
HAL Id: hal-01576061
https://hal.science/hal-01576061

Submitted on 22 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the approximation by single hidden layer
feedforward neural networks with fixed weights

Namig J Guliyev, Vugar E Ismailov

To cite this version:
Namig J Guliyev, Vugar E Ismailov. On the approximation by single hidden layer feedforward neural
networks with fixed weights. Neural Networks, 2018, 98, pp.296-304. �10.1016/j.neunet.2017.12.007�.
�hal-01576061�

https://hal.science/hal-01576061
https://hal.archives-ouvertes.fr

ON THE APPROXIMATION BY SINGLE HIDDEN LAYER

FEEDFORWARD NEURAL NETWORKS WITH FIXED

WEIGHTS

NAMIG J. GULIYEV AND VUGAR E. ISMAILOV

Abstract. Feedforward neural networks have wide applicability in various

disciplines of science due to their universal approximation property. Some au-
thors have shown that single hidden layer feedforward neural networks (SLFNs)

with fixed weights still possess the universal approximation property provided
that approximated functions are univariate. But this phenomenon does not

lay any restrictions on the number of neurons in the hidden layer. The more

this number, the more the probability of the considered network to give pre-
cise results. In this note, we constructively prove that SLFNs with the fixed

weight 1 and two neurons in the hidden layer can approximate any continuous

function on a compact subset of the real line. The applicability of this result
is demonstrated in various numerical examples. Finally, we show that SLFNs

with fixed weights cannot approximate all continuous multivariate functions.

Contents

1. Introduction 1
2. Construction of a sigmoidal function 3
3. Practical computation and properties of the constructed sigmoidal

function 7
4. Main results 7
5. Numerical results 11
6. Analysis of the multivariate case 12
Acknowledgements 15
References 15

1. Introduction

Approximation capabilities of single hidden layer feedforward neural networks
(SLFNs) have been investigated in many works over the past 30 years. Typical
results show that SLFNs possess the universal approximation property; that is,
they can approximate any continuous function on a compact set with arbitrary
precision.

2010 Mathematics Subject Classification. 41A30, 41A63, 65D15, 68T05, 92B20.
Key words and phrases. feedforward neural network, approximation, hidden layer, sigmoidal

function, activation function, weight.

1

ar
X

iv
:1

70
8.

06
21

9v
1

 [
cs

.N
E

]
 2

1
A

ug
 2

01
7

2 NAMIG J. GULIYEV AND VUGAR E. ISMAILOV

An SLFN with r units in the hidden layer and input x = (x1, . . . , xd) evaluates
a function of the form

r∑
i=1

ciσ(wi · x− θi), (1.1)

where the weights wi are vectors in Rd, the thresholds θi and the coefficients ci
are real numbers, and the activation function σ is a univariate function. Properties
of this neural network model have been studied quite well. By choosing various
activation functions, many authors proved that SLFNs with the chosen activation
function possess the universal approximation property (see, e.g., [3, 4, 6, 7, 8, 10, 11,
14, 29]). That is, for any compact set Q ⊂ Rd, the class of functions (1.1) is dense
in C(Q), the space of continuous functions on Q. The most general and complete
result of this type was obtained by Leshno, Lin, Pinkus and Schocken [23]. They
proved that a continuous activation function σ has the universal approximation
property (or density property) if and only if it is not a polynomial. This result has
shown the power of SLFNs within all possible choices of the activation function
σ, provided that σ is continuous. For a detailed review of these and many other
results, see [30].

In many applications, it is convenient to take the activation function σ as a
sigmoidal function which is defined as

lim
t→−∞

σ(t) = 0 and lim
t→+∞

σ(t) = 1.

The literature on neural networks abounds with the use of such functions and their
superpositions (see, e.g., [2, 4, 6, 8, 10, 11, 13, 15, 20, 22, 29]). The possibility
of approximating a continuous function on a compact subset of the real line or
d-dimensional space by SLFNs with a sigmoidal activation function has been well
studied in a number of papers.

In recent years, the theory of neural networks has been developed further in this
direction. For example, from the point of view of practical applications, neural
networks with a restricted set of weights have gained a special interest (see, e.g.,
[9, 16, 17, 19, 21, 24]). It was proved that SLFNs with some restricted set of weights
still possess the universal approximation property. For example, Stinchcombe and
White [34] showed that SLFNs with a polygonal, polynomial spline or analytic ac-
tivation function and a bounded set of weights have the universal approximation
property. Ito [20] investigated this property of networks using monotone sigmoidal
functions (tending to 0 at minus infinity and 1 at infinity), with only weights lo-
cated on the unit sphere. In [16, 17, 19], one of the coauthors considered SLFNs
with weights varying on a restricted set of directions and gave several necessary
and sufficient conditions for good approximation by such networks. For a set W of
weights consisting of two directions, he showed that there is a geometrically explicit
solution to the problem. Hahm and Hong [13] went further in this direction, and
showed that SLFNs with fixed weights can approximate arbitrarily well any univari-
ate function. Since fixed weights reduce the computational expense and training
time, this result is of particular interest. In a mathematical formulation, the result
reads as follows.

