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Self-stabilizing Distributed Stable Marriage

Stable matching (also called stable marriage in the literature) is a problem of matching in a bipartite graph, introduced in an economic context by Gale and Shapley. In this problem, each node has preferences for matching with its neighbors. The final matching should satisfy these preferences such that in no unmatched pair both nodes prefer to be matched together. The problem has a lot of useful applications (two sided markets, migration of virtual machines in Cloud computing, content delivery on the Internet, etc.). There even exists companies dedicated solely to administering stable matching programs. Numerous algorithms have been designed for solving this problem (and its variants), in different contexts, including distributed ones. However, to the best of our knowledge, none of the distributed solutions is self-stabilizing (self-stabilization is a formal framework that allows dealing with transient corruptions of memory and channels). We present a self-stabilizing stable matching solution, in the model of composite atomicity (statereading model), under an unfair distributed scheduler. The algorithm is given with a formal proof of correctness and an upper bound on its time complexity in terms of moves and steps.

Introduction

Historical Background

Stable matching or equivalently stable marriage is a problem of matching in a bipartite graph, introduced in an economic context by Gale and Shapley [GS62]. It can be described by a natural example of marriage formations between a group of women and a group of men in some community (represented by two groups of nodes, each of size n, in a bipartite graph). As in the real life, each member of the community has preferences regarding other members. Assuming that the given group sizes are equal (i.e., the bipartite graph is complete), the problem is to find a satisfactory marriage for each member with a member of the opposite sex. Satisfactory means that, in the final matching, there is no unmarried pair of a man and a woman such that they both prefer each other over their current spouses. One says then that there are no blocking pairs and the marriage or the matching is stable. In a game theory context, stable matching realizes a pure Nash equilibrium, given lists of preferences for both sides. Gale and Shapley showed that a stable matching always exists. It was shown by providing a centralized algorithm running in O(n 2 ) time, which is proved to be asymptotically optimal (for centralized algorithms) in [GI89].

Stable matching has a lot of applications in economy and computer science. It can be viewed as a particular formulation of two sided matching markets that have been proved useful in the empirical study of many labor markets. Stable matching is used to assign graduating medical students to residency programs at hospitals in the US, Canada and Scotland, and to assign students to schools and universities in Norway and Singapore (cf. [Gol06]). In the domain of Cloud computing, stable matching is used for performing efficient migration of virtual machines to servers (e.g., [XL11], [KL14]). Content delivery networks that distribute much of the world's content and services have to solve a large and complex stable matching problem between users and servers [MS15]. Finally, one can also notice that stable matching has applications in models without any hint of selfish agents, such as scheduling network switches [CGMP99].

Given this large potential application domain, it is not surprising that a lot of algorithms, each corresponding to a particular context and a problem variant, have been proposed and studied. For the studies on different problem variants in the centralized context, one can see for example the books by Knuth [Knu76], by Gusfield and Irving [GI89], or by Roth and Sotomayor [RS90].

The interest of the current work is a decentralized distributed setting, where the bipartite graph represents a communication network. Edges represent the communication links and nodes are computing entities (to be matched). Each node has only partial information about the problem instance, contrary to the centralized case. In particular, it is assumed to be initially aware only of its own preferences, but not of the preferences of the other nodes. In addition, to ensure confidentiality of the preferences [BM05] and avoid high message complexity, we follow previous studies and rule out a trivial solution where nodes exchange their preference lists and then run a known centralized solution at each node.

Studies on distributed stable matching appeared much later than the centralized versions. Among these studies, theoretical ones consider an idealized synchronous distributed communication model, where nodes progress in a lockstep manner, exchanging information and performing computations all together at each step (called round ). These works focus on round complexity of the problem and its variants. were the first to study round complexity of the distributed stable matching. They proved a lower bound of Ω( (n/B log n)), where B is the number of bits per message, and provided an algorithm that solves the distributed stable marriage in O(n 2 ) rounds. Searching for better time complexity and conditions that can provide it, many studies considered specific restrictions on the preference lists. Consider for example the weighted stable matching in [AGL10], incomplete or bounded lists in [OR15], [FKPS10], "almost regular" lists in [OR15] and "similarity" in preference lists in [PW16]). With the same goal in mind (of obtaining better time complexity), approximate versions of the stable marriage have been considered (e.g., [KPS09], [FKPS10], [OR15]). Such versions can be solved in a polylogarithmic time and random algorithms can improve it even more. Furthermore, when assuming restrictions on preference lists, approximate stable marriage can be solved even in constant time (cf. [OR15] and [FKPS10]).

Overview of Results

Contrary to the previous works, we are interested in the stable marriage problem for an asynchronous distributed communication model. Additionally, we tackle the problem by providing a general type of a solution, called self-stabilizing [Dij74]. Such solution tolerates transient (or short-lived) failures (volatile memory corruptions) of any number of nodes. That is, it solves a problem from an arbitrary starting configuration (see a formal definition in the model section). This property is particularly interesting for Cloud and Internet based applications in general, since they frequently require (at least) some level of self-stabilization.

It is now described how we obtained such solution. First, notice that even though the original stable matching algorithm by Gale and Shapley (GSA) is essentially centralized, it can be interpreted as a distributed one [BM05] and most of the existing distributed algorithms rely on GSA. In general, the algorithm proceeds by iteratively realizing proposals, e.g., by women, and acceptances, e.g., by men. Intuitively speaking, the algorithm creates matches and resolves appearing blocking pairs, when improving iteratively the quality of the matches according to the preferences (dynamics "better match").

GSA has received a lot of attention, in particular by Knuth [Knu76]. When investigating combinatorial properties of the algorithm, Knuth discovered the possibility of cycles when executing GSA from some initial configurations with an incomplete matching. That is, GSA does not necessarily converge from any initial configuration towards correct configurations (due to the existence of cycles). In other words, it does not naturally tolerate transient failures that can put a system in an arbitrary configuration, i.e., it is not self-stabilizing.

