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Abstract. Many tasks in computer vision and pattern recognition are
formulated as graph matching problems. Despite the NP-hard nature
of the problem, fast and accurate approximations have led to signifi-
cant progress in a wide range of applications. Learning graph matching
functions from observed data, however, still remains a challenging issue.
This paper presents an effective scheme to parametrize a graph model
for object matching in a classification context. For this, we propose a
representation based on a parametrized model graph, and optimize it to
increase a classification rate. Experimental evaluations on real datasets
demonstrate the effectiveness (in terms of accuracy and speed) of our
approach against graph classification with hand-crafted cost functions.
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1 Introduction

Graphs are frequently used in various fields of computer science since they con-
stitute a universal modeling tool which allows the description of structured data.
The handled objects and their relations are described in a single and human-
readable formalism. Hence, tools for graphs supervised classification and graph
mining are required in many applications such as pattern recognition [1], chem-
ical components analysis [2], structured data retrieval [3]. Different approaches
have been proposed during the last decade to tackle the problem of graph clas-
sification. A first one consists in transforming the initial problem in a common
statistical pattern recognition one by describing the graphs with vectors in a Eu-
clidean space [2]. Another family of approaches also consists in using kernel-based
machine learning algorithms. Contrary to the approaches mentioned above, the
graphs are not explicitly but implicitly projected in a Euclidean space, through
the use of a graph kernel which computes inner products in the graph space.
Many kernels have been proposed in the literature [4]. Another possible approach
also consists in projecting the graphs in a Euclidean space of a given dimension
but using a distance matrix between each of the graphs. In such cases, a dis-
similarity measure between graphs has to be designed. Kernels can be derived



from the distance matrix. It is the case for multidimensional scaling methods
proposed in [5].

All the aforementioned approaches aim at projecting the graphs into a vector
or kernel space however this process may impact the interpretability of the re-
sults. This paper deals with paradigms that operate directly on the graph space
and can thus capture more structural distortions.

Graph space (d : G × G → R). To classify unknown objects using the K-
Nearest Neighbor paradigm, one needs to define a metric that measures the dis-
tance between the unknown object and the elements in the learning database.
The similarity or dissimilarity between two graphs requires the computation and
the evaluation of the ”best” matching between them. Since exact isomorphism
rarely occurs in pattern analysis applications, the matching process must be
error-tolerant, i.e., it must tolerate differences on the topology and/or its label-
ing. For instance, in the Graph Edit Distance (GED) [1], the graph matching
process and the dissimilarity computation are linked through the introduction
of a set of graph edit operations. Each edit operation is characterized by a cost,
and GED is the total cost of the least expensive set of operations that transform
one graph into another one. Since graph matching is NP-hard most research has
long focused on developing accurate and efficient approximate algorithms.

Recent studies have revealed that simple graphs with hand-crafted struc-
tures and dissimilarity functions, typically used in graph matching, are insuffi-
cient to capture the inherent structure underlying the problem at hand. As a
consequence, a better optimization of the graph matching objective does not
guarantee better correspondence accuracy [6, 7] and neither better classification
rate. To tackle this issue a set of parameters in the graph matching problem has
to be learned. Such a learned matching function would better model the inherent
structure of the classification problem without losing the iterpretability of the
results.

2 Problem statement

In this section, we formally define the problem of learning discriminative graph
matching.

Attributed graph is considered as a triple (V , E, L) such that: V is a set of
vertices. E is a set of edges such as E ⊆ V × V . L is a set of attributes of the
nodes and edges. For the sake of clarity, we abuse the set notation such that Li
is a label associated to vertex vi and Lij is a label associated to an edge (vi, vj).