Theorem 1.1 (Hahm and Hong [13]). Assume f is a continuous function on a
finite segment [a, b] of R. Assume σ is a bounded measurable sigmoidal function
on R. Then for any sufficiently small ε > 0 there exist constants ci, θi ∈ R and

ON THE APPROXIMATION BY SINGLE HIDDEN LAYER NETWORKS 3

positive integers K and n such that∣∣∣∣∣f(x)−
n∑
i=1

ciσ(Kx− θi)

∣∣∣∣∣ < ε

for all x ∈ [a, b].

Note that in this theorem both K and n depend on ε. The smaller the ε, the
more neurons in the hidden layer one should take to approximate with the required
precision. This phenomenon is pointed out as necessary in many papers. For
various activation functions σ, there are plenty of practical examples, diagrams,
tables, etc. in the literature, showing how the number of neurons increases as the
error of approximation gets smaller.

It is well known that one of the challenges of neural networks is the process of de-
ciding optimal number of hidden neurons. The other challenge is understanding how
to reduce the computational expense and training time. As usual, networks with
fixed weights best fit this purpose. In this respect, Cao and Xie [2] strengthened
the above result by specifying the number of hidden neurons to realize approxi-
mation to any continuous function. By implementing modulus of continuity, they
established upper bound estimations for the approximation error. It was shown in
[2] that for the class of Lipschitz functions LipM (α) with a Lipschitz constant M
and degree α, the approximation bound is M(1 + ‖σ‖)(b− a)n−α, where ‖σ‖ is the
sup of σ(x) on [a, b].

Approximation capabilities of SLFNs with a fixed weight were also analyzed in
Lin, Guo, Cao and Xu [26]. Taking the activation function σ as a continuous, even
and 2π-periodic function, the authors of [26] showed that neural networks of the
form

r∑
i=1

ciσ(x− xi) (1.2)

can approximate any continuous function on [−π, π] with an arbitrary precision ε.
Note that all the weights are fixed equal to 1, and consequently do not depend on ε.
To prove this, they first gave an integral representation for trigonometric polyno-
mials, and constructed explicitly a network formed as (1.2) that approximates this
integral representation. Finally, the obtained result for trigonometric polynomials
was used to prove a Jackson-type upper bound for the approximation error.

In this paper, we construct a special sigmoidal activation function which meets
both the above mentioned challenges in the univariate setting. In mathematical
terminology, we construct a sigmoidal function σ for which K and n in the above
theorem do not depend on the error ε. Moreover, we can take K = 1 and n = 2.
That is, only parameters ci and θi depend on ε. Can we find these numbers? For
a large class of functions f , especially for analytic functions, our answer to this
question is positive. We give an algorithm and a computer program for computing
these numbers in practice. Our results are illustrated by several examples. Fi-
nally, we show that SLFNs with fixed weights are not capable of approximating all
multivariate functions with arbitrary precision.

2. Construction of a sigmoidal function

In this section, we construct algorithmically a sigmoidal function σ which we
use in our main result in the following section. Besides sigmoidality, we take care

4 NAMIG J. GULIYEV AND VUGAR E. ISMAILOV

about smoothness and monotonicity of our σ in the weak sense. Here by “weak
monotonicity” we understand behavior of a function whose difference in absolute
value from a monotonic function is a sufficiently small number. In this regard, we
say that a real function f defined on a set X ⊆ R is called λ-increasing (respec-
tively, λ-decreasing) if there exists an increasing (respectively, decreasing) function
u : X → R such that |f(x)− u(x)| ≤ λ for all x ∈ X. Obviously, 0-monotonicity
coincides with the usual concept of monotonicity, and a λ1-increasing function is
λ2-increasing if λ1 ≤ λ2.

To start with the construction of σ, assume that we are given a closed interval
[a, b] and a sufficiently small real number λ. We construct σ algorithmically, based
on two numbers, namely λ and d := b − a. The following steps describe the
algorithm.

1. Introduce the function

h(x) := 1− min{1/2, λ}
1 + log(x− d+ 1)

.

Note that this function is strictly increasing on the real line and satisfies the fol-
lowing properties:

(1) 0 < h(x) < 1 for all x ∈ [d,+∞);
(2) 1− h(d) ≤ λ;
(3) h(x)→ 1, as x→ +∞.

We want to construct σ satisfying the inequalities

h(x) < σ(x) < 1 (2.1)

for x ∈ [d,+∞). Then our σ will tend to 1 as x tends to +∞ and obey the inequality

|σ(x)− h(x)| ≤ λ,

i.e., it will be a λ-increasing function.
2. Before proceeding to the construction of σ, we need to enumerate the monic

polynomials with rational coefficients. Let qn be the Calkin–Wilf sequence (see [1]).
Then we can enumerate all the rational numbers by setting

r0 := 0, r2n := qn, r2n−1 := −qn, n = 1, 2,

Note that each monic polynomial with rational coefficients can uniquely be written
as rk0 + rk1x+ . . .+ rkl−1

xl−1 + xl, and each positive rational number determines
a unique finite continued fraction

[m0;m1, . . . ,ml] := m0 +
1

m1 +
1

m2 +
1

. . . +
1

ml

with m0 ≥ 0, m1, . . . ,ml−1 ≥ 1 and ml ≥ 2. We now construct a bijection between
the set of all monic polynomials with rational coefficients and the set of all positive
rational numbers as follows. To the only zeroth-degree monic polynomial 1 we
associate the rational number 1, to each first-degree monic polynomial of the form
rk0 + x we associate the rational number k0 + 2, to each second-degree monic