After this negative result, a step forward was taken by Roth and Vande Vate [RVV90] and by Ackermann et al. [AGM + 11]. Both works present completely centralized strategies allowing to solve stable matching starting from any given matching. The strategy proposed by Roth and Vande Vate stores and consults a global access set of previously resolved blocking pairs and thus is inherently centralized. On the contrary, the strategy by Ackermann et al. [AGM + 11] works in two phases. In the first one, only married women make proposals for improving their marriages. When no married woman can improve anymore, the second phase starts. In this phase, only unmarried women can make proposals (until they all are matched). At the end of this phase, a stable matching is obtained (after at most O(n 2 ) steps). In this work, we adopt the main idea of these two phases.

Making this idea work in a distributed asynchronous and self-stabilizing way is still very challenging. First, there is a need of a sort of synchronization of phases between the nodes that cannot move all together to the next phase, like in the centralized case. Then, termination detection is needed for detecting the end of the first phase. Furthermore, Ackerman et al. supposed "best response" dynamics, contrary to the "better" ones in a distributed GSA. "Best response" dynamics are inherently centralized too, since creation or suppression of a match is not instantaneous (as it is in the centralized case) and the actual matches can change during the delay for realizing these actions. Hence, it is difficult to implement perfect "best response" dynamics. Finally, notice that a distributed matching has to be encoded with pointers that can be badly initialized. This is not taken into account in the algorithm of Ackerman et al.

In addition to these difficulties, we strive to provide a truly decentralized solution using neither leader nor global reset and detecting and correcting faults locally (similarly to the way GSA resolves blocking pairs). This rules out the known self-stabilizing automatic transformers requiring such type of primitives. On the positive side, this allows obtaining more efficient algorithms in terms of time and space. This is also the reason for not using known synchronization techniques (e.g., [AKM + 07], [BPV04]). Our algorithm works with only one additional phase of synchronization (in addition to the two phases in the strategy of Ackerman et al.), while using known synchronization techniques would result in much more additional phases.

The proposed algorithm works under an unfair distributed scheduler, i.e., choosing at each step a subset of nodes that have actions to perform (i.e., eligible or enabled nodes; see model section for a formal definition). In particular, some constantly eligible node may stay inactivated for an arbitrary period of time. In spite of all the mentioned difficulties, we design and prove such a self-stabilizing stable matching algorithm which also guarantees confidentiality of the preference lists. We present it together with its correctness proof and time complexity analysis providing an upper bound of O(n 4 ) moves (activations changing the state of a node) or steps (activations changing the configuration of the system; see the model section).

Model

A distributed system is based on a set of nodes. Each node can communicate with a subset of other nodes, called its neighbors and denoted by N (v). Communication is assumed to be bidirectional. Hence, the topology of the system can be represented as a simple undirected graph G = (V, E), where V is the set of nodes and E the set of edges, i.e., communication links. We assume here that G is a complete bipartite graph K n,n , over two subsets of nodes of equal size. We are interested in the stable matching problem, also called stable marriage. Following the terminology of [GS62], where the problem is introduced, we call women the n nodes of the first subset (Women) in the bipartite graph and men the n nodes of the second subset (Men). Each node has a unique identifier and a complete list of n preferences for the nodes of the other set (each woman has a complete list of men and reciprocally). In other words, each women w is given with a priority for each man m, denoted p(w, m), and reciprocally. The priorities go from 1 to n and the most preferred person have priority 1. The goal is to match (marry) the women and the men together such that everyone is matched and there is no unmarried pair (w, m) of a woman and a man, who both prefer each other to their current matches (partners) m and w , i.e., there is no pair (w, m) such that (w, m ) and (w , m) are married, but p(w, m) < p(w, m ) and p(m, w) < p(m, w ). When there are no such pairs of people, called blocking pairs (BP), the set of marriages is deemed stable.

Remark 1. For technical reasons, we use in the proofs a definition of blocking pair that is more general than the definition given above, as it applies to incomplete matching. In the original definition, a blocking pair has to be a pair of already married persons. In the definition of BP used here, the man can be unmarried. Formally, a pair (w, m) of a woman w and a man m is blocking iff w is matched to m , m is matched to w and w and m prefer each other to their actual matching, or, w is matched to m , m is unmatched and w prefer m to m . Clearly enough, the two notions coincide if the matching is complete. The definition implies that a man prefers to be matched with any woman rather than to stay unmatched.

For designing solutions to this problem, we use the composite atomicity model of computation (cf. [Dij74] and [Gho14]) in which the nodes communicate using a finite number of locally shared variables. Each node can read its own variables and those of its neighbors, but can write only to its own variables. The state of a node is a vector of the values of its variables. A configuration of the system is a vector of states of all nodes. A distributed algorithm consists of one code per node. The code of a node v is a finite set of guarded rules of the following form: Label: (* Comment *) {Guard} Actions The labels are used to identify actions. The guard of a rule in the code of v is a Boolean expression involving the variables of v and of its neighbors. If the guard of some rule evaluates to true, then the rule is said to be enabled at v. By extension, v is said to be enabled or eligible if at least one of its rules is enabled. Actions represents a sequence of actions on v's variables. A rule can be executed (activated) only if it is enabled. In this case, its execution consists in performing the sequence of actions, using the values of the variables at the time of the guard evaluation. The asynchrony of the system is modeled by an adversary, called scheduler. In a configuration, the scheduler selects a non-empty subset of eligible nodes, then atomically evaluates the guards of one enabled rule per node (chosen non-deterministically), then, still atomically, executes the corresponding actions. This is called a step (or transition) and the activation of each rule in the step is called a move. Such a scheduler is called distributed in the literature (contrary to a central scheduler, choosing at each step only one enabled node, or to the synchronous scheduler that chooses all the enabled nodes). When a step is executed in the configuration C, it leads to a configuration C' and we write C → C'. We say that C' is reached from C, denoted by

C * →C', if C → C 1 → C 2 → ... → C'. An execution is a maximal sequence of configurations C 0 , C 1 , ... , C k , ... such that C i → C i+1
for all i ≥ 0. The term "maximal " means that the execution is either infinite or ends in a terminal configuration, i.e., a configuration in which no node is enabled. Different types of fairness, limiting the possible choices of the scheduler, appear in the literature. We do not make any such limitation, that is the schedulers we consider are unfair.

