -A j,i = F ij )
, a result showing that we have the direct sum decomposition:

T * ⊗ ĝ2 T * ⊗ T * S 2 T * ⊕ ∧ 2 T * (A ij ) ⊕ (F ij ) (R ij ) ⊕ (F ij )
where (R ij ) is the Ricci tensor and (F ij ) is the electromagnetic field [START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF][START_REF] Pommaret | Partial Differential Control Theory[END_REF][START_REF] Pommaret | Deformation Theory of Algebraic and Geometric Structures[END_REF][START_REF] Pommaret | Algebraic Analysis and Mathematical Physics[END_REF][START_REF] Pommaret | Differential Algebra and Mathematical Physics[END_REF].

Another equivalent approach may be obtained through the following diagram where the rows are exact but only the right column is exact:

0 ↓ 0 S 2 T * ↓ ↓ δ 0 → T * ⊗ ĝ2 = T * ⊗ T * → 0 ↓ ↓ δ ↓ δ 0 → ∧ 2 T * ⊗ g 1 → ∧ 2 T * ⊗ ĝ1 → ∧ 2 T * → 0 ↓ δ ↓ δ ↓ 0 → ∧ 3 T * ⊗ T = ∧ 3 T * ⊗ T → 0 ↓ ↓ 0 0
A (difficult) chase left to the reader as an exercise provides the split short exact sequence:

0 → S 2 T * → F 1 → F1 → 0 ⇒ F 1 S 2 T * ⊕ F1
Now, going one step further on in the differential sequence, if the conformal analogue of the Bianchi identities were first order, we should obtain the long exact sequence after one prolongation:

0 → S 4 T * ⊗ T → S 3 T * ⊗ F0 → T * ⊗ F1 → F2 → 0
Applying the Spencer δ-map to each term as we did before, we should obtain a left column that may not be exact:

0 → ∧ 2 T * ⊗ ĝ2 δ -→ ∧ 3 T * ⊗ ĝ1 δ -→ ∧ 4 T * ⊗ T → 0
A first (simple) chase proves that the left δ is injective, a second (much more delicate) proves that the right δ is surjective while a third (snake type) chase proves that F2 is isomorphic to the central δ-cohomology H 3 1 (ĝ 1 ) of this sequence. We get:

dim( F2 ) = dim(S 4 T * ⊗ T ) -dim(S 3 T * ⊗ F0 ) + dim(T * ⊗ F1 ) = (dim(∧ 3 T * ⊗ ĝ1 ) -dim(∧4T * ⊗ T )) -dim(∧ 2 T * ⊗ ĝ2 ) = n(n 2 -1)(n + 2)(n -4)/24
and a contradiction for n = 4 only, whenever n ≥ 4. It is important to notice that indices have never been used.

Finally, keeping R for the linearized Ricci tensor, we recall a few formulas that can be found in most textbooks [START_REF] Foster | A Short Course in General relativity[END_REF][START_REF] Hughston | An Introduction to General Relativity[END_REF][START_REF] Pommaret | The Mathematical Foundations of General Relativity Revisited[END_REF][START_REF] Pommaret | Algebraic Analysis and Mathematical Physics[END_REF]. We have thus successively (care to the factor 2):

2Γ k ij = ω kr (d i Ω rj + d j Ω ir -d r Ω ij ) = 2Γ k ji 2R ij = ω rs (d ij Ω rs + d rs Ω ij -d ri Ω sj -d sj Ω ri ) = 2R ji tr(R) = ω ij R ij = ω ij d ij tr(Ω) -ω ru ω sv d rs Ω uv E ij = R ij - 1 2 ω ij tr(R) = E ji ⇒ tr(E) = ω ij E ij = - (n -2) 2 tr(R) 2E ij ≡ ω rs (d ij Ω rs + d rs Ω ij -d ri Ω sj -d sj Ω ri ) -ω ij (ω rs ω uv d rs Ω uv -ω ru ω sv d rs Ω uv ) = 0
and recall the classical computations described in the Abstract:

Ωij = Ω ij - 1 2 ω ij tr(Ω) ⇔ Ω ij = Ωij - 1 (n -2) ω ij tr( Ω)
Substituting, we obtain:

2E ij = 2 Ωij -ω rs d ri Ωsj -ω rs d sj Ωri + ω ij ω ru ω sv d rs Ωuv = 2 Ωij -d ri Ωr j -d rj Ωr i + ω ij d rs Ωrs
We notice at once that, apart from the first Dalembertian term, the other terms factor through d r Ωr i a result leading to add the differential constraints d r Ωr i = 0 in a coherent way with the identities:

2ω ti d t E ij = (ω ti ω rs d rst Ωij -ω ti d irt Ωr j ) -(ω ti d jrt Ωr i -ω ti ω ij d rst Ωrs ) = 0 -0 = 0
In the next Section, we shall revisit these computations in a quite different framework and explain the resulting confusion done between the div operator induced by the Bianchi operator and the Cauchy operator which is the formal adjoint of the Killing operator [START_REF] Pommaret | Algebraic Analysis and Mathematical Physics[END_REF][START_REF] Pommaret | Differential Algebra and Mathematical Physics[END_REF].

2) DIFFERENTIAL DUALITY

First of all, we describe the initial part of the differential sequence introduced in the preceding Section, calling the successive operators by using their historical names Killing, Riemann, Ricci, Bianchi, Beltrami. In particular, lowering the indices by means of the constant metric ω, we obtain:

Ω ij = d i ξ j + d j ξ i ⇒ tr(Ω) = 2d r ξ r ⇒ R k l,ij = 0 ⇔ R ij = 0 ⊕ Σ k l,ij
= 0 and we have exhibited the last splitting allowing to get a direct sum. As a byproduct, we have thus E ij = 0 and it is well known that the so-called divergence condition ω ti d t E ij = d t E t j = 0 is implied by the Bianchi identities (ijr) d r R k l,ij = 0 where the sum is over the cyclic permutation. Now we recall that the above differential sequence where Riemann generates the CC of Killing, Bianchi generates the CC of Riemann and so on, is locally isomorphic to the tensor product of the Poincaré sequence by a Lie algebra with n(n + 1)/2 infinitesimal generators ( [START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF], p 186,224)( [START_REF] Pommaret | Deformation Theory of Algebraic and Geometric Structures[END_REF], Section 5). It has therefore a very special property for the formal adjoint operators, namely that ad(Riemann) = Beltrami generates the CC of ad(Bianchi) while ad(Killing) = Cauchy generates the CC of ad(Riemann), a quite difficult result of homological algebra saying that the extension modules of a (differential) module M do not depend on the resolution of M [START_REF] Assem | Algèbres et Modules[END_REF][START_REF] Hu | Introduction to Homological Algebra[END_REF][START_REF] Kashiwara | Algebraic Study of Systems of Partial Differential Equations[END_REF][START_REF] Northcott | An Introduction to Homological Algebra[END_REF][START_REF] Pommaret | Partial Differential Control Theory[END_REF][START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF][START_REF] Pommaret | Parametrization of Cosserat Equations[END_REF][START_REF] Rotman | An Introduction to Homological Algebra[END_REF][START_REF] Schneiders | An Introduction to D-Modules[END_REF]. Of course, the same property is also valid for the corresponding conformal sequence with now (n + 1)(n + 2)/2 infinitesimal generators whenever n ≥ 3. The key contradicting results will be provided by the following Theorem and Corollary [START_REF] Pommaret | Partial Differential Control Theory[END_REF][START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF][START_REF] Pommaret | The Mathematical Foundations of General Relativity Revisited[END_REF][START_REF] Pommaret | Einstein and Lanczos Potentials revisited[END_REF][START_REF] Pommaret | Algebraic Analysis and Mathematical Physics[END_REF]: THEOREM 2.1: Contrary to the Ricci operator, the Einstein operator is self-adjoint and we have the following diagram when n = 4:

4 Killing -→ 10 Riemann -→ 20 Bianchi -→ 20 -→ 6 → 0 ↓ ↓ 10 Einstein -→ 10 div -→ 4 → 0 0 ← 4 Cauchy ←- 10 Beltrami ←- 20 ←- 20 ↑ 10 Einstein ←- 10 
Proof: The 6 terms (4 for R ij and 2 for tr(R)) are exchanged between themselves by ad.

Q.E.D.

COROLLARY 2.2:

The Einstein equations in vacuum cannot be parametrized and it is thus not possible to express any generic solution by means of the derivatives of a certain number of arbitrary functions or potentials like Maxwell equations. 

