Namig J Guliyev
email: njguliyev@gmail.com

Vugar E Ismailov
email: vugaris@mail.ru

ON THE APPROXIMATION BY SINGLE HIDDEN LAYER FEEDFORWARD NEURAL NETWORKS WITH FIXED WEIGHTS

Keywords: 2010 Mathematics Subject Classification. 41A30, 41A63, 65D15, 68T05, 92B20 feedforward neural network, approximation, hidden layer, sigmoidal function, activation function, weight

Feedforward neural networks have wide applicability in various disciplines of science due to their universal approximation property. Some authors have shown that single hidden layer feedforward neural networks (SLFNs) with fixed weights still possess the universal approximation property provided that approximated functions are univariate. But this phenomenon does not lay any restrictions on the number of neurons in the hidden layer. The more this number, the more the probability of the considered network to give precise results. In this note, we constructively prove that SLFNs with the fixed weight 1 and two neurons in the hidden layer can approximate any continuous function on a compact subset of the real line. The applicability of this result is demonstrated in various numerical examples. Finally, we show that SLFNs with fixed weights cannot approximate all continuous multivariate functions.

Approximation capabilities of single hidden layer feedforward neural networks (SLFNs) have been investigated in many works over the past 30 years. Typical results show that SLFNs possess the universal approximation property; that is, they can approximate any continuous function on a compact set with arbitrary precision.

An SLFN with r units in the hidden layer and input x = (x 1 , . . . , x d) evaluates a function of the form r i=1 c i σ(w i • x -θ i), (1.1) where the weights w i are vectors in R d , the thresholds θ i and the coefficients c i are real numbers, and the activation function σ is a univariate function. Properties of this neural network model have been studied quite well. By choosing various activation functions, many authors proved that SLFNs with the chosen activation function possess the universal approximation property (see, e.g., [START_REF] Chen | Approximation of continuous functionals by neural networks with application to dynamic systems[END_REF][START_REF] Chui | Approximation by ridge functions and neural networks with one hidden layer[END_REF][START_REF] Costarelli | Constructive approximation by superposition of sigmoidal functions[END_REF][START_REF] Cotter | The Stone-Weierstrass theorem and its application to neural networks[END_REF][START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Funahashi | On the approximate realization of continuous mapping by neural networks[END_REF][START_REF] Gallant | There exists a neural network that does not make avoidable mistakes[END_REF][START_REF] Hornik | Approximation capabilities of multilayer feedforward networks[END_REF][START_REF] Mhaskar | Approximation by superposition of a sigmoidal function and radial basis functions[END_REF]). That is, for any compact set Q ⊂ R d , the class of functions (1.1) is dense in C(Q), the space of continuous functions on Q. The most general and complete result of this type was obtained by Leshno, Lin, Pinkus and Schocken [START_REF] Leshno | Multilayer feedforward networks with a non-polynomial activation function can approximate any function[END_REF]. They proved that a continuous activation function σ has the universal approximation property (or density property) if and only if it is not a polynomial. This result has shown the power of SLFNs within all possible choices of the activation function σ, provided that σ is continuous. For a detailed review of these and many other results, see [START_REF] Pinkus | Approximation theory of the MLP model in neural networks[END_REF].

In many applications, it is convenient to take the activation function σ as a sigmoidal function which is defined as lim t→-∞ σ(t) = 0 and lim t→+∞ σ(t) = 1.

The literature on neural networks abounds with the use of such functions and their superpositions (see, e.g., [START_REF] Cao | The construction and approximation for feedforword neural networks with fixed weights[END_REF][START_REF] Chui | Approximation by ridge functions and neural networks with one hidden layer[END_REF][START_REF] Costarelli | Constructive approximation by superposition of sigmoidal functions[END_REF][START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Funahashi | On the approximate realization of continuous mapping by neural networks[END_REF][START_REF] Gallant | There exists a neural network that does not make avoidable mistakes[END_REF][START_REF] Hahm | An approximation by neural networks with a fixed weight[END_REF][START_REF] Iliev | On the approximation of the step function by some sigmoid functions[END_REF][START_REF] Ito | Approximation of continuous functions on R d by linear combinations of shifted rotations of a sigmoid function with and without scaling[END_REF][START_REF] Kůrková | Kolmogorov's theorem and multilayer neural networks[END_REF][START_REF] Mhaskar | Approximation by superposition of a sigmoidal function and radial basis functions[END_REF]). The possibility of approximating a continuous function on a compact subset of the real line or d-dimensional space by SLFNs with a sigmoidal activation function has been well studied in a number of papers.