A distributed algorithm solves the stable marriage problem if each of its executions starting from a predefined initial configuration, under the unfair distributed scheduler, reaches a terminal configuration in which there is a stable marriage. A distributed algorithm solves the stable marriage problem in a selfstabilizing way if it solves it as above, but for any possible initial configuration. The relation between self-stabilization and transient failures is well known. Even if all the variables of all nodes have been corrupted once, (producing an arbitrary configuration possibly considered as initial), the algorithm reaches a terminal configuration in which there is a stable marriage. Hence, in some sense, it tolerates the transient failure, since it regains by itself a correct configuration, without any external intervention. Formally, let A be a distributed algorithm, let C be the set of its configurations and let E be the set of its executions, from any configuration in C. Call graph problem a predicate P on configurations.

Definition 1. A is self-stabilizing for P if and only if there exists a non-empty subset L of configurations of C, such that:

1. (Closure) starting from any C ∈ L, any reached configuration is in L (i.e., L is closed under →) and any configuration in L satisfies P, 2. (Convergence) any execution in E (starting from any configuration in C), reaches a configuration in L.

The time complexity of a self-stabilizing distributed algorithm can be evaluated in terms of moves or steps. The stabilization time of a distributed algorithm, counted in moves (respectively in steps), is the maximum number of moves (resp. steps) to reach a configuration in L, starting from an arbitrary configuration. The stabilization time in moves gives an upper bound on the stabilization time in steps.

Self-stabilizing Solution to Stable Marriage

As already noticed in Sec 1.2, the algorithm of Ackermann et al. ([AGM + 11]) is inherently centralized. It proceeds in two phases. In the first phase, married women try to improve their marriage. When no improvement is possible, phase 2 starts. In this phase, single women try to marry their best free choice. In the first phase, women globally reduce their regrets, i.e., change to a better priority spouse, and in the second phase, men do the same. The algorithm is correct, even when started from an incomplete matching, but is not self-stabilizing in the strict sense, because all nodes must start in phase 1 and change simultaneously to phase 2. It could be made self-stabilizing easily because of the centralization, with the implementation of a global phase counter. Things are not so easy in a distributed asynchronous setting. The distributed self-stabilizing solution that we propose takes the idea of two phases, but use a supplementary phase for the purpose of synchronization. We number the phases 1, 1.5, 2. Phases 1 and 2 play about the same role as in Ackermann et al. algorithm. Phase 1.5 is an intermediary phase solving synchronization problems between phase 1 and 2 (due to an erroneous initial configuration). During phases 1 and 2, women have the initiative to propose marriage, men can only choose among the different proposals.

The transition from phase 1 to phase 1.5 is realized first by women who have checked the lack of blocking pairs. Once all women are in phase 1.5, men can change to phase 1.5 if they did not detect blocking pairs. Otherwise, a man blocks the process (by staying in phase 1). The woman involved in the blocking pair will be activated and will change its phase to 1 (forcing all men to come back to phase 1). Only when all nodes reach phase 1.5, women can change to phase 2 and men will follow by changing to the same phase. The checking before entering phase 1.5 guaranties the lack of blocking pairs at the beginning and during phase 2.

Nodes can also change from phase 2 to phase 1 whenever a faulty configuration is detected. For example, this happens if it is detected that some pointers are badly initiated, if a man phase has a bigger value than the one of a women, or the phase values are not consecutive. This change can also be initiated by at a married woman in phase 2, who detects a possible improvement (i.e., a blocking pair). All other nodes will detect the phase change and move to phase 1 too (without this, no one would change to 1.5).

We get the property that no execution cycles more than one time through phases 1, 1.5, 2. Similarly to the algorithm of Ackermann et al., we show that, during the last execution of the first phase, the regrets of the married women are globally decreasing. This ensures that no blocking pair exists at the end of this phase. During the last execution of phase 2, it is the same for the regrets of men and ensured that no blocking pair can appear (even though the matching can be still incomplete). At the end, in O(n 4 ) moves in overall, a complete stable marriage is obtained. Now we precise the implementation of these ideas. Each nodes v has variables and constants. The variables can be read by the neighbors, but the access to constants is limited.

Variables:

marriage: the spouse of v. The value is Null, if v is single.

proposal : for a woman w, the node to whom w has proposed ; for a man m, the woman whose proposal has been accepted by m. The value is Null if there is no proposal or acceptance.

-phase ∈ {1, 1.5, 2}: v is in phase α if v.phase = α.
We use the notation var(C) for the value of var in the configuration C.

Constant:

pref : the v's list of its n neighbors in preference order. The priority of the i th element of the list is i. Then, the first element is the most preferred neighbor and its priority is 1.

Lists of preferences are kept secret. A node v only communicates to its neighbor u the priority it gives to u and the priority of its actual spouse. If v is single, the latter communicated priority is n + 1.

Functions:

p(v,u): returns the priority of u in the preference list of v (this is also the regret of v, if v is married with u; otherwise the regret of v is n + 1). -max(A): returns the most preferred node in a set A of nodes Let C v be the set of nodes which prefer v and are preferred by v to their corresponding spouses:

C v = { u ∈ N (v) : p(v,u) < p(v,v.marriage) ∧ p(u,v) < p(u,u.marriage)}
The following function is used by women to determine which man to propose to.

-

BestMarriage(v) = if (C v = ∅) then return max(C v )
else return Null Let P v be the set of women who: (a) are preferred by v to his own spouse; (b) prefer v to their own spouse; (c) have made a proposal to v; (d) are in the same phase as v; (e) are single, if their phase is 2, or with a spouse, if their phase is 1.

P v = {u ∈ N (v) : u.proposal = v ∧ u.phase = v.phase ∧ p(v, u) < p(v, v.marriage) ∧ p(u, v) < p(u, u.marriage) ∧ [(u.marriage = Null ∧ u.phase = 1) ∨ (u.marriage = Null ∧ u.phase = 2)]}
The following function is used only by men to determine which proposal to accept (the considered proposals have to be done by women in the same phase).

-BestProposal(v) = if (P v = ∅) then return max(P v ) else return Null

Predicates:

The solution we propose introduces some predicates, which are used for testing locally certain properties.