ON THE APPROXIMATION BY SINGLE HIDDEN LAYER NETWORKS 5

polynomial of the form rk0 +rk1x+x2 we associate the rational number [k0; k1+2] =
k0 + 1/(k1 + 2), and to each monic polynomial

rk0 + rk1x+ . . .+ rkl−2
xl−2 + rkl−1

xl−1 + xl

of degree l ≥ 3 we associate the rational number [k0; k1 + 1, . . . , kl−2 + 1, kl−1 + 2].
In other words, we define u1(x) := 1,

un(x) := rqn−2 + x

if qn ∈ Z,
un(x) := rm0 + rm1−2x+ x2

if qn = [m0;m1], and

un(x) := rm0
+ rm1−1x+ . . .+ rml−2−1x

l−2 + rml−1−2x
l−1 + xl

if qn = [m0;m1, . . . ,ml−2,ml−1] with l ≥ 3. For example, the first few elements of
this sequence are

1, x2, x, x2 − x, x2 − 1, x3, x− 1, x2 + x,

3. We start with constructing σ on the intervals [(2n − 1)d, 2nd], n = 1, 2,
For each monic polynomial un(x) = α0 + α1x+ . . .+ αl−1x

l−1 + xl, set

B1 := α0 +
α1 − |α1|

2
+ . . .+

αl−1 − |αl−1|
2

and

B2 := α0 +
α1 + |α1|

2
+ . . .+

αl−1 + |αl−1|
2

+ 1.

Note that the numbers B1 and B2 depend on n. To avoid complication of symbols,
we do not indicate this in the notation.

Introduce the sequence

Mn := h((2n+ 1)d), n = 1, 2,

Clearly, this sequence is strictly increasing and converges to 1.
Now we define σ as the function

σ(x) := an + bnun

(x
d
− 2n+ 1

)
, x ∈ [(2n− 1)d, 2nd], (2.2)

where

a1 :=
1

2
, b1 :=

h(3d)

2
, (2.3)

and

an :=
(1 + 2Mn)B2 − (2 +Mn)B1

3(B2 −B1)
, bn :=

1−Mn

3(B2 −B1)
, n = 2, 3,

(2.4)
It is not difficult to notice that for n > 2 the numbers an, bn are the coefficients

of the linear function y = an + bnx mapping the closed interval [B1, B2] onto the
closed interval [(1 + 2Mn)/3, (2 + Mn)/3]. Besides, for n = 1, i.e. on the interval
[d, 2d],

σ(x) =
1 +M1

2
.

Therefore, we obtain that

h(x) < Mn <
1 + 2Mn

3
≤ σ(x) ≤ 2 +Mn

3
< 1, (2.5)

for all x ∈ [(2n− 1)d, 2nd], n = 1, 2,

6 NAMIG J. GULIYEV AND VUGAR E. ISMAILOV

4. In this step, we construct σ on the intervals [2nd, (2n+ 1)d], n = 1, 2, For
this purpose we use the smooth transition function

βa,b(x) :=
β̂(b− x)

β̂(b− x) + β̂(x− a)
,

where

β̂(x) :=

{
e−1/x, x > 0,

0, x ≤ 0.

Obviously, βa,b(x) = 1 for x ≤ a, βa,b(x) = 0 for x ≥ b, and 0 < βa,b(x) < 1 for
a < x < b.

Set

Kn :=
σ(2nd) + σ((2n+ 1)d)

2
, n = 1, 2,

Note that the numbers σ(2nd) and σ((2n + 1)d) have already been defined in the
previous step. Since both the numbers σ(2nd) and σ((2n+ 1)d) lie in the interval
(Mn, 1), it follows that Kn ∈ (Mn, 1).

First we extend σ smoothly to the interval [2nd, 2nd+d/2]. Take ε := (1−Mn)/6
and choose δ ≤ d/2 such that∣∣∣an + bnun

(x
d
− 2n+ 1

)
− (an + bnun(1))

∣∣∣ ≤ ε, x ∈ [2nd, 2nd+ δ]. (2.6)

One can choose this δ as

δ := min

{
εd

bnC
,
d

2

}
,

where C > 0 is a number satisfying |u′n(x)| ≤ C for x ∈ (1, 1.5). For example,
for n = 1, δ can be chosen as d/2. Now define σ on the first half of the interval
[2nd, (2n+ 1)d] as the function

σ(x) := Kn − β2nd,2nd+δ(x)

×
(
Kn − an − bnun

(x
d
− 2n+ 1

))
, x ∈

[
2nd, 2nd+

d

2

]
.

(2.7)

Let us prove that σ(x) satisfies the condition (2.1). Indeed, if 2nd + δ ≤ x ≤
2nd + d/2, then there is nothing to prove, since σ(x) = Kn ∈ (Mn, 1). If 2nd ≤
x < 2nd + δ, then 0 < β2nd,2nd+δ(x) ≤ 1 and hence from (2.7) it follows that
for each x ∈ [2nd, 2nd + δ), σ(x) is between the numbers Kn and An(x) := an +
bnun

(
x
d − 2n+ 1

)
. On the other hand, from (2.6) we obtain that

an + bnun(1)− ε ≤ An(x) ≤ an + bnun(1) + ε,

which together with (2.2) and (2.5) yields An(x) ∈
[
1+2Mn

3 − ε, 2+Mn

3 + ε
]

for x ∈
[2nd, 2nd+ δ). Since ε = (1−Mn)/6, the inclusion An(x) ∈ (Mn, 1) is valid. Now
since both Kn and An(x) belong to (Mn, 1), we finally conclude that

h(x) < Mn < σ(x) < 1, for x ∈
[
2nd, 2nd+

d

2

]
.