In recent years, the theory of neural networks has been developed further in this direction. For example, from the point of view of practical applications, neural networks with a restricted set of weights have gained a special interest (see, e.g., [START_REF] Draghici | On the capabilities of neural networks using limited precision weights[END_REF][START_REF] Ismailov | Approximation by neural networks with weights varying on a finite set of directions[END_REF][START_REF]Approximation by ridge functions and neural networks with a bounded number of neurons[END_REF][START_REF] Ismailov | Measure theoretic results for approximation by neural networks with limited weights[END_REF][START_REF] Jian | Neural networks with limited precision weights and its application in embedded systems[END_REF][START_REF] Liao | A neural network model with bounded-weights for pattern classification[END_REF]). It was proved that SLFNs with some restricted set of weights still possess the universal approximation property. For example, Stinchcombe and White [START_REF] Stinchcombe | Approximating and learning unknown mappings using multilayer feedforward networks with bounded weights[END_REF] showed that SLFNs with a polygonal, polynomial spline or analytic activation function and a bounded set of weights have the universal approximation property. Ito [START_REF] Ito | Approximation of continuous functions on R d by linear combinations of shifted rotations of a sigmoid function with and without scaling[END_REF] investigated this property of networks using monotone sigmoidal functions (tending to 0 at minus infinity and 1 at infinity), with only weights located on the unit sphere. In [START_REF] Ismailov | Approximation by neural networks with weights varying on a finite set of directions[END_REF][START_REF]Approximation by ridge functions and neural networks with a bounded number of neurons[END_REF][START_REF] Ismailov | Measure theoretic results for approximation by neural networks with limited weights[END_REF], one of the coauthors considered SLFNs with weights varying on a restricted set of directions and gave several necessary and sufficient conditions for good approximation by such networks. For a set W of weights consisting of two directions, he showed that there is a geometrically explicit solution to the problem. Hahm and Hong [START_REF] Hahm | An approximation by neural networks with a fixed weight[END_REF] went further in this direction, and showed that SLFNs with fixed weights can approximate arbitrarily well any univariate function. Since fixed weights reduce the computational expense and training time, this result is of particular interest. In a mathematical formulation, the result reads as follows.

Theorem 1.1 (Hahm and Hong [START_REF] Hahm | An approximation by neural networks with a fixed weight[END_REF]). Assume f is a continuous function on a finite segment [a, b] of R. Assume σ is a bounded measurable sigmoidal function on R. Then for any sufficiently small ε > 0 there exist constants c i , θ i ∈ R and positive integers K and n such that

f (x) - n i=1 c i σ(Kx -θ i) < ε for all x ∈ [a, b].
Note that in this theorem both K and n depend on ε. The smaller the ε, the more neurons in the hidden layer one should take to approximate with the required precision. This phenomenon is pointed out as necessary in many papers. For various activation functions σ, there are plenty of practical examples, diagrams, tables, etc. in the literature, showing how the number of neurons increases as the error of approximation gets smaller.

It is well known that one of the challenges of neural networks is the process of deciding optimal number of hidden neurons. The other challenge is understanding how to reduce the computational expense and training time. As usual, networks with fixed weights best fit this purpose. In this respect, Cao and Xie [START_REF] Cao | The construction and approximation for feedforword neural networks with fixed weights[END_REF] strengthened the above result by specifying the number of hidden neurons to realize approximation to any continuous function. By implementing modulus of continuity, they established upper bound estimations for the approximation error. It was shown in [START_REF] Cao | The construction and approximation for feedforword neural networks with fixed weights[END_REF] that for the class of Lipschitz functions Lip M (α) with a Lipschitz constant M and degree α, the approximation bound is

M (1 + σ)(b -a)n -α , where σ is the sup of σ(x) on [a, b].
Approximation capabilities of SLFNs with a fixed weight were also analyzed in Lin, Guo, Cao and Xu [START_REF] Lin | Approximation by neural networks with scattered data[END_REF]. Taking the activation function σ as a continuous, even and 2π-periodic function, the authors of [START_REF] Lin | Approximation by neural networks with scattered data[END_REF] showed that neural networks of the form

r i=1 c i σ(x -x i) (1.2)
can approximate any continuous function on [-π, π] with an arbitrary precision ε.