←-10

Einstein

←-10

Proof: According to crucial results of Algebraic Analysis, the test for knowing if a given operator D 1 can be parametrized by an operator D, that is if we can find a differential sequence:

ξ D -→ η D1 -→ ζ
where D 1 generates the CC of an operator D, has 5 steps if one uses the identity ad(ad(D)) = D:

D 1 ⇒ ad(D 1 ) ⇒ ad(D) ⇒ ad(ad(D)) = D ⇒ D 1
where ad(D) generates the CC of ad(D 1 ) and D 1 generates the CC of D, a parametrization being achieved if and only if D 1 = D 1 . We obtain therefore the adjoint differential sequence between convenient test functions used in order to construct the various adjoint operators:

ν ad(D) ←-µ ad(D1) ←-λ Q.E.D.
We are now ready to explain the results presented in the Introduction. Indeed, with arbitrary test functions λ, we have:

λ ij E ij = λ ij (R ij - 1 2 ω ij tr(R)) = (λ ij - 1 2 ω ij tr(λ))R ij = λij R ij
Accordingly, as we just saw that ad(Eintein) = Einstein is parametrizing ad(Killing) = Cauchy, then ad(Ricci) is thus also parametrizing Cauchy and we obtain through an integration by parts (care to the following dumb summations):

2 λij R ij = λij ω rs (d ij Ω rs + d rs Ω ij -d ri Ω sj -d sj Ω ri ) ≡ (2 λrs + ω rs d ij λij -ω sj d ij λri -ω ri d ij λsj )Ω rs mod(div) = σ rs Ω rs
Surprisingly, all the terms after the Dalembertian have already been obtained in the preceding Section and factorize through the divergence operator d i λri . Therefore, suppressing the bar for simplicity, we may add the differential constraints d i λ ri = 0 in a coherent way with the identities:

d r σ rs = ω ij d rij λ rs + ω rs d rij λ ij -ω sj d rij λ ri -ω ri d rij λ sj = 0
However, it must be noticed that the potential test functions are arbitrary by definition and can be restricted by such differential constraints as will be shown in the last example of this paper. With more details, we have the identity: Ricci • Killing ≡ 0 ⇔ ad(Killing) • ad(Ricci) ≡ 0 Now, we recall that if D has coefficients in a differential field K and defines a differential module over the ring D = K[d] of differential operators, we may define the differential transcendence degree dif f trd(D) = m -rk D (M ). We obtain thus [START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF][START_REF] Pommaret | Partial Differential Control Theory[END_REF][START_REF] Pommaret | Algebraic Analysis and Mathematical Physics[END_REF]:

dif f trd(Killing) = 0 ⇒ dif f trd(ad(Ricci)) = dif f trd(Ricci) = n(n + 1)/2 -n = n(n -1)/2
Taking into account the preceding constraints, we obtain a minimum relative parametrization that cannot be reduced (See [START_REF] Pommaret | Relative parametrization of Linear Multidimensional Systems[END_REF][START_REF] Pommaret | Einstein and Lanczos Potentials revisited[END_REF][START_REF] Pommaret | Deformation Theory of Algebraic and Geometric Structures[END_REF][START_REF] Pommaret | Localization and Parametrization of Linear Multidimensional Control Systems[END_REF][START_REF] Quadrat | An Introduction to Constructive Algebraic Analysis and its Applications, Les cours du CIRM[END_REF] for more details and the use of Computer Algebra). Finally, it is important to notice that the div operator induced by the Bianchi operator in the upper part of the preceding diagram generates the CC of the Einstein operator. It follows that the Cauchy operator does generate the CC of the ad(Einstein)=Einstein operator in the lower part of the same diagram, though there is no relation at all between these two operators. It is therefore possible to avoid totally the Einstein operator which has no mathematical meaning as no specific diagram chasing can produce it and to keep only the Ricci operator which has indeed a mathematical meaning only depending on the second order jets (elations) of the conformal group described by the symbol ĝ2 through a delicate diagram chasing as we saw previously [START_REF] Pommaret | Differential Galois Theory[END_REF][START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF][START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF][START_REF] Pommaret | The Mathematical Foundations of General Relativity Revisited[END_REF][START_REF] Pommaret | Algebraic Analysis and Mathematical Physics[END_REF]. EXAMPLE 2.3: We finally provide an elementary but non-trivial example of the methods used and ask the reader to compare the various situations. If x = (x 1 , x 2 ) are the independent variables and η = (η 1 , η 2 ) are the unknowns, let us consider the first order operator D 1 with coefficients in the differential field K = Q(x 1 , x 2 ) and the same formal notations as before:

d 1 η 1 + d 2 η 2 -x 2 η 1 = ζ
Multiplying by a test function λ and integrating by parts, we get ad(D 1 ) in the form:

-d 1 λ -x 2 λ = µ 1 -d 2 λ = µ 2 ⇒ λ = d 1 µ 2 -d 2 µ 1 + x 2 µ 2
The generating CC ad(D) are:

-d 11 µ 2 + d 12 µ 1 -2x 2 d 1 µ 2 + x 2 d 2 µ 1 -(x 2 ) 2 µ 2 -µ 1 = ν 1 -d 12 µ 2 + d 22 µ 1 -x 2 d 2 µ 2 -2µ 2 = ν 2 ⇒ d 1 ν 2 -d 2 ν 1 + x 2 ν 2 = θ
Multiplying by the test functions ξ = (ξ 1 , ξ 2 ), then adding and integrating by parts, we get the second order parametrization:

d 12 ξ 1 + d 22 ξ 2 -x 2 d 2 ξ 1 -2ξ 1 = η 1 -d 11 ξ 1 -d 12 ξ 2 + 2x 2 d 1 ξ 1 + x 2 d 2 ξ 2 -(x 2 ) 2 ξ 1 -ξ 2 = η 2
and the two differential sequences:

0 → φ D-1 -→ ξ D -→ η D1 -→ ζ → 0 0 ← θ ad(D-1) ←- ν ad(D) ←-µ ad(D1 ←-λ ← 0
showing that the differential module over

D = K[d 1 , d 2 ] defined by D 1 is projective (Exercise).
Choosing (ξ 1 = ξ, ξ 2 = 0) or (ξ 1 = 0, ξ 2 = ξ ), we obtain two minimal parametrizations but we can also suppose that we add the differential constraint d 1 ξ 1 + d 2 ξ 2 = 0 in order to obtain the following first order relative parametrization, a result not evident at first sight [START_REF] Pommaret | Relative parametrization of Linear Multidimensional Systems[END_REF]:

-x 2 d 2 ξ 1 -2ξ 1 = η 1 x 2 d 1 ξ 1 -(x 2 ) 2 ξ 1 -ξ 2 = η 2
We may also set ξ 1 = d 2 φ, ξ 2 = -d 1 φ and obtain the new second order parametrization:

-x 2 d 22 φ -2d 2 φ = η 1 +x 2 d 12 φ -(x 2 ) 2 d 2 φ + d 1 φ = η 2
We finally notice that the choice ξ = D -1 φ, namely ξ 1 = d 2 φ, ξ 2 = -d 1 φ + x 2 φ is not allowed as it only provides the trivial solution η = 0.

3) CONCLUSION

As we have seen, only homological algebra allows to prove that a differential sequence D, D 1 , D 2 starting with a Lie operator determined by the action of a lie group on a manifold of dimension n and where each operator generates the CC of the previous one is such that, in the adjoint sequence ad(D 2 ), ad(D 1 ), ad(D), each operator generates the CC of the preceding one. This is in particular the case for the first order Killing operator D, followed by the second order Riemann operator D 1 and the first order Bianchi operator D 2 . The corresponding part of the adjoint sequence is therefore successively made by ad(Bianchi ), ad(Riemann) = Beltrami and ad(Killing) = Cauchy. Accordingly, the classical div operator, induced by the Bianchi operator and describing the CC of the Einstein operator, has nothing to do with the Cauchy operator. Such a confusion has been produced by the fact that ad(Einstein) = Einstein is thus parametrizing the Cauchy operator but it is not evident that the transformation of the Einstein operator described in the Abstract and in the Introduction, just amounts to parametrize the Cauchy operator / stress equations by means of the operator ad(Ricci). This result is showing that the Einstein operator is no longer needed and must therefore be taken into account in any future work on gravitational waves.