We define σ on the second half of the interval in a similar way:

σ(x) := Kn − (1− β(2n+1)d−δ,(2n+1)d(x))

×
(
Kn − an+1 − bn+1un+1

(x
d
− 2n− 1

))
, x ∈

[
2nd+

d

2
, (2n+ 1)d

]
,

ON THE APPROXIMATION BY SINGLE HIDDEN LAYER NETWORKS 7

where

δ := min

{
εd

bn+1C
,
d

2

}
, ε :=

1−Mn+1

6
, C ≥ sup

[−0.5,0]
|u′n+1(x)|.

One can easily verify, as above, that the constructed σ(x) satisfies the condi-
tion (2.1) on [2nd+ d/2, 2nd+ d] and

σ

(
2nd+

d

2

)
= Kn, σ(i)

(
2nd+

d

2

)
= 0, i = 1, 2,

Steps 3 and 4 construct σ on the interval [d,+∞).
5. On the remaining interval (−∞, d), we define σ as

σ(x) :=
(

1− β̂(d− x)
) 1 +M1

2
, x ∈ (−∞, d).

It is not difficult to verify that σ is a strictly increasing, smooth function on (−∞, d).
Note also that σ(x) → σ(d) = (1 + M1)/2, as x tends to d from the left and
σ(i)(d) = 0 for i = 1, 2, This final step completes the construction of σ on the
whole real line.

3. Practical computation and properties of the constructed
sigmoidal function

It should be noted that the above algorithm allows one to compute the con-
structed σ at any point of the real axis instantly. The code of this algorithm is avail-
able at http://sites.google.com/site/njguliyev/papers/monic-sigmoidal.
As a practical example, we give here the graph of σ (see Figure 3.1) and a numeri-
cal table (see Table 3.1) containing several computed values of this function on the
interval [0, 20]. Figure 3.2 shows how the graph of λ-increasing function σ changes
on the interval [0, 100] as the parameter λ decreases.

The above σ obeys the following properties:

(1) σ is sigmoidal;
(2) σ ∈ C∞(R);
(3) σ is strictly increasing on (−∞, d) and λ-strictly increasing on [d,+∞);
(4) σ is easily computable in practice.

All these properties are easily seen from the above exposition. But the essen-
tial property of our sigmoidal function is its ability to approximate an arbitrary
continuous function using only a fixed number of translations and scalings of σ.
More precisely, only two translations and scalings are sufficient. We formulate this
important property as a theorem in the next section.

4. Main results

The main results of the paper are formulated in the following two theorems.

Theorem 4.1. Assume that f is a continuous function on a finite segment [a, b] of
R and σ is the sigmoidal function constructed in Section 2. Then for any sufficiently
small ε > 0 there exist constants c1, c2, θ1 and θ2 such that

|f(x)− c1σ(x− θ1)− c2σ(x− θ2)| < ε

for all x ∈ [a, b].

http://sites.google.com/site/njguliyev/papers/monic-sigmoidal

8 NAMIG J. GULIYEV AND VUGAR E. ISMAILOV

Figure 3.1. The graph of σ on [0, 20] (d = 2, λ = 1/4)

Table 3.1. Some computed values of σ (d = 2, λ = 1/4)

t σ t σ t σ t σ t σ
0.0 0.37462 4.0 0.95210 8.0 0.97394 12.0 0.97662 16.0 0.96739
0.4 0.44248 4.4 0.95146 8.4 0.96359 12.4 0.97848 16.4 0.96309
0.8 0.53832 4.8 0.95003 8.8 0.96359 12.8 0.97233 16.8 0.96309
1.2 0.67932 5.2 0.95003 9.2 0.96314 13.2 0.97204 17.2 0.96307
1.6 0.87394 5.6 0.94924 9.6 0.95312 13.6 0.97061 17.6 0.96067
2.0 0.95210 6.0 0.94787 10.0 0.95325 14.0 0.96739 18.0 0.95879
2.4 0.95210 6.4 0.94891 10.4 0.95792 14.4 0.96565 18.4 0.95962
2.8 0.95210 6.8 0.95204 10.8 0.96260 14.8 0.96478 18.8 0.96209
3.2 0.95210 7.2 0.95725 11.2 0.96727 15.2 0.96478 19.2 0.96621
3.6 0.95210 7.6 0.96455 11.6 0.97195 15.6 0.96565 19.6 0.97198

Proof. Set d := b − a and divide the interval [d,+∞) into the segments [d, 2d],
[2d, 3d], It follows from (2.2) that

σ(dx+ (2n− 1)d) = an + bnun(x), x ∈ [0, 1] (4.1)

for n = 1, 2, Here an and bn are computed by (2.3) and (2.4) for n = 1 and
n > 1, respectively.