Graph Matching problem Let G1 = (N1, E1, L1) and G2 = (N2, E2, L2)
be two graphs, with N1 = {1, · · · , n} and N2 = {1, · · · ,m}. In order to apply
deletion or insertion operation on nodes, node sets are augmented by dummy
elements. The deletion of each node vi ∈ N1 is modeled as a mapping vi → ε2i
where ε2i is the dummy element associated with vi. As a consequence, the set N2

is increased by max(0, n−m) dummy elements ε2 to form a new set V 2 = N2∪ε2.
The node set N1 is increased similarly by max(0,m − n) dummy elements ε2



to form V 1 = N1 ∪ ε1. Note that V 1 and V 2 have the same cardinality (n1 =
n2 = max(n,m)). A solution of graph matching is defined as a subset of possible
correspondences y ⊂ V 1 × V 2, represented by a binary assignment matrix Y ∈
{0, 1}n1×n2 , where n1 and n2 denote the size of V 1 and V 2, respectively. If
v1i ∈ V 1 matches v2a ∈ V 2, then Yi,a = 1, and Yi,a = 0 otherwise. We denote by
y ∈ {0, 1}n1n2 , a column-wise vectorized replica of Y . With this notation, graph
matching problems can be expressed as finding the assignment vector y∗ that
minimizes a score function d(G1, G2, y) as follows:

Definition 1. Graph Matching formulation

y∗ = argmin
y

d(G1, G2, y), (1a)

subject to y ∈ {0, 1}n1n2 (1b)
n1∑
i=1

yi,a = 1 ∀a ∈ [1, · · · , n2] (1c)

n2∑
a=1

yi,a = 1 ∀i ∈ [1, · · · , n1] (1d)

The function d(G1, G2, y) measures the dissimilarity of graph attributes, and
is typically decomposed into a first order dissimilarity function dV (L1

i , L
2
a) for

a node pair v1i ∈ V 1 and v2a ∈ V 2 , and a second-order similarity function
dE(L1

ij , L
2
ab) for an edge pair e1ij ∈ E1 and e2ab ∈ E2. Dissimilarity functions

are usually represented by a symmetric dissimilarity matrix D, where a non-
diagonal element Dia;jb = dE(L1

ij , L
2
ab) contains the edge dissimilarity of two

correspondences (v1i , v
2
a) and (v1j , v

2
b ) and a diagonal term Dia;ia = dV (L1

i , L
2
a)

represents the node dissimilarity of a correspondence (v1i , v
2
a).

Thus, the matching function of graph matching is defined as:

d(G1, G2, y) =
∑
yia=1

dV (L1
i , L

2
a) +

∑
yia=1

∑
yjb=1

dE(L1
ij , L

2
ab) = yTDy (2)

In essence, the score accumulates all the dissimilarity values relevant to the
assignment. The Definition 1 is referred to as an integer quadratic programming.
More precisely, it is the quadratic assignment problem, which is known to be
NP-hard. Many efficient approximate algorithms have been proposed for this
problem [8–11].

Parametrized Graph Matching In the context of scoring functions defined
in Eq. 2, an interesting question is what can be learned to improve graph match-
ing. To address this, we parameterize Eq. 2 as follows. Let π(a) = i denote an
assignment of node v2a in G2 to node v1i in G1, i.e. yia = 1. A joint feature map



Φ(G1, G2, y) is defined by aligning the relevant dissimilarity values of Eq.2 into a
vectorial form as: Φ(G1, G2, y) = [· · · , dV (L1

π(a), L
2
a), · · · , dE(L1

π(a)π(b), L
2
ab), · · · ]

By introducing weights on all elements of this feature map, we obtain a
discriminative score function:

d(G1, G2, y, β) =βΦ(G1, G2, y) (3a)

=[· · · , dV (L1
π(a), L

2
a)βa, · · · , dE(L1

π(a)π(b), L
2
ab)βab, · · · ] (3b)

where β is a weight vector encoding the importance of node and edge dis-
similarity values. In the case of uniform weights, i.e. β = 1 ∀β, Eq. 3 it re-
duces to the conventional graph matching score function of Eq. 2: d(G1, G2, y) =
d(G1, G2, y; 1).

The discriminative weight formulation is general in the sense that it can
assign different parameters for individual nodes and edges. However, it does not
learn a graph model underlying the feature map, and requires a reference graph
G2 at query time, whose attributes cannot be modified in the learning phase.