Note that all the weights are fixed equal to 1, and consequently do not depend on ε.

To prove this, they first gave an integral representation for trigonometric polynomials, and constructed explicitly a network formed as (1.2) that approximates this integral representation. Finally, the obtained result for trigonometric polynomials was used to prove a Jackson-type upper bound for the approximation error.

In this paper, we construct a special sigmoidal activation function which meets both the above mentioned challenges in the univariate setting. In mathematical terminology, we construct a sigmoidal function σ for which K and n in the above theorem do not depend on the error ε. Moreover, we can take K = 1 and n = 2. That is, only parameters c i and θ i depend on ε. Can we find these numbers? For a large class of functions f , especially for analytic functions, our answer to this question is positive. We give an algorithm and a computer program for computing these numbers in practice. Our results are illustrated by several examples. Finally, we show that SLFNs with fixed weights are not capable of approximating all multivariate functions with arbitrary precision.

Construction of a sigmoidal function

In this section, we construct algorithmically a sigmoidal function σ which we use in our main result in the following section. Besides sigmoidality, we take care about smoothness and monotonicity of our σ in the weak sense. Here by "weak monotonicity" we understand behavior of a function whose difference in absolute value from a monotonic function is a sufficiently small number. In this regard, we say that a real function f defined on a set X ⊆ R is called λ-increasing (respectively, λ-decreasing) if there exists an increasing (respectively, decreasing) function u : X → R such that |f (x) -u(x)| ≤ λ for all x ∈ X. Obviously, 0-monotonicity coincides with the usual concept of monotonicity, and a λ 1 -increasing function is

λ 2 -increasing if λ 1 ≤ λ 2 .
To start with the construction of σ, assume that we are given a closed interval [a, b] and a sufficiently small real number λ. We construct σ algorithmically, based on two numbers, namely λ and d := b -a. The following steps describe the algorithm.

1. Introduce the function

h(x) := 1 - min{1/2, λ} 1 + log(x -d + 1)
.

Note that this function is strictly increasing on the real line and satisfies the following properties:

(

1) 0 < h(x) < 1 for all x ∈ [d, +∞); (2) 1 -h(d) ≤ λ; (3) h(x) → 1, as x → +∞.
We want to construct σ satisfying the inequalities

h(x) < σ(x) < 1 (2.1)
for x ∈ [d, +∞). Then our σ will tend to 1 as x tends to +∞ and obey the inequality

|σ(x) -h(x)| ≤ λ,
i.e., it will be a λ-increasing function.

2. Before proceeding to the construction of σ, we need to enumerate the monic polynomials with rational coefficients. Let q n be the Calkin-Wilf sequence (see [START_REF] Calkin | Recounting the rationals[END_REF]). Then we can enumerate all the rational numbers by setting r 0 := 0, r 2n := q n , r 2n-1 := -q n , n = 1, 2, Note that each monic polynomial with rational coefficients can uniquely be written as r k0 + r k1 x + . . . + r k l-1 x l-1 + x l , and each positive rational number determines a unique finite continued fraction

[m 0 ; m 1 , . . . , m l] := m 0 + 1 m 1 + 1 m 2 + 1 . . . + 1 m l with m 0 ≥ 0, m 1 , . . . , m l-1 ≥ 1 and m l ≥ 2.
We now construct a bijection between the set of all monic polynomials with rational coefficients and the set of all positive rational numbers as follows. To the only zeroth-degree monic polynomial 1 we associate the rational number 1, to each first-degree monic polynomial of the form r k0 + x we associate the rational number k 0 + 2, to each second-degree monic polynomial of the form r k0 +r k1 x+x 2 we associate the rational number [k 0 ;

k 1 +2] = k 0 + 1/(k 1 + 2)
, and to each monic polynomial

r k0 + r k1 x + . . . + r k l-2 x l-2 + r k l-1 x l-1 + x l of degree l ≥ 3 we associate the rational number [k 0 ; k 1 + 1, . . . , k l-2 + 1, k l-1 + 2].
In other words, we define u 1 (x) := 1,

u n (x) := r qn-2 + x if q n ∈ Z, u n (x) := r m0 + r m1-2 x + x 2 if q n = [m 0 ; m 1],
and

u n (x) := r m0 + r m1-1 x + . . . + r m l-2 -1 x l-2 + r m l-1 -2 x l-1 + x l if q n = [m 0 ; m 1 , . . . , m l-2 , m l-1] with l ≥ 3. For example, the first few elements of this sequence are 1, x 2 , x, x 2 -x, x 2 -1, x 3 , x -1, x 2 + x,