From (4.1) it follows that for each n = 1, 2, . . .,

un(x) =
1

bn
σ(dx+ (2n− 1)d)− an

bn
. (4.2)

Let now g be any continuous function on the unit interval [0, 1]. By the density
of polynomials with rational coefficients in the space of continuous functions over
any compact subset of R, for any ε > 0 there exists a polynomial p(x) of the above
form such that

|g(x)− p(x)| < ε

ON THE APPROXIMATION BY SINGLE HIDDEN LAYER NETWORKS 9

Figure 3.2. The graph of σ on [0, 100] (d = 2)

for all x ∈ [0, 1]. Denote by p0 the leading coefficient of p. If p0 6= 0 (i.e., p 6≡ 0)
then we define un as un(x) := p(x)/p0, otherwise we just set un(x) := 1. In both
cases

|g(x)− p0un(x)| < ε, x ∈ [0, 1].

This together with (4.2) means that

|g(x)− c1σ(dx− s1)− c0| < ε

for some c0, c1, s1 ∈ R and all x ∈ [0, 1]. Namely, c1 = p0/bn, s1 = d − 2nd
and c0 = p0an/bn. On the other hand, we can write c0 = c2σ(dx − s2), where

10 NAMIG J. GULIYEV AND VUGAR E. ISMAILOV

c2 := 2c0/(1 + h(3d)) and s2 := −d. Hence,

|g(x)− c1σ(dx− s1)− c2σ(dx− s2)| < ε. (4.3)

Note that (4.3) is valid for the unit interval [0, 1]. Using linear transformation
it is not difficult to go from [0, 1] to the interval [a, b]. Indeed, let f ∈ C[a, b],
σ be constructed as above, and ε be an arbitrarily small positive number. The
transformed function g(x) = f(a + (b − a)x) is well defined on [0, 1] and we can
apply the inequality (4.3). Now using the inverse transformation x = (t−a)/(b−a),
we can write

|f(t)− c1σ(t− θ1)− c2σ(t− θ2)| < ε

for all t ∈ [a, b], where θ1 = a+ s1 and θ2 = a+ s2. The last inequality completes
the proof. �

Since any compact subset of the real line is contained in a segment [a, b], the
following generalization of Theorem 4.1 holds.

Theorem 4.2. Let Q be a compact subset of the real line and d be its diameter.
Let λ be any positive number. Then one can algorithmically construct a computable
sigmoidal activation function σ : R → R, which is infinitely differentiable, strictly
increasing on (−∞, d), λ-strictly increasing on [d,+∞), and satisfies the following
property: For any f ∈ C(Q) and ε > 0 there exist numbers c1, c2, θ1 and θ2 such
that

|f(x)− c1σ(x− θ1)− c2σ(x− θ2)| < ε

for all x ∈ Q.

Remark 4.1. The idea of using monic polynomials (see Section 2 and the proof
above) is new in the numerical analysis of neural networks with limited number
of hidden neurons. In fact, if one is interested more in a theoretical than in a
practical result, then any countable dense subset of C[0, 1] suffices. Maiorov and
Pinkus [28] used such a subset to prove existence of a sigmoidal, monotonic and an-
alytic activation function, and consequently a neural network with a fixed number
of hidden neurons, which approximates arbitrarily well any continuous function.
Note that the result is of theoretical value and the authors of [28] do not suggest
constructing and using their sigmoidal function. In our previous work [12], we ex-
ploited a sequence of all polynomials with rational coefficients to construct a new
universal sigmoidal function. Note that in [12] the problem of fixing weights in
approximation by neural networks was not considered. Although the construction
was efficient in the sense of computation of that sigmoidal function, some difficulties
appeared while computing an approximating neural network parameters for some
relatively simple approximated functions (see Remark 2 in [12]). This was a reason
why we avoided giving practical numerical examples. The usage of monic polyno-
mials in this instance turned out to be advantageous in reducing “running time” of
the algorithm for computing the mentioned network parameters. This allows one
to approximate various functions with sufficiently small precision and obtain all
the required parameters (scaling coefficients and thresholds) in practice. We give
corresponding numerical results in the next section.

ON THE APPROXIMATION BY SINGLE HIDDEN LAYER NETWORKS 11

5. Numerical results

We prove in Theorem 4.1 that any continuous function on [a, b] can be approxi-
mated arbitrarily well by SLFNs with the fixed weight 1 and with only two neurons
in the hidden layer. An activation function σ for such a network is constructed in
Section 2. We have seen from the proof that our approach is totally constructive.
One can evaluate the value of σ at any point of the real axis and draw its graph
instantly using the programming interface at the URL shown at the beginning of
Section 3. In the current section, we demonstrate our result in various examples.
For different error bounds we find the parameters c1, c2, θ1 and θ2 in Theorem 4.1.
All computations were done in SageMath [33]. For computations, we use the fol-
lowing algorithm, which works well for analytic functions. Assume f is a function,
whose Taylor series around the point (a + b)/2 converges uniformly to f on [a, b],
and ε > 0.

(1) Consider the function g(t) := f(a+ (b−a)t), which is well-defined on [0, 1];
(2) Find k such that the k-th Taylor polynomial

Tk(x) :=

k∑
i=0

g(i)(1/2)

i!