Graph classification problem For sake of clarity, the rest of the paper is
focused on a 2-class problem but the paradigm can be extended to a multi-class
problem. A linear classifier is a function that maps its input x ∈ Rq (a real-valued
vector) to an output value f(x) ∈ {0, 1} (a single binary value).

f(x) =

{
1 if β · x+ b > 0

0 otherwise

where β is a vector of real-valued weights, w · x is the dot product

q∑
i=1

βixi,

where q is the number of inputs to the classifier and b is the bias. The bias shifts
the decision boundary away from the origin and does not depend on any input
value. The value of f(x) (0 or 1) is used to classify x as either a positive or a
negative instance, in the case of a binary classification problem. If b is negative,
then the weighted combination of inputs must produce a positive value greater
than |b| in order to push the classifier over the 0 threshold.

To extend this paradigm to graph, let D be the set of graphs. Given a graph
training set TrS = {< Gi, ci >}Mi=1, where Gi ∈ D is a graph and ci ∈ C is
the class of the graph among the two classes. The learning of a graph classifier
consists in inducing from TrS a mapping function f(G) → C which assigns a
class to an unknown graph.

f(G) =

{
1 if β · Φ(G,Gm, y) + b > 0

0 otherwise
With Gm a model graph

Let ∆(TrS, f) be a function computing the error rate obtained by a classifier
f . We represent the error for the pth training sample by errorp = δ(Cp, f(Gp)),
where Cp is the target value, f(Gp) is the value produced by the classifier and



δ(a, b) is the Kronecker Delta function. The error rate (∆) is the mean of errors
errorp over the set TrS between the ground-truth values and values produced
by the classifier. Straightforwardly, we define η = 1−∆ as the classification rate.

To address the problem of learning graphs matching, we start with the dis-
criminative weight formulation of Eq.3. We learn the weights β from labelled
examples from TrS minimizing the function ∆. The objective function is the
error rate function with extra β weights.

3 State of the art

The literature on learning similarity/dissimilarity matching functions can be
roughly categorized into two parts whether the objective is to minimize an error
rate on the number of matched graph components (matching level) or an error
rate on a classification task (classification level).

Matching level. In this category, the purpose is to minimize the average Ham-
ming distance between a ground-truth ’s correspondence and the automatically
deducted correspondence. Caetano et al. [6] use a 60-dimensional node similarity
function for appearance similarity and a simple binary edge similarity for edges.
Leordeanu et al. [12] do not use dV , and instead employ a multi-dimensional
function dE for dissimilarity of appearance, angle, and distance. The work of
Torresani et al. [13] can be viewed as adopting 2-dimensional dV and dE func-
tions for measuring appearance dissimilarity, geometric compatibility, and oc-
clusion likelihood. In [14] a method to learn the real numbers for the insertion
dV (ε → v) and deletion dV (v → ε) costs on nodes and edges is proposed. An
extension to substitution costs is presented in [15]. While the optimization meth-
ods for learning these functions are different, all of them are essentially aimed
at learning common weights for all the edge and node dissimilarity functions in
a matching context. The discriminative weight formulation Eq. 3 is more gen-
eral in the sense that it can assign different parameters for individual nodes and
edges. In [7], the discriminative weight formulation is also employed. The learn-
ing problem is turned into a regression problem and a structured support vector
machine (SSVM) is used to minimize it.

Classification level. Learning graph matching in a classification context is
more challenging since the ground truth is given at the class level and not at
the node/edge level. In [8], a grid search on a validation set is used to determine
the values of the parameters βndel = βnins, which corresponds to the cost of a
node deletion or insertion, and βedel = βeins, which corresponds to the costs of
an edge deletion or insertion. Neuhauss et al. [16] address the issue of learning
dissimilarity functions for numerically labeled graphs from a corpus of sample
graphs. A system of self-organizing maps (SOMs) that represent the distance
measuring spaces of node and edge labels was proposed. The learning process
is based on the concept of self-organization. It adapts the edit costs in such a
way that the similarity of graphs from the same class is increased, whereas the
similarity of graphs from different classes decreases. Two limitations can be put
forward (i) attributes must be numeric vectors and (ii) the method aimed at



learning common weights for all the edges and nodes (βdel, βins, βsub). From the
same authors, in [17], the graph matching process is formulated in a stochastic
context and perform a maximum likelihood parameter estimation of the distri-
bution of matching operations. The underlying distortion model is learned using
an Expectation Maximization algorithm. The matching costs are adapted so as
to decrease the distance between graphs from the same class, leading to compact
graph clusters.