We start with constructing σ on the intervals [(2n

-1)d, 2nd], n = 1, 2, For each monic polynomial u n (x) = α 0 + α 1 x + . . . + α l-1 x l-1 + x l , set B 1 := α 0 + α 1 -|α 1 | 2 + . . . + α l-1 -|α l-1 | 2 and B 2 := α 0 + α 1 + |α 1 | 2 + . . . + α l-1 + |α l-1 | 2 + 1.
Note that the numbers B 1 and B 2 depend on n. To avoid complication of symbols, we do not indicate this in the notation.

Introduce the sequence

M n := h((2n + 1)d), n = 1, 2,
Clearly, this sequence is strictly increasing and converges to 1. Now we define σ as the function

σ(x) := a n + b n u n x d -2n + 1 , x ∈ [(2n -1)d, 2nd], (2.2)
where

a 1 := 1 2 , b 1 := h(3d) 2 , (2.3)
and

a n := (1 + 2M n)B 2 -(2 + M n)B 1 3(B 2 -B 1) , b n := 1 -M n 3(B 2 -B 1) , n = 2, 3, (2.4) It is not difficult to notice that for n > 2 the numbers a n , b n are the coefficients of the linear function y = a n + b n x mapping the closed interval [B 1 , B 2] onto the closed interval [(1 + 2M n)/3, (2 + M n)/3]. Besides, for n = 1, i.e. on the interval [d, 2d], σ(x) = 1 + M 1 2 .
Therefore, we obtain that

h(x) < M n < 1 + 2M n 3 ≤ σ(x) ≤ 2 + M n 3 < 1, (2.5)
for all x ∈ [(2n -1)d, 2nd], n = 1, 2,

4.

In this step, we construct σ on the intervals [2nd, (2n + 1)d], n = 1, 2, For this purpose we use the smooth transition function

β a,b (x) := β(b -x) β(b -x) + β(x -a) ,
where

β(x) := e -1/x , x > 0, 0, x ≤ 0. Obviously, β a,b (x) = 1 for x ≤ a, β a,b (x) = 0 for x ≥ b, and 0 < β a,b (x) < 1 for a < x < b. Set K n := σ(2nd) + σ((2n + 1)d) 2 , n = 1,
a n + b n u n x d -2n + 1 -(a n + b n u n (1)) ≤ ε, x ∈ [2nd, 2nd + δ]. (2.6)
One can choose this δ as

δ := min εd b n C , d 2
,
where C > 0 is a number satisfying |u n (x)| ≤ C for x ∈ (1, 1.5). For example, for n = 1, δ can be chosen as d/2. Now define σ on the first half of the interval [2nd, (2n + 1)d] as the function

σ(x) := K n -β 2nd,2nd+δ (x) × K n -a n -b n u n x d -2n + 1 , x ∈ 2nd, 2nd + d 2 .
(2.7)

Let us prove that σ(x) satisfies the condition (2.1). Indeed, if 2nd + δ ≤ x ≤ 2nd + d/2, then there is nothing to prove, since σ(x) = K n ∈ (M n , 1). If 2nd ≤ x < 2nd + δ, then 0 < β 2nd,2nd+δ (x) ≤ 1 and hence from (2.7) it follows that for each x ∈ [2nd, 2nd + δ), σ(x) is between the numbers K n and A n (x) := a n + b n u n x d -2n + 1 . On the other hand, from (2.6) we obtain that

a n + b n u n (1) -ε ≤ A n (x) ≤ a n + b n u n (1) + ε,
which together with (2.2) and (2.5) yields

A n (x) ∈ 1+2Mn 3 -ε, 2+Mn 3
+ ε for x ∈ [2nd, 2nd + δ). Since ε = (1 -M n)/6, the inclusion A n (x) ∈ (M n , 1) is valid. Now since both K n and A n (x) belong to (M n , 1), we finally conclude that h(x) < M n < σ(x) < 1, for x ∈ 2nd, 2nd + d 2 .
We define σ on the second half of the interval in a similar way:

σ(x) := K n -(1 -β (2n+1)d-δ,(2n+1)d (x)) × K n -a n+1 -b n+1 u n+1 x d -2n -1 , x ∈ 2nd + d 2 , (2n + 1)d ,
where

δ := min εd b n+1 C , d 2 , ε := 1 -M n+1 6 , C ≥ sup [-0.5,0] |u n+1 (x)|.
One can easily verify, as above, that the constructed σ(x) satisfies the condition (2.1) on [2nd + d/2, 2nd + d] and

σ 2nd + d 2 = K n , σ (i) 2nd + d 2 = 0, i = 1, 2,
Steps 3 and 4 construct σ on the interval [d, +∞). 5. On the remaining interval (-∞, d), we define σ as

σ(x) := 1 -β(d -x) 1 + M 1 2 , x ∈ (-∞, d).
It is not difficult to verify that σ is a strictly increasing, smooth function on (-∞, d).

Note also that σ(x) → σ(d) = (1 + M 1)/2, as x tends to d from the left and σ (i) (d) = 0 for i = 1, 2, This final step completes the construction of σ on the whole real line.

Practical computation and properties of the constructed sigmoidal function

It should be noted that the above algorithm allows one to compute the constructed σ at any point of the real axis instantly. The code of this algorithm is available at http://sites.google.com/site/njguliyev/papers/monic-sigmoidal. As a practical example, we give here the graph of σ (see Figure 3.1) and a numerical table (see Table 3.1) containing several computed values of this function on the interval [0, 20]. Figure 3.2 shows how the graph of λ-increasing function σ changes on the interval [0, 100] as the parameter λ decreases.

The above σ obeys the following properties:

(1) σ is sigmoidal;

(2) σ ∈ C ∞ (R);

(3) σ is strictly increasing on (-∞, d) and λ-strictly increasing on [d, +∞); (4) σ is easily computable in practice. All these properties are easily seen from the above exposition. But the essential property of our sigmoidal function is its ability to approximate an arbitrary continuous function using only a fixed number of translations and scalings of σ. More precisely, only two translations and scalings are sufficient. We formulate this important property as a theorem in the next section.

Main results

The main results of the paper are formulated in the following two theorems.

σ(dx + (2n -1)d) = a n + b n u n (x), x ∈ [0, 1] (4.1)
for n = 1, 2, Here a n and b n are computed by (2.3) and (2.4) for n = 1 and n > 1, respectively. From (4.1) it follows that for each n = 1, 2, . . .,

u n (x) = 1 b n σ(dx + (2n -1)d) - a n b n . (4.2)
Let now g be any continuous function on the unit interval [0, 1]. By the density of polynomials with rational coefficients in the space of continuous functions over any compact subset of R, for any ε > 0 there exists a polynomial p(x) of the above form such that |g(x) -p(x)| < ε

|f (t) -c 1 σ(t -θ 1) -c 2 σ(t -θ 2)| < ε for all t ∈ [a, b],
where θ 1 = a + s 1 and θ 2 = a + s 2 . The last inequality completes the proof.

Since any compact subset of the real line is contained in a segment [a, b], the following generalization of Theorem 4.1 holds. Theorem 4.2. Let Q be a compact subset of the real line and d be its diameter. Let λ be any positive number. Then one can algorithmically construct a computable sigmoidal activation function σ : R → R, which is infinitely differentiable, strictly increasing on (-∞, d), λ-strictly increasing on [d, +∞), and satisfies the following property: For any f ∈ C(Q) and ε > 0 there exist numbers c 1 , c 2 , θ 1 and θ 2 such that