(
x− 1

2

)i
satisfies the inequality |Tk(x)− g(x)| ≤ ε/2 for all x ∈ [0, 1];

(3) Find a polynomial p with rational coefficients such that

|p(x)− Tk(x)| ≤ ε

2
, x ∈ [0, 1],

and denote by p0 the leading coefficient of this polynomial;
(4) If p0 6= 0, then find n such that un(x) = p(x)/p0. Otherwise, set n := 1;
(5) For n = 1 and n > 1 evaluate an and bn by (2.3) and (2.4), respectively;
(6) Calculate the parameters of the network as

c1 :=
p0
bn
, c2 :=

2p0an
bn(1 + h(3d))

, θ1 := b− 2n(b− a), θ2 := 2a− b;

(7) Construct the network N = c1σ(x − θ1) + c2σ(x − θ2). Then N gives an
ε-approximation to f.

In the sequel, we give four practical examples. To be able to make comparisons
between these examples, all the considered functions are given on the same interval
[−1, 1]. First we select the polynomial function f(x) = x3 + x2 − 5x + 3 as a
target function. We investigate the sigmoidal neural network approximation to
f(x). This function was also considered in [13]. Note that in [13] the authors chose
the sigmoidal function as

σ(x) =

{
1, if x ≥ 0,

0, if x < 0,

and obtained the numerical results (see Table 5.1) for SLFNs with 8, 32, 128,
532 neurons in the hidden layer (see also [2] for an additional constructive result
concerning the error of approximation in this example).

As it is seen from the table, the number of neurons in the hidden layer increases
as the error bound decreases in value. This phenomenon is no longer true for our
sigmoidal function (see Section 2). Using Theorem 4.1, we can construct explicitly
an SLFN with only two neurons in the hidden layer, which approximates the above
polynomial with arbitrarily given precision. Here by explicit construction we mean

12 NAMIG J. GULIYEV AND VUGAR E. ISMAILOV

Table 5.1. The Heaviside function as a sigmoidal function

N Number of neurons (2N2) Maximum error
2 8 0.666016
4 32 0.165262
8 128 0.041331
16 512 0.010333

Table 5.2. Several ε-approximators of the function 1+x+x2/2+
x3/6 + x4/24 + x5/120 + x6/720

Number of Parameters of the network Maximum
neurons c1 c2 θ1 θ2 error

2 2.0619× 102 2.1131× 102 −1979 −3 0.95
2 5.9326× 102 6.1734× 102 −1.4260× 108 −3 0.60
2 1.4853× 103 1.5546× 103 −4.0140× 1022 −3 0.35
2 5.1231× 102 5.3283× 102 −3.2505× 107 −3 0.10
2 4.2386× 103 4.4466× 103 −2.0403× 1065 −3 0.04
2 2.8744× 104 3.0184× 104 −1.7353× 10442 −3 0.01

that all the network parameters can be computed directly. Namely, the calculated
values of these parameters are as follows: c1 ≈ 2059.373597, c2 ≈ −2120.974727,
θ1 = −467, and θ2 = −3. It turns out that for the above polynomial we have an
exact representation. That is, on the interval [−1, 1] we have the identity

x3 + x2 − 5x+ 3 ≡ c1σ(x− θ1) + c2σ(x− θ2).

Let us now consider the other polynomial function

f(x) = 1 + x+
x2

2
+
x3

6
+
x4

24
+

x5

120
+

x6

720
.

For this function we do not have an exact representation as above. Nevertheless,
one can easily construct a ε-approximating network with two neurons in the hidden
layer for any sufficiently small approximation error ε. Table 5.2 displays numerical
computations of the network parameters for six different approximation errors.

At the end we consider the nonpolynomial functions f(x) = 4x/(4 + x2) and
f(x) = sinx − x cos(x + 1). Tables 5.3 and 5.4 display all the parameters of the
ε-approximating neural networks for the above six approximation error bounds.
As it is seen from the tables, these bounds do not alter the number of hidden
neurons. Figures 5.1, 5.2 and 5.3 show how graphs of some constructed networks
N approximate the corresponding target functions f .

6. Analysis of the multivariate case

In this section, we want to draw the reader’s attention to the following question.
Do SLFNs with fixed weights preserve their universal approximation property in
the multivariate setting? That is, if networks of the form

h(x) =

r∑
i=1

ciσ(w · x− θi), (6.1)

ON THE APPROXIMATION BY SINGLE HIDDEN LAYER NETWORKS 13

Figure 5.1. The graphs of f(x) = 1 + x+ x2/2 + x3/6 + x4/24 +
x5/120 + x6/720 and some of its approximators (λ = 1/4)

Table 5.3. Several ε-approximators of the function 4x/(4 + x2)

Number of Parameters of the network Maximum
neurons c1 c2 θ1 θ2 error

2 1.5965× 102 1.6454× 102 −283 −3 0.95
2 1.5965× 102 1.6454× 102 −283 −3 0.60
2 −1.8579× 103 −1.9428× 103 −6.1840× 1011 −3 0.35
2 1.1293× 104 1.1842× 104 −4.6730× 1034 −3 0.10
2 2.6746× 104 2.8074× 104 −6.8296× 1082 −3 0.04
2 −3.4218× 106 −3.5939× 106 −2.9305× 104885 −3 0.01

Table 5.4. Several ε-approximators of the function sinx −
x cos(x+ 1)