The predicate Married(v) below is used by a woman v for checking whether she is reciprocally married (True), or not (False).

-

Married(v) ≡ (v.marriage = Null) ∧ [(v.marriage.marriage = v) ∨ (v.marriage.proposal = v)]
The predicate Response(v) checks if the proposal of v has been accepted.

-Response(v) ≡ (v.proposal = Null) ∧ (v.proposal.proposal = v)
The predicate AlreadyEngaged(v) is used by a man to detect if he already accepted a proposal.

-AlreadyEngaged(v) ≡ (v.proposal = Null) ∧ [(v.proposal.proposal = v) ∨ (v.proposal.marriage = v)]
Since there is an asymmetry between women's proposals and men's acceptances (women ask first for a marriage and then men answer), they have different predicates to verify whether their pointers are correct and, in particular, that their marriages are reciprocal (suffix W in the predicate name refers to women and M to men). Otherwise, the predicate is False and pointers are said incoherent.

-

IncoherentPointersW(v) ≡ (v.marriage = Null) ∧ [((v.marriage.marriage = v) ∧ (v.marriage.proposal = v)) ∨ (v.marriage = v.proposal)] -IncoherentPointersM(v) ≡ (v.marriage = Null) ∧ [(v.marriage.marriage = v) ∨ (v.marriage = v.proposal)]
Since the definition of blocking pair is asymmetrical (cf. Remark 1), there are two predicates for checking the presence of blocking pairs (which involves a married woman). If a node detects a blocking pair, we say that it is involved in a blocking pair. In other words, if at least one of these two predicates is True, there is a blocking pair.

-

BlockingPairW(v) ≡ Married(v) ∧ (C v = ∅) -BlockingPairM(v) ≡ (∃ u ∈ C v : u.marriage = Null)
The following predicate AllCoherentPhase(v) checks the coherence of phases, namely whether v and all its neighbors are in phase 2, or v is in phase 1 and all its neighbors in phases 1 or 1.5. It is used only by men to decide if they can accept a proposal (women verify somewhat different conditions).

-

AllCoherentPhase(v) ≡ (v.phase = 2 ∧ (∀ u ∈ N (v) : u.phase = 2)) ∨ (v.phase = 1 ∧ (∀ u ∈ N (v) : u.phase ∈ {1, 1.5}))

Algorithm Description and Code

The matching M built by the presented algorithm is defined by pairs (w, m) ∈ E such that w.marriage = m and m.marriage = w. The predicate defining the stable matching problem is [∀w ∈ WOMEN : Married(w)∧¬BlockingPairW(w)∧ ¬BlockingPairM(w.marriage)]. We define the legitimate configurations as the terminal configurations satisfying this predicate.

The part of the algorithm executed by women (Algorithm 1) has 9 rules. We start by describing intuitively what those rules do.

1. The Reset rule, performs a reset of marriage and proposal pointers, if these pointers appeared to be incoherent according to the IncoherentPointersW predicate. 2. The rule BadInit is executed by a woman in phase 2. In this phase a married woman is not supposed to make a proposal. Thus, if her proposal and marriage pointers are not set to Null (the only reason for that is a bad initialization), BadInit resets the proposal pointer and sets the phase to 1 (to restart the computation of a matching). 3. The rule Propose1 is executed by a married woman in phase 1. The rule effect is a proposal to the man who corresponds to the best marriage for her (i.e., best for the woman but also for the man with respect to its actual spouse or single status).

4. The rule Confime1 is executed by a woman in phase 1, after she has made a proposal to a man and this proposal has been accepted (the man has put the name of the woman in its variable proposal). Then the woman confirms the marriage, breaking from her previous man and matching with the new one. The couple is now considered married. 5. The rule Propose2 is executed by women in phase 2, in order to make a proposal. 6. The rule Confirm2 is the analogous of Confim1 for a woman in phase 2. 7. The rule ToPhase1.5 is a phase transition rule from phase 1 to phase 1.5.

When a woman in phase 1 can not make any proposal (no blocking pair is detected or she is single), she has to move to phase 1.5 if all men are in phase 1. 8. The rule ToPhase2 is also a phase transition rule. A woman in phase 1.5 can change to phase 2 if she does not detect any blocking pair and if all men are in phase 1.5. 9. The rule ToPhase1 is a third phase transition rule. It is executed by a woman in order to move from phase 2 or phase 1.5 to phase 1. The change happens if the following (faulty) conditions are detected: (a) the woman is in phase 2 but some man is in phase 1 (either a blocking pair has been detected or phase synchronisation has not stabilized yet); (b) the woman is in phase 1.5 but a man is in phase 2 (the phase synchronization has not stabilized yet); (c) the woman is married and either in phase 1.5 or 2 but detects a blocking pair.

Remark 2. If a man does not answer positively to a proposal from a woman w (it has a better priority proposal), she detects it. BestMarriage(w) will not return any longer this man and w can change her proposal with Propose1 or Propose2.

The part of the algorithm executed by men (Algorithm 2) consists of 6 rules:

1. The Reset rule resets the marriage pointer of a man and changes its phase to 1. We prove later that this can happen only once for a man in phase 2. 2. The Accept rule checks that women are in a consistent phase related to the phase of the man (AllCoherentPhase), that the best proposal received is different from his actual marriage and that he has not accepted another proposal (¬AlreadyEngaged). Remark that this is a commitment, but the couple is not yet married. If the man is married with another woman, he has to break the marriage since he has a better proposal. 3. The role of the rule Confirm is to confirm a marriage. The rule checks that the phases are coherent and if the woman has her variable marriage set to the man, he confirms too. 4. The rule ToPhase1.5 is a phase transition rule from phase 1 to phase 1.5.

If all women are in phase 1.5 and no blocking pairs are detected, the man changes his phase to 1.5. 5. ToPhase2 makes men change to phase 2. When all women are in phase 2 and men have checked the lack of BPs, then phase 2 can begin.

6. The ToPhase1 rule detects a phase synchronization problem (a woman being in phase 1 or 1.5 with the man in phase 2) or a woman willing to change to phase 1 (blocking pair detected) when he is in phase 1.5.