|f (x) -c 1 σ(x -θ 1) -c 2 σ(x -θ 2)| < ε for all x ∈ Q.
Remark 4.1. The idea of using monic polynomials (see Section 2 and the proof above) is new in the numerical analysis of neural networks with limited number of hidden neurons. In fact, if one is interested more in a theoretical than in a practical result, then any countable dense subset of C[0, 1] suffices. Maiorov and Pinkus [START_REF] Maiorov | Lower bounds for approximation by MLP neural networks[END_REF] used such a subset to prove existence of a sigmoidal, monotonic and analytic activation function, and consequently a neural network with a fixed number of hidden neurons, which approximates arbitrarily well any continuous function. Note that the result is of theoretical value and the authors of [START_REF] Maiorov | Lower bounds for approximation by MLP neural networks[END_REF] do not suggest constructing and using their sigmoidal function. In our previous work [START_REF] Guliyev | A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function[END_REF], we exploited a sequence of all polynomials with rational coefficients to construct a new universal sigmoidal function. Note that in [START_REF] Guliyev | A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function[END_REF] the problem of fixing weights in approximation by neural networks was not considered. Although the construction was efficient in the sense of computation of that sigmoidal function, some difficulties appeared while computing an approximating neural network parameters for some relatively simple approximated functions (see Remark 2 in [START_REF] Guliyev | A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function[END_REF]). This was a reason why we avoided giving practical numerical examples. The usage of monic polynomials in this instance turned out to be advantageous in reducing "running time" of the algorithm for computing the mentioned network parameters. This allows one to approximate various functions with sufficiently small precision and obtain all the required parameters (scaling coefficients and thresholds) in practice. We give corresponding numerical results in the next section.

Numerical results

We prove in Theorem 4.1 that any continuous function on [a, b] can be approximated arbitrarily well by SLFNs with the fixed weight 1 and with only two neurons in the hidden layer. An activation function σ for such a network is constructed in Section 2. We have seen from the proof that our approach is totally constructive. One can evaluate the value of σ at any point of the real axis and draw its graph instantly using the programming interface at the URL shown at the beginning of Section 3. In the current section, we demonstrate our result in various examples. For different error bounds we find the parameters c 1 , c 2 , θ 1 and θ 2 in Theorem 4.1. All computations were done in SageMath [START_REF] Stein | Sage Mathematics Software (Version 7.6), The Sage Developers[END_REF]. For computations, we use the following algorithm, which works well for analytic functions. Assume f is a function, whose Taylor series around the point (a + b)/2 converges uniformly to f on [a, b], and ε > 0.

(1) Consider the function g(t) := f (a + (b -a)t), which is well-defined on [0, 1];

(2) Find k such that the k-th Taylor polynomial

T k (x) := k i=0 g (i) (1/2) i! x - 1 2 i satisfies the inequality |T k (x) -g(x)| ≤ ε/2 for all x ∈ [0, 1]; (3) Find a polynomial p with rational coefficients such that |p(x) -T k (x)| ≤ ε 2 , x ∈ [0, 1],
and denote by p 0 the leading coefficient of this polynomial; (4) If p 0 = 0, then find n such that u n (x) = p(x)/p 0 . Otherwise, set n := 1;

(5) For n = 1 and n > 1 evaluate a n and b n by (2.3) and (2.4), respectively; (6) Calculate the parameters of the network as

c 1 := p 0 b n , c 2 := 2p 0 a n b n (1 + h(3d)) , θ 1 := b -2n(b -a), θ 2 := 2a -b; (7) Construct the network N = c 1 σ(x -θ 1) + c 2 σ(x -θ 2).
Then N gives an ε-approximation to f. In the sequel, we give four practical examples. To be able to make comparisons between these examples, all the considered functions are given on the same interval [-1, 1]. First we select the polynomial function f (x) = x 3 + x 2 -5x + 3 as a target function. We investigate the sigmoidal neural network approximation to f (x). This function was also considered in [START_REF] Hahm | An approximation by neural networks with a fixed weight[END_REF]. Note that in [START_REF] Hahm | An approximation by neural networks with a fixed weight[END_REF] the authors chose the sigmoidal function as

σ(x) = 1, if x ≥ 0, 0, if x < 0,
and obtained the numerical results (see Table 5.1) for SLFNs with 8, 32, 128, 532 neurons in the hidden layer (see also [START_REF] Cao | The construction and approximation for feedforword neural networks with fixed weights[END_REF] for an additional constructive result concerning the error of approximation in this example).