Adapting methods that operate at the matching level is not trivial since
node correspondences must be inferred from the class label. The neural meth-
ods proposed in [16] works at the classification level but it is limited to vector
attributes and common weights shared to all nodes and edges. The former limita-
tion is leveraged in [17] thanks to a probabilistic framework but the Expectation
Maximization algorithm is not robust as the neural-based minimizer. In this
paper we propose to merge both ideas, a neural-based algorithm and the dis-
criminative weight formulation to learn graph matching dissimilarity functions
in a classification context.

4 Proposal: a Graph-based perceptron

The perceptron is an algorithm for learning a binary classifier C = {0, 1}. In
the context of neural networks, a perceptron is an artificial neuron using the
Heaviside step function as the activation function. A global picture of the graph-
based perceptron is depicted in Figure 1. The conventional perceptron is adapted
to graphs thanks to three main features : a) The learning rule to update the
weight vector β. b) The graph matching algorithm to find y∗. c) The graph
model Gm

Fig. 1. Overview of the perceptron and our proposal a modified perceptron for graph

Learning rule. The learning rule aims at modifying β. The weights should be
updated in cases of wrong classifications. The correction must take into account
the amount and the sign of the committed error.

Learning rule: β(t+ 1) = β(t) + α(ci − ck)Φ(Gi, Gm, y) (4)

To show the time-dependence of β, we use βi(t) as the weight at time t. The
parameter α is the learning rate, where 0 < α ≤ 1. (ci−ck) is the error function.
This error is positive if (ci > ck) or negative if (ci < ck). The learning rule is the



steepest gradient descent. It tries to reduce the error in the direction of the error
descending along the gradient. If we consider the Φ(Gi, Gm, y) entries associated
with weight β respectively.

Graph matching solver. Many efficient approximate algorithms have been
proposed to solve the graph matching problem defined in Definition 1.In [8],
Riesen et al. have reformulated the Quadratic Assignment Problem of Definition
1 to a Linear Sum Assignment Problem (LSAP). Nodes of both graphs are
involved in the assignment problem. A cost matrix is computed to enumerate
pair-wise node distances. The LSAP can be solved in polynomial time O(n3)
which makes this approach very fast.

Graph model. The graph matching is computed between an input graph Gi

and a model graph Gm. The choice of a model graph among a set of graphs is of
first interest. The model graph should represent the diversity of attributes and
topologies which can be found in the graph set TrS. The graph model selection
rule is defined as follows : Gm = arg max

G∈TrS
|G| .With |G| = |V |+|E|. Accordingly

Gm is the largest graph of the set. In such a way that Gm may gather a large
diversity of attributes along with different structures. Other definition could hold
such as the median graph definition but this is beyond the scope of the paper.

Learning algorithm. We design the learning algorithm of the graph-based
perceptron. Algorithm 1 is an O(#iter.|TrS|) deterministic algorithm. Solving
the parametrized graph matching problem is indicated in Line 8. Line 9 is the
classification step while lines 10 to 12 are the application of the learning rule
defined Eq. 4 when the classification is wrong. Finally, it is worth mentioning
that classifying an entire test set (TeS) is done by only |TeS| call to the graph
matching algorithm involved in the function Φ. This low complexity makes it a
fast classifier.

Data: TrS = {< Gi, ci >}Mi=1
Data: #iter is the maximum number of iterations
Data: α learning rate
Result: Learned β. A weight vector

1 β ← 0 and t← 0
2 while error > 0 and iter< #iter do
3 error ← 0 and iter ← 0
4 for Gi ∈ TrS do
5 y∗ ← argmin

y
β(t) · Φ(Gi, Gm, y) // Solve problem in Definition 1

6 ci ← heavyside(β(t) · Φ(Gi, Gm, y∗))

7 ck ← getLabel(Gi)
8 if ci − ck != 0 then
9 β(t+ 1)← β(t) + α(ci − ck)Φ(Gi, Gm, y∗)

10 error← error +1

11 end
12 t ← t +1

13 end
14 error ← error/|TrS|
15 iter ← iter +1

16 end

Algorithm 1: Learning graph-based perceptron scheme



5 Experiments

Two graph databases LETTER HIGH (LETTER for short) and GREC were
chosen from from the IAM repository [18]. Each database consists on a set of
different graph instances divided in different classes where each class is composed
of a training set and a test set. Datasets are described in Table 1. Matching
functions dv and de were taken from [8].