Algorithm 1 for w ∈ Women { ¬IncoherentPointersW(w) ∧ w.marriage = Null 6: The analysis of the algorithm appears to be complex and long due to several reasons. First, the algorithm has to overcome the unfair adversary that can prevent some enabled nodes from being activated as long as there are other enabled nodes. This may take many moves made by nodes in different states and configurations. Moreover, all these moves may not contribute to the convergence (e.g., if an existing fault is not yet detected). Still, they have to be taken into account for the correctness and the time analysis. Another reason for the analysis difficulty is the distribution and asynchrony of the solution. For example, as reciprocal marriages, divorces, and blocking pair detection cannot be done instantaneously, or at least within some timing guaranties (as in synchronous lock-step models), the related results on previous centralized or synchronous solutions cannot be used in our case. Finally, due to self-stabilization, the analysis has to consider executions starting from an arbitrary configuration.

∧ w.proposal = Null ∧ w.phase = 2 } 7: w.proposal ← Null, w.phase ← 1 8: Propose1: (* Propose in phase 1 *) 9: { ¬IncoherentPointersW(w) ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 1 10: ∧ BestMarriage(w) = w.proposal ∧ Married(w) } 11: w.proposal ← BestMarriage(w) 12: Confirm1: (* Confirm a proposal in phase 1 *) 13: { ¬IncoherentPointersW(w) ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 1 14: ∧ Response(w) ∧ Married(w) ∧ BestMarriage(w) = w.
In particular, initially, the phase numbers can be arbitrary. Moreover there are specific rules applying to such or such phase number. The consequence of that is a great number of cases to treat, each case necessitating a particular treatment and special arguments. For classifying the different cases into categories, the following definition is introduced. Definition 2. Let A and B be two sets of phase numbers and bp a non-negative integer. We say that a configuration C is in the set of configurations denoted by (A, B, bp) × if in C: (a) ∀m ∈ Men : m.phase ∈ A, (b) ∀w ∈ Women : w.phase ∈ B and (c) bp is the number of blocking pairs. Furthermore, a configuration C is in the set denoted by

(A, B, bp) , if it is in (A, B, bp) × and satisfies m ∈ Men {m.phase} = A ∧ w ∈ Women {w.phase} = B.
For example: ({a}, {b, c}, X) × ≡ ({a}, {b, c}, X) ({a}, {b}, X) ({a}, {c}, X). Furthermore, we denote by C 1 the set of configurations where ∃ v ∈ V : v.phase = 1.

So, we prove the algorithm for every possible starting configuration type. Due to the lack of space, only the main statements and ideas of the proof are presented in the following. The complete proof appears in the appendix.

First we consider a relatively simple case -the one of a terminal configuration. We show (Proposition 1) that such a configuration is in ({2}, {2}, 0) and whenever it is reached the marriage-values define a stable marriage. Notice that this implies the closure part of the correctness proof.

Proposition 1. In a terminal configuration, the set of edges {(w, m) ∈ E : w.marriage = m ∧ m.marriage = w} is a stable matching. This configuration is in ({2}, {2}, 0). Then, we prove the convergence part of the proof by showing convergence to a terminal configuration. First, we show step by step, through Lemmas 7 -12, that from any configuration in C 1 , in O(n 4 ) moves, an execution reaches a configuration in ({1.5}, {1.5}, 0), having no blocking pairs. It is proven in particular by showing that the sum of the regrets of married women is strictly decreasing. Notice that we cannot conclude this property directly from a similar result for the centralized two-phased algorithm of Ackermann et. al, because it assumes "best response" dynamics, which we do not realize here (in phase 1). As already explained before, since marriages, divorces and detection of blocking pairs cannot be done instantaneously under a distributed setting, it is difficult and costly to realize such dynamics.

Then, through Lemmas 13 -22 and Proposition 3 below, it is proven that from any configuration in ({1.5, 2}, {1.5, 2}, X ≥ 0) × , in O(n 4 ) moves, either the execution reaches (possibly cycles to) a configuration in C 1 , or reaches a configuration in ({2}, {2}, 0). By Proposition 2 stated below, there is at most one such possible execution cycle, i.e., any execution converges to a configuration in ({2}, {2}, 0) in O(n 4 ) moves.

Proposition 2. Let C be a configuration in ({1.5, 2}, {1.5, 2}, X) × with X ≥ 0 and C' ∈ C 1 . In any execution, C → C' appears at most once. Proposition 3. Any execution takes O(n 4 ) moves to reach a configuration in ({2}, {2}, 0). Proposition 4 below ensures that the conditions of a configuration in ({2}, {2}, 0) required by Corollary 1 are satisfied in O(n 4 ) moves. In particular, these conditions ensure that no node changes to phase 1 anymore (see Reset and BadInit rules). This in turn allows to obtain and consider the last segment of execution of phase 2, i.e, the last segment where all configurations are in ({2}, {2}, 0). Then, by Corollary 1, from such configurations, a terminal configuration is obtained in O(n 2 ) moves (this is proven through Lemmas 23 -30 and Proposition 5). Notice that, when phase 2 is executed the last time, it is ensured by the algorithm that no blocking pairs exist or appear. However, the existing matching may be incomplete (unstable) and new matches continue to appear until termination.

Proposition 4. Any execution starting in ({2}, {2}, 0) takes O(n 4 ) moves to reach a configuration in ({2}, {2}, 0) such that 1. no man is enabled for the Reset rule, 2. no woman w is enabled for the BadInit rule and either w.proposal = Null or w.proposal = BestMarriage(w).

Corollary 1. Let E be an execution starting from a configuration in ({2}, {2}, 0) such that 1. no man is enabled for the Reset rule, 2. no woman w is enabled for the BadInit rule and either w.proposal = Null or w.proposal = BestMarriage(w).

E contains O(n 2 ) moves.
Finally, Proposition 1 is used to prove a convergence to a stable marriage from a terminal configuration (reached by Proposition 4 and Corollary 1). Altogether this implies the main theorem below.

Theorem 1. Any execution takes O(n 4 ) moves to reach a terminal configuration where the set of edges {(w, m) ∈ E : w.marriage = m ∧ m.marriage = w} is a stable matching.