Number of Parameters of the network Maximum
neurons c1 c2 θ1 θ2 error

2 8.950× 103 9.390× 103 −3.591× 1053 −3 0.95
2 3.145× 103 3.295× 103 −3.397× 1023 −3 0.60
2 1.649× 105 1.732× 105 −9.532× 101264 −3 0.35
2 −4.756× 107 −4.995× 107 −1.308× 10180281 −3 0.10
2 −1.241× 107 −1.303× 107 −5.813× 1061963 −3 0.04
2 1.083× 109 1.138× 109 −2.620× 105556115 −3 0.01

where the weight w ∈ Rd is fixed for all units of the hidden layer, but which may
be different for different networks h, can approximate any continuous multivariate
function f(x1, . . . , xd), d > 1, within arbitrarily small tolerance? Note that if w is
fixed for all h, then it is obvious that there is a multivariate function which cannot
be approximated by networks of the form (6.1). Indeed, the linear functional

F (f) = f(x1)− f(x2),

14 NAMIG J. GULIYEV AND VUGAR E. ISMAILOV

Figure 5.2. The graphs of f(x) = 4x/(4 + x2) and some of its
approximators (λ = 1/4)

Figure 5.3. The graphs of f(x) = sinx − x cos(x + 1) and some
of its approximators (λ = 1/4)

where x1 and x2 are selected so that w · x1 = w · x2, annihilates all functions h.
Since the functional F is nontrivial, the set of all functions h, which we denote in
the sequel by H, is not dense in C(Q) for an arbitrary compact set Q containing
the points x1 and x2; hence approximation to all continuous functions cannot be
possible on such compact sets Q. The above question, in the case where w is
different for different networks h, is rather complicated. The positive answer to
this question would mean, for example, that Theorem 1.1 admits a generalization
to d-variable functions. Unfortunately, our answer to this question is negative. The
details are as follows. Each summand in (6.1) is a function depending on the inner
product w ·x. Thus, the whole sum itself, i.e. the function h(x) is a function of the
form g(w · x). Note that functions of the form g(w · x) are called ridge functions.

ON THE APPROXIMATION BY SINGLE HIDDEN LAYER NETWORKS 15

The literature abounds with the use of such functions and their linear combinations
(see, e.g., [18, 31] and a great deal of references therein). We see that the set H
is a subset of the set of ridge functions R :=

{
g(w · x) : w ∈ Rd \ {0}, g ∈ C(R)

}
.

Along with R, let us also consider the sets

Rk :=

{
k∑
i=1

gi(w
i · x) : wi ∈ Rd \ {0}, gi ∈ C(R), i = 1, . . . , k

}
.

Note that in Rk we vary over both the vectors wi and the functions gi, whilst k is
fixed. Clearly, R = R1. In [27], Lin and Pinkus proved that for any k ∈ N, there
exists a function f ∈ C(Rd) and a compact set Q ⊂ Rd such that

inf
g∈Rk

‖f − g‖ > 0.

Here ‖·‖ denotes the uniform norm. It follows from this result that for each k ∈ N
the set Rk (hence R) is not dense in C(Rd) in the topology of uniform convergence
on compacta. Since H ⊂ R, we obtain that the set H cannot be dense either. Thus
there are always continuous multivariate functions which cannot be approximated
arbitrarily well by SLFNs with fixed weights. This phenomenon justifies why we
and the other researchers (see Introduction) investigate universal approximation
property of such networks only in the univariate case.

The above analysis leads us to the following general negative result on the ap-
proximation by SLFNs with limited weights.

Theorem 6.1. For any continuous function σ : R→ R, there is a multivariate con-
tinuous function which cannot be approximated arbitrarily well by neural networks
of the form

r∑
i=1

ciσ(wi · x− θi), (6.2)

where we vary over all r ∈ N, ci, θi ∈ R, wi ∈ Rd, but the number of pairwise
independent vectors (weights) wi in each network (6.2) is uniformly bounded by
some positive integer k (which is the same for all networks).

This theorem shows a particular limitation of neural networks with one hidden
layer. We refer the reader to [5, 25] for interesting results and discussions around
other limitations of such networks.

Acknowledgements

The research of the second author was supported by the Azerbaijan National
Academy of Sciences under the program “Approximation by neural networks and
some problems of frames”.

References

[1] N. Calkin and H. S. Wilf, Recounting the rationals, Amer. Math. Monthly 107 (2000), 360–
367.

[2] F. Cao and T. Xie, The construction and approximation for feedforword neural networks
with fixed weights, Proceedings of the ninth international conference on machine learning and

cybernetics, Qingdao, 2010, pp. 3164–3168.
[3] T. Chen and H. Chen, Approximation of continuous functionals by neural networks with

application to dynamic systems, IEEE Trans. Neural Networks 4 (1993), 910–918.

16 NAMIG J. GULIYEV AND VUGAR E. ISMAILOV

[4] C. K. Chui and X. Li, Approximation by ridge functions and neural networks with one hidden

layer, J. Approx. Theory 70 (1992), 131–141.

[5] C. K. Chui, X. Li and H. N. Mhaskar, Limitations of the approximation capabilities of neural
networks with one hidden layer, Adv. Comput. Math. 5 (1996), no. 2-3, 233–243.