As it is seen from the table, the number of neurons in the hidden layer increases as the error bound decreases in value. This phenomenon is no longer true for our sigmoidal function (see Section 2). Using Theorem 4.1, we can construct explicitly an SLFN with only two neurons in the hidden layer, which approximates the above polynomial with arbitrarily given precision. Here by explicit construction we mean that all the network parameters can be computed directly. Namely, the calculated values of these parameters are as follows: c 1 ≈ 2059.373597, c 2 ≈ -2120.974727, θ 1 = -467, and θ 2 = -3. It turns out that for the above polynomial we have an exact representation. That is, on the interval [-1, 1] we have the identity

x 3 + x 2 -5x + 3 ≡ c 1 σ(x -θ 1) + c 2 σ(x -θ 2).
Let us now consider the other polynomial function

f (x) = 1 + x + x 2 2 + x 3 6 + x 4 24 + x 5 120 + x 6 720 .
For this function we do not have an exact representation as above. Nevertheless, one can easily construct a ε-approximating network with two neurons in the hidden layer for any sufficiently small approximation error ε. Table 5.2 displays numerical computations of the network parameters for six different approximation errors.

At the end we consider the nonpolynomial functions f (x) = 4x/(4 + x 2) and f (x) = sin x -x cos(x + 1). Tables 5.3 and 5.4 display all the parameters of the ε-approximating neural networks for the above six approximation error bounds. As it is seen from the tables, these bounds do not alter the number of hidden neurons. Figures 5.1, 5.2 and 5.3 show how graphs of some constructed networks N approximate the corresponding target functions f .

Analysis of the multivariate case

In this section, we want to draw the reader's attention to the following question. Do SLFNs with fixed weights preserve their universal approximation property in the multivariate setting? That is, if networks of the form where the weight w ∈ R d is fixed for all units of the hidden layer, but which may be different for different networks h, can approximate any continuous multivariate function f (x 1 , . . . , x d), d > 1, within arbitrarily small tolerance? Note that if w is fixed for all h, then it is obvious that there is a multivariate function which cannot be approximated by networks of the form (6.1). Indeed, the linear functional where x 1 and x 2 are selected so that w • x 1 = w • x 2 , annihilates all functions h. Since the functional F is nontrivial, the set of all functions h, which we denote in the sequel by H, is not dense in C(Q) for an arbitrary compact set Q containing the points x 1 and x 2 ; hence approximation to all continuous functions cannot be possible on such compact sets Q. The above question, in the case where w is different for different networks h, is rather complicated. The positive answer to this question would mean, for example, that Theorem 1.1 admits a generalization to d-variable functions. Unfortunately, our answer to this question is negative. The details are as follows. Each summand in (6.1) is a function depending on the inner product w • x. Thus, the whole sum itself, i.e. the function h(x) is a function of the form g(w • x). Note that functions of the form g(w • x) are called ridge functions.

h(x) = r i=1 c i σ(w • x -θ i), (6.1)
F (f) = f (x 1) -f (x 2),
The literature abounds with the use of such functions and their linear combinations (see, e.g., [START_REF]Approximation by sums of ridge functions with fixed directions (Russian)[END_REF][START_REF]Ridge functions[END_REF] and a great deal of references therein). We see that the set H is a subset of the set of ridge functions R := g(w • x) : w ∈ R d \ {0}, g ∈ C(R) .

Along with R, let us also consider the sets

R k := k i=1 g i (w i • x) : w i ∈ R d \ {0}, g i ∈ C(R), i = 1, . . . , k .
Note that in R k we vary over both the vectors w i and the functions g i , whilst k is fixed. Clearly, R = R 1 . In [START_REF] Lin | Fundamentality of ridge functions[END_REF], Lin and Pinkus proved that for any k ∈ N, there exists a function f ∈ C(R d) and a compact set

Q ⊂ R d such that inf g∈R k f -g > 0.
Here • denotes the uniform norm. It follows from this result that for each k ∈ N the set R k (hence R) is not dense in C(R d) in the topology of uniform convergence on compacta. Since H ⊂ R, we obtain that the set H cannot be dense either. Thus there are always continuous multivariate functions which cannot be approximated arbitrarily well by SLFNs with fixed weights. This phenomenon justifies why we and the other researchers (see Introduction) investigate universal approximation property of such networks only in the univariate case.

The above analysis leads us to the following general negative result on the approximation by SLFNs with limited weights. Theorem 6.1. For any continuous function σ : R → R, there is a multivariate continuous function which cannot be approximated arbitrarily well by neural networks of the form r i=1 c i σ(w i • x -θ i), (6.2)

where we vary over all r ∈ N, c i , θ i ∈ R, w i ∈ R d , but the number of pairwise independent vectors (weights) w i in each network (6.2) is uniformly bounded by some positive integer k (which is the same for all networks).