Proof. By Proposition 3, any execution takes O(n 4 ) moves to reach a configuration C' in ({2}, {2}, 0). By Proposition 4, starting from C', a configuration C" in ({2}, {2}, 0) satisfying the conditions of Corollary 1 is reached in O(n 4 ) moves. Then, by Corollary 1, from C" , a terminal configuration is reached in O(n 2 ) moves. By Proposition 1, this configuration is legitimate (satisfying a stable matching). This implies the theorem.

1. BestProposition(u 1 )= v 2. BestProposition(u 1 )= v 1 with v 1 ∈ Women and v 1 = v.
We first check case 1. If u 1 .proposition = v then v is eligible for the Con-firme1 rule since predicate Response(v) is True and IncoherentPointersW(v) is False, by Lemma 1. This yields a contradiction. If u 1 .proposition = v we show that u 1 is eligible for the Accept rule. First we have that AllCoherentPhase(u 1 ) is True by Lemma 2 and that BestProposition(v) = null. If predicate AlreadyEngaged(u 1 ) is False then u 1 is eligible for Accept. Thus assume that AlreadyEngaged(u 1 ) is True, by contradiction. Let v 2 = u 1 .proposition. By definition of the predicate v 2 = null. Now u 1 .marriage = v 2 or the predicate IncoherentPointersM(u 1 ) is True, which is not possible by Lemma 1. There are two cases. If v 2 .marriage = u 1 then u 1 is eligible for Confirm. Thus assume that v 2 .marriage = u 1 . Observe first that v 2 is either in phase 1 or 1.5 or predicate AllCoherentPhase(v 2 ) is False since u 1 is in phase 1, which is not possible by Lemma 2. Assume first that v 2 is in phase 1. If it is married with some node then it is eligible for the Confirm rule. Thus assume that it is not married. Then by definition, its predicate BlockingPairW(v 2 ) is False. In that case it is eligible for the ToPhase1.5 rule. If it is in phase 1.5, if its predicate BlockingPairW(v 2 ) is False then it is eligible for ToPhase2, if it is True, it is eligible for ToPhase1, which yields the contradiction. We now check case 2. If u 1 .proposition = v 1 then, using exactly the same arguments as in the previous case, u 1 is eligible for the Accept rule. If u 1 .proposition = v 1 then v 1 .phase = 1 by definition of predicate BestProposition(u 1 ). Thus if Married(v 1 ) is True necessarily BestMarriage(v 1 )= u 1 or v 1 eligible for Propose1. We also have that v 1 .marriage = u 1 or Best-Marriage(v 1 ) would not be equal to u 1 . Observe now that v 1 is eligible for Confirm1 which gives a contradiction. If Married(v 1 ) is False, then Block-ingPairW(v 1 ) is False and thus, since v 1 .phase = 1 and all Men are in phase 1, then v 1 is eligible for the ToPhase1.5 rule which gives a contradiction.

she is single or married with no blocking pair : the ToPhase1.5 rule can be applied.

Thus in a terminal configuration, women are not in phase 1. Assume that v ∈ Men with v.phase = 1. Women can either be in phase 1.5 or 2 (since women are not in phase 1). If some woman is in phase 2, she is eligible for the ToPhase1 rule since v.phase = 1. Thus we can assume that all women are in phase 1.5. If predicate BlockingPairM(v) is False then v is eligible for the ToPhase1.5 rule.

Thus we can assume that BlockingPairM(v) is True. Let u be the woman which forms a blocking pair with v. Then the predicate BlockingPairW(u) is True. This implies that u is eligible for the ToPhase1 rule since u.phase = 1.5.

Lemma 5. Let C be a terminal configuration. C is in ({2}, {2}, 0).

Proof. We prove this lemma by contradiction. Let C be a terminal configuration not in ({2}, {2}, 0). We thus have that C is in the configuration set: For point 1, all nodes are in phase 1.5. If X = 0 then women can apply the ToPhase2 rule. If X = 0 then there exists some woman who can apply the ToPhase1 rule.

For point 2, all women are in phase 1.5, men are in phase 1.5 or 2 (with at least one in each phase). Women in phase 1.5 are eligible for the ToPhase1 rule. The same holds for points 6 and 8.

For point 3, all women are in phase 2, men are in phase 1.5 or 2. If there is a blocking pair, women are eligible for the ToPhase1 rule. If there are no blocking pairs, men in phase 1.5 are eligible for the ToPhase2 rule.

For point 4, all men are in phase 2 and women are in phase 1.5 or 2. If there is a blocking pair, women are eligible for the ToPhase1 rule. Otherwise, women in phase 1.5 are eligible for the ToPhase2 rule.

For point 5, all men are in phase 1.5 and women are in phase 1.5 or 2. If there is a blocking pair, women are eligible for the ToPhase1 rule. Otherwise, men in phase 1.5 are eligible for the ToPhase2 rule.

For point 7, if there is a blocking pair, women are eligible for ToPhase. Otherwise men are eligible for ToPhase2.

Finally consider configurations in ({2}, {2}, X). Women which have a blocking pair are eligible for the ToPhase1 rule, which concludes the overall proof.

Lemma 6. In a terminal configuration, every woman is married.

Proof. Let C be a terminal configuration. By Lemma 5, configuration C is in ({2}, {2}, 0). Assume by contradiction that there exists v ∈ Woman which is not married in C. By definition, she is in phase 2. Since she is not married there is at least a man which is not married as well, since the graph is bipartite complete with the same number of men and women. Thus there are two cases:

-v.marriage = Null or -∃m ∈ Men such that v.marriage = m and m.marriage = v
In the first case, necessarily v.proposition = Null or v eligible for Reset. Observe also that BestMarriage(v) = ∅ since there is at least a man which is not married. Thus, in that case, woman v is eligible for Propose2 which yields the contradiction.

In the second case, necessarily m.marriage = v by Lemma 3, which yields the contradiction.

Proposition 1. In a terminal configuration, the set of edges {(w, m) ∈ E : w.marriage = m ∧ m.marriage = w} is a stable matching. This configuration is in ({2}, {2}, 0).