Database size (TrS,TeS) ]classes node labels edge labels |V | |E| max |V | max |E| balanced
LETTER (high) (750,750) 15 x,y none 4.7 4.5 9 9 Y

GREC (286,528) 22 x,y Line types 11.5 12.2 25 30 Y

Table 1. Summary of graph data set characteristics.

A commonly used approach in pattern classification is based on nearest-
neighbor classification. That is, an unknown object is assigned the class or iden-
tity of its closest known element, or nearest neighbor (1-NN). Two versions were
involved in the tests. A 1-NN with no weights (β = 1) called NW-1-NN and a
tuned 1-NN (T-1-NN) where βedel = βeins and βndel = βnins values are taken from
[8]. To assess the performance of our learning scheme and our new classifier,
two experiments were performed. First, the impact of the learning rate α was
studied on 2 classes of the GREC dataset (class 0 and 1) and second, pair-wise
binary classifications were carried out among all classes of two datasets GREC
and LETTER. To sum-up all theses experiments, the mean classification rate
(η) during the training and the test phases are reported along with the standard
deviation (std(η)). The time in milliseconds to classify all instances is also con-
sidered. In Figure 2, the impact of the learning rate is depicted. A high learning
rate leads to fast convergence with many oscillations around 80% of classification
rate, while at the opposite a low learning rate implies a slow but stable conver-
gence. A trade-off can be found with an intermediate value (α = 0.01). This
value was chosen to perform the rest of the experiments with a number of iter-
ations set to 100. To continue on the learning capability of the Algorithm 1, in
Table 2, the classification rate obtained during the learning phase are tabulated
(column ηTrS). A first comment leads to say that with the highest classification
rate GREC was easier to learn than LETTER. A second comment is the clear
capability of learning of our method. In fact, a dummy classifier with ”bad”
weights β = 1 would produce a random classification and a classification rate
of 0.5. Finally, binary classifications results on (22− 1)2 = 441 and 196 pairs of
classes for GREC and LETTER, respectively, are synthesized in Table 2. First,
on the speed side, our classifier is by far the fastest with a speed gain of about
350 (350 times faster). In fact, time complexity of our graph-based perceptron is
linear in function of the test set size (|TeS|) whereas the complexity of the 1-NN
grows quadratically in function of |TrS|.|TeS|. On the classification rate side,
on GREC, our proposal clearly outperformed the NW-1-NN classifier with no-
weights while obtaining similar results than the T-1-NN classifier. On LETTER,



the situation is different, the NW-1-NN classifier provides astonished results as
good as the T-1-NN. We can conclude that dissimilarity functions dV and dE are
well suited on their own for the problem and that performances come from the
good graph prototypes of TrS. With a single model graph our approach does
not succeed to capture the whole variability of the problem. However, the 15%
loss of accuracy is counter balanced by a large speed-up.

Fig. 2. Learning rate as a function of the number of iterations

GREC LETTER

ηTrS η std(η) time std(time) ηTrS η std(η) time std(time)

Proposal 0.9733 0.9488 0.1054 87.31 24.49 0.8610 0.8262 0.1279 31.09 6.42
NW-1-NN (β = 1) NA 0.5235 0.0561 1588.83 870.46 NA 0.9735 0.0294 1584.15 510.37

T-1-NN ([8]) NA 0.9992 0.0096 1789.52 990.08 NA 0.9735 0.0295 1573.96 490.51

Table 2. Classification results on GREC and LETTER. The best results are marked
in bold style.

6 Conclusion

In this paper, a graph classifier operating in the graph space was presented. A
graph-based perceptron was proposed to learn discriminative graph matching in
a classification context. Graph matching was parametrized to build a weighted
formulation. This weighted formulation is used to define a perceptron classi-
fier. Weights are learned thanks to the gradient descent algorithm. Classification
results on two publicly available datasets demonstrated a large speed-up in clas-
sification (350 times faster in average) with a loss of accuracy of 4% in average.
As the conventional perceptron, the graph-based perceptron will be extended
to multi-class problems. Another perceptive is to extend our work to multiple
layers and consequently to learn mid-level graph-based representations.
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