[6] D. Costarelli and R. Spigler, Constructive approximation by superposition of sigmoidal func-

tions, Anal. Theory Appl. 29 (2013), 169–196.
[7] N. E. Cotter, The Stone–Weierstrass theorem and its application to neural networks, IEEE

Trans. Neural Networks 1 (1990), 290–295.

[8] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signal
Systems 2 (1989), 303–314.

[9] S. Draghici, On the capabilities of neural networks using limited precision weights, Neural

Networks 15 (2002), 395–414.
[10] K. Funahashi, On the approximate realization of continuous mapping by neural networks,

Neural Networks 2 (1989), 183–192.
[11] A. R. Gallant and H. White, There exists a neural network that does not make avoidable

mistakes, Proceedings of the IEEE 1988 international conference on neural networks, vol. 1,

IEEE Press, New York, 1988, pp. 657–664.
[12] N. J. Guliyev and V. E. Ismailov, A single hidden layer feedforward network with only one

neuron in the hidden layer can approximate any univariate function, Neural Computation

28 (2016), no. 7, 1289–1304. arXiv:1601.00013
[13] N. Hahm and B.I. Hong, An approximation by neural networks with a fixed weight, Comput.

Math. Appl. 47 (2004), no. 12, 1897–1903.

[14] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks
4 (1991), 251–257.

[15] A. Iliev, N. Kyurkchiev and S. Markov, On the approximation of the step function by some

sigmoid functions, Math. Comput. Simulation 133 (2017), 223–234.
[16] V. E. Ismailov, Approximation by neural networks with weights varying on a finite set of

directions, J. Math. Anal. Appl. 389 (2012), no. 1, 72–83.
[17] , Approximation by ridge functions and neural networks with a bounded number of

neurons, Appl. Anal. 94 (2015), no. 11, 2245–2260.

[18] , Approximation by sums of ridge functions with fixed directions (Russian), Algebra
i Analiz, 28 (2016), no. 6, 20–69.

[19] V. E. Ismailov and E. Savas, Measure theoretic results for approximation by neural networks

with limited weights, Numer. Funct. Anal. Optim. 38 (2017), no. 7, 819–830.
[20] Y. Ito, Approximation of continuous functions on Rd by linear combinations of shifted rota-

tions of a sigmoid function with and without scaling, Neural Networks 5 (1992), 105–115.

[21] B. Jian, C. Yu and Y. Jinshou, Neural networks with limited precision weights and its applica-
tion in embedded systems, Proceedings of the the second international workshop on education

technology and computer science, Wuhan, 2010, pp. 86–91.
[22] V. Kůrková, Kolmogorov’s theorem and multilayer neural networks, Neural Networks 5

(1992), 501–506.

[23] M. Leshno, V. Ya. Lin, A. Pinkus and S. Schocken, Multilayer feedforward networks with a
non-polynomial activation function can approximate any function, Neural Networks 6 (1993),

861–867.

[24] Y. Liao, S.-C. Fang and H. L. W. Nuttle, A neural network model with bounded-weights for
pattern classification, Comput. Oper. Res. 31 (2004), 1411–1426.

[25] S. Lin, Limitations of shallow nets approximation, Neural Networks 94 (2017), 96–102.
[26] S. Lin, X. Guo, F. Cao and Z. Xu, Approximation by neural networks with scattered data

Appl. Math. Comput. 224 (2013), 29–35.

[27] V. Ya. Lin and A. Pinkus, Fundamentality of ridge functions, J. Approx. Theory 75 (1993),

295–311.
[28] V. Maiorov and A. Pinkus, Lower bounds for approximation by MLP neural networks, Neu-

rocomputing 25 (1999), 81–91.
[29] H. N. Mhaskar and C. A. Micchelli, Approximation by superposition of a sigmoidal function

and radial basis functions, Adv. Appl. Math. 13 (1992), 350–373.

[30] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta numerica, 1999,
Cambridge Univ. Press, Cambridge, 1999, pp. 143–195.

[31] , Ridge functions, Cambridge University Press, Cambridge, 2015.

https://arxiv.org/abs/1601.00013

ON THE APPROXIMATION BY SINGLE HIDDEN LAYER NETWORKS 17

[32] P. C. Sikkema, Der Wert einiger Konstanten in der Theorie der Approximation mit

Bernstein-Polynomen, Numer. Math. 3 (1961), 107–116.

[33] W. A. Stein et al., Sage Mathematics Software (Version 7.6), The Sage Developers, 2017,
http://www.sagemath.org.

[34] M. Stinchcombe and H. White, Approximating and learning unknown mappings using multi-

layer feedforward networks with bounded weights, Proceedings of the 1990 IEEE international
joint conference on neural networks, vol. 3, IEEE, New York, 1990, pp. 7–16.

Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences,

9 B. Vahabzadeh str., AZ1141, Baku, Azerbaijan.
E-mail address: njguliyev@gmail.com

Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences,

9 B. Vahabzadeh str., AZ1141, Baku, Azerbaijan.
E-mail address: vugaris@mail.ru

http://www.sagemath.org

	1. Introduction
	2. Construction of a sigmoidal function
	3. Practical computation and properties of the constructed sigmoidal function
	4. Main results
	5. Numerical results
	6. Analysis of the multivariate case
	Acknowledgements
	References