Proof. The fact that a terminal configuration is in ({2}, {2}, 0) holds by Lemma 5. Since all women are married by Lemma 6 and that such a marriage is stable by Lemma 3 then the proposition holds.

Convergence to ({2}, {2}, 0)

Lemma 7. Let C a configuration in C 1 . Any execution starting from a configura- tion C takes O(n 2 ) moves to reach a configuration C' in ({1}, {1, 1.5}, X) × ({1.5}, {1.5}, 0).
Proof. Let v be a node in phase 1. Firstly, consider the case of v ∈ Men. Other men may be in any phase. Let w be in Women. w can be eligible for the Reset rule if her pointers are incoherent. For other rules, we consider the different sub-cases:

1. w.phase = 2: w is only eligible for the ToPhase1 (one of her neighbors is in phase 1), BadInit and Reset rule. The first two rules set the phase of w to 1 after a Reset if necessary. 2. w.phase = 1.5: if the woman is involved in a BP, she is eligible for the ToPhase1 rule otherwise she is eligible for the Reset rule (and not for both because if she is eligible for the Reset, she is not married and then has no blocking pair). 3. w.phase = 1: if all men are not in phase 1, she has no eligible rule except the Reset. Otherwise w is eligible for:

-Reset rule only once. Indeed, after a Reset she is single and then cannot be married in this phase. -ToPhase1.5 rule once if she is single or married without a blocking pair. After a man's Reset, w may detect a blocking pair with this man. She is then eligible for the ToPhase1.5 rule. But since men cannot accept proposal (Women are not all in phase 1 or 1.5, otherwise the configuration is already C'), the blocking pair is still there and she is not eligible again for the ToPhase1.5 rule. -Propose1: since w may propose only once to each man (and not to her spouse), w is eligible for this rule at most n-1 times. In fact, if w propose to a man m, the predicate BestMarriage selects the best possible spouse. But if pointers of men are incoherent, w cannot detect the blocking pair with a better spouse m 1 and propose to m. After the activation of m 1 for the Reset, she can propose. And this case may happen n -1 times. -Confirm1: it is a special case of the previous case. Indeed, since women are not all in phase 1 or 1.5, men cannot accept a proposal. But in the configuration C, the proposal pointer of a man m can be already set to w. Then, if w propose to this man, she can also be eligible for the Confirm1 rule. Then, w has resolved a blocking pair (because in the definition of C v , w check if her proposal is also more interesting for m). m will be eligible for the Confim rule when all women will be in phase 1 or 1.5, that is the configuration C'.

The worst case is when women are all in phase 1 except one in phase 2 and men all in phase 1: they can propose to men at most n -1 times. Indeed, each woman is eligible for O(n) moves. That is altogether, O(n 2 ) moves of women after that, all women are either in phase 1 or 1.5. Now, let us consider the case of v ∈ Women. Let us analyze the other nodes next moves. Let m ∈ Men. In all the case, he is eligible for the Reset and then his phase is set to 1. Otherwise, if:

1. m.phase = 1, m has nothing to do. In fact, if m is eligible for a Accept or Confirm rule, that means that all men are in phase 1 because otherwise, women cannot propose or confirm a marriage. If all women are in phase 1 and there is an incoherent pointer, a woman possibly has her pointer of proposal to m and m is eligible for an Accept rule but the woman won't answer while all men are not in phase 1 (and then, the configuration is C').

Furthermore, if all pointers of a woman are incoherent (the two pointers are set to m for example) m cannot be eligible for these two rules because of the definition of P v . A man is eligible at most once for one of these rules. 2. m.phase = 2 or m.phase = 1.5, m is eligible for ToPhase1 rule if he was not eligible for the Reset: one of his neighbor is in phase 1. If a woman in phase 2 proposes to m, he cannot accept (Predicate AllCoherentPhase).

Then, a man is eligible for at most two rules. That is altogether O(n) moves, men are all in phase 1.

In short, in O(n 2 ) moves, the system reaches C'.

Let MarriedWomen(C) be the set of nodes v in Women that are married in the configuration C. Let R w (C) be the sum of the regret of nodes v in MarriedWomen(C):

R w (C) = v ∈ MarriedWomen(C) w(v, v.marriage(C)) Lemma 8. Let C be a configuration in ({1}, {1, 1.5}, X) × with X > 0. Any execution starting from C takes O(n 2 ) moves to reach a configuration C' in ({1}, {1, 1.5}, Y ) such that R w (C) > R w (C') .
Proof. Let us consider all possible moves in C that do not change R w (C) and count how many times each rule is eligible for each node. Note that Confirm1 rule is the only rule that change R w (C). Indeed, a woman w 0 is married if [(w 0 .marriage.marriage = w 0 ) ∨ (w 0 .marriage.proposal = w 0 )] and Confirm1 set her marriage pointer to another man m 0 if his proposal pointer is pointing on w 0 (Predicate Response(w 0 )). Furthermore, the predicate BestMarriage(w 0 ) = w 0 .proposal checks if m 0 is the best man for w 0 in the current configuration.

Then let us consider all other possibles moves. Firstly, let m be in Men. m is eligible for only 5 rules depending on his state:

-Reset rule. m may be eligible once for this rule. Indeed, if m is eligible a second time, that means his pointers are incoherent. But after the first Reset, this is not possible: that means he was married and his woman found a better spouse. In this case, she has resolved a blocking pair and has been activated for the Confirm1 rule. -ToPhase1.5 rule if all women are in phase 1.5, BlockingPairM(m) = False and he his not engaged. -ToPhase1 rule. Since men are eligible for the ToPhase1.5 and there are X BP, at least one man (involved in a blocking pair (m 1 , w 1 )) will stay in phase 1. w 1 will be activated for the Altogether, a man is eligible for at most O(n) moves, that is O(n 2 ) moves for all men. Now, let w be in Women. w is eligible for 4 rules:

-Reset rule. If she is eligible for a Reset rule, that means she is not married. She cannot be involved in a blocking pair and she is at most eligible for an other move: ToPhase1.5 rule. -ToPhase1.5 rule if the single woman or not involved in a blocking pair in phase 1. Only once, because otherwise, that means she is gone back to 1 (for a blocking pair, see the next point) and if she is again eligible ToPhase1.5, that means there are no more blocking pairs. -ToPhase1 rule if a woman involved in a blocking pair is in phase 1.5 (only once because of the previous point). -Propose1 rule if there is at least a blocking pair involving w: she proposes to the best ranked man in C v . Since w can be involved in at most n -1 BP, she can propose at most n -1 times. (If pointers of men may be incoherent, a woman cannot immediately know all blocking pairs. Then, she can propose to a first man before to see an other BP).