This theorem shows a particular limitation of neural networks with one hidden layer. We refer the reader to [START_REF] Chui | Limitations of the approximation capabilities of neural networks with one hidden layer[END_REF][START_REF] Lin | Limitations of shallow nets approximation[END_REF] for interesting results and discussions around other limitations of such networks.

Theorem 4 . 1 .

 41 Assume that f is a continuous function on a finite segment [a, b] of R and σ is the sigmoidal function constructed in Section 2. Then for any sufficiently small ε > 0 there exist constants c 1 , c 2 , θ 1 and θ 2 such that|f (x) -c 1 σ(x -θ 1) -c 2 σ(x -θ 2)| < ε for all x ∈ [a, b].

Figure 3 . 1 .

 31 Figure 3.1. The graph of σ on [0, 20] (d = 2, λ = 1/4)

Figure 3 . 2 .

 32 Figure 3.2. The graph of σ on [0, 100] (d = 2)

Figure 5 . 1 .

 51 Figure 5.1. The graphs of f (x) = 1 + x + x 2 /2 + x 3 /6 + x 4 /24 + x 5 /120 + x 6 /720 and some of its approximators (λ = 1/4)

Figure 5 . 2 .Figure 5 . 3 .

 5253 Figure 5.2. The graphs of f (x) = 4x/(4 + x 2) and some of its approximators (λ = 1/4)

Table 5 .

 5 1. The Heaviside function as a sigmoidal function

	N Number of neurons (2N 2) Maximum error
	2	8	0.666016
	4	32	0.165262
	8	128	0.041331
	16	512	0.010333

Table 5 .

 5 2. Several ε-approximators of the function 1 + x + x 2 /2 + x 3 /6 + x 4 /24 + x 5 /120 + x 6 /720

	Number of		Parameters of the network		Maximum
	neurons	c 1	c 2	θ 1	θ 2	error
	2	2.0619 × 10 2 2.1131 × 10 2 -1979		-3	0.95
	2	5.9326 × 10 2 6.1734 × 10 2 -1.4260 × 10 8	-3	0.60
	2	1.4853 × 10 3 1.5546 × 10 3 -4.0140 × 10 22 -3	0.35
	2	5.1231 × 10 2 5.3283 × 10 2 -3.2505 × 10 7	-3	0.10
	2	4.2386 × 10 3 4.4466 × 10 3 -2.0403 × 10 65 -3	0.04
	2	2.8744 × 10 4 3.0184 × 10 4 -1.7353 × 10 442 -3	0.01

Table 5 .

 5

	Number of		Parameters of the network		Maximum
	neurons	c 1	c 2	θ 1	θ 2	error
	2	1.5965 × 10 2	1.6454 × 10 2 -283		-3	0.95
	2	1.5965 × 10 2	1.6454 × 10 2 -283		-3	0.60
	2 -1.8579 × 10 Number of	Parameters of the network		Maximum
	neurons	c 1	c 2	θ 1	θ 2	error
	2	8.950 × 10 3	9.390 × 10 3 -3.591 × 10 53	-3	0.95
	2	3.145 × 10 3	3.295 × 10 3 -3.397 × 10 23	-3	0.60
	2	1.649 × 10 5	1.732 × 10 5 -9.532 × 10 1264	-3	0.35
	2	-4.756 × 10 7 -4.995 × 10 7 -1.308 × 10 180281 -3	0.10
	2	-1.241 × 10 7 -1.303 × 10 7 -5.813 × 10 61963	-3	0.04
	2	1.083 × 10 9	1.138 × 10 9 -2.620 × 10 5556115 -3	0.01

3. Several ε-approximators of the function 4x/(4 + x 2) 3 -1.9428 × 10 3 -6.1840 × 10 11 -3 0.35 2 1.1293 × 10 4 1.1842 × 10 4 -4.6730 × 10 34 -3 0.10 2 2.6746 × 10 4 2.8074 × 10 4 -6.8296 × 10 82 -3 0.04 2 -3.4218 × 10 6 -3.5939 × 10 6 -2.9305 × 10 4885 -3 0.01

Table 5.4. Several ε-approximators of the function sin xx cos(x + 1)

References 15

Acknowledgements

The research of the second author was supported by the Azerbaijan National Academy of Sciences under the program "Approximation by neural networks and some problems of frames".