In overall, a woman is eligible for at most O(n) moves, that is O(n 2 ) moves for all women.

To summarize, nodes are eligible for at most O(n 2 ) moves before that at least one woman is eligible for the Confirm1 rule. Men are in phase 1 and women are either in phase 1 and 1.5. Thus, C' is reached. Note that the number of BPs is now Y : a blocking pair (m, w) has been resolved but the previous spouse of w is now single. New blocking pairs may appear after the resolution of BP.

Lemma 9. Let C and C' be configurations such that C * → C'. C and C' are in ({1}, {1, 1.5}, X) × ({1, 1.5}, {1.5}, X) × . Let w be a woman. If w.marriage(C) = w.marriage(C') then w.marriage(C') has a better priority in the list of w than w.marriage(C) or w.marriage(C') = Null. Thereby, R w (C) > R w (C'). Furthermore, w cannot be married again with w.marriage(C) before she is activated with a ToPhase2 rule. The first case happen if the man m married with the woman w receives a proposal of a woman better ranked than his spouse. Then m accepts the proposal and w becomes single. We have R w (C) > R w (C') because w is now single and does not count no longer. w is now eligible for only one rule: the ToPhase1.5 (if w.phase = 1) or ToPhase2 (if w.phase = 1.5) when all nodes will be in phase 1.5.

The second case happen if w makes a proposal and confirmation to m 1 . To be eligible to propose in phase 1, w belongs to a blocking pair (w, m 1 ). Then, it means that m 1 is better ranked by w than m and R w (C) > R w (C'). If w may be married again with m, it means there is a blocking pair (w, m). But m is worse ranked than m 1 : this is not possible.

Then, if there is no more blocking pair involving w, she is only eligible for the ToPhase1.5 or ToPhase2 rule if all men are in phase 1.5.

Lemma 10. Let C be in ({1}, {1, 1.5}, X) × . Any execution starting from C takes O(n 4 ) moves to reach a configuration C' in ({1}, {1, 1.5}, 0) ({1}, {1.5}, 0).

Proof. Let us consider the special case where X = 0. The sub-case where C ∈ ({1}, {1.5}, 0) ({1}, {1, 1.5}, 0) is trivial: the configuration is already C'. Other configurations are in ({1}, {1}, 0). In these configurations, women are only eligible for at most two rules: Reset and ToPhase1.5 for women in phase 1. Men are only eligible for Reset. Then, if X = 0, after at most 2n Reset (men and women) and 1 ToPhase1.5 (women), that is O(n) moves, the configuration C' is reached. Otherwise, the configuration is still C with X > 0. Now, assume that X > 0. Let us determine an upper bound on X. Since there is a blocking pair (w, m) only if w is married, w is involved in at most n -1 blocking pairs. Then, if each women is involved in n -1 blocking pairs, there are O(n 2 ) blocking pairs.

By Lemma 8, one blocking pair is resolved in O(n 2 ) moves. Since each blocking pair can be resolved at most once (Lemma 9), there is no more blocking pair after O(n 4 ) moves. When a woman was activated to confirm (to resolve the last blocking pair), all men were in phase 1 and at least one woman is in phase 1 and others in phase 1 or 1.5, that is in C' (if there is no woman in phase 1.5, after one ToPhase1.5, ({1}, {1, 1.5}, 0) is reached).

Lemma 11. Any execution starting from a configuration C in ({1}, {1, 1.5}, 0) takes O(n) moves to reach a configuration C' ∈ ({1}, {1.5}, 0).

Proof. Consider the eligible rules in configuration C. Since there is no more blocking pairs, no woman is eligible for Propose1 or even Confirm1. Furthermore, men are also not eligible for Accept or Confirm. Even if there are woman's incoherent pointers, men cannot accept because of the definition of P v . Indeed, it checks if the proposition is more interesting for both, the man and the woman. If it is the case, it means that there exists still a blocking pair. This yields to a contradiction. Concerning ToPhase1, nodes cannot be eligible, because there is no more BPs or they are already in phase 1. The ToPhase2 and BadInit rules are not eligible because of nodes' phases. Men are not eligible for the ToPhase1.5 rule owing to women in phase 1. These women are eligible for the ToPhase1.5 rule. Finally, nodes are also eligible for the Reset rule. Thus, after at most 2n Reset and at most n -1 ToPhase1.5, that is O(n) moves, the system reaches a configuration C' in ({1}, {1.5}, 0). Lemma 12. Any execution starting from a configuration C in ({1}, {1.5}, 0) takes O(n) moves to reach a configuration C' ∈ ({1.5}, {1.5}, 0).

Proof. Let us consider first women. They have no eligible rule except Reset because of their phases and the phases of men. Now, let us consider men. As women are in phase 1.5 and cannot change their phase, men are only eligible for the ToPhase1.5 rule. Furthermore, they are eligible for Reset. Note that each man is eligible for the Reset rule before the ToPhase1.5 thanks to the predicate IncoherentPointersM.

Then, after 2n Reset and n ToPhase1.5, that is O(n) moves, the configuration C' is reached.

Lemma 13. In a configuration C in ({1.5}, {1.5}, 0) ({1.5}, {1.5, 2}, 0), women are enabled for rules ∈ {ToPhase2, BadInit, Reset} and men are only enabled for the Reset rule. Furthermore if C → C', then the configuration C' is:

in ({1.5}, {1.5, 2}, 0) ({1.5}, {2}, 0) if in C, only women's ToPhase2 or Reset are activated.

in C 1 if in C, at least one men's Reset or women's BadInit is activated.

Proof. Let v be an eligible node in Men. By definition of C, v.phase = 1.5. Then, Accept, Confirm and ToPhase1.5 rules cannot be applied. Since there is no woman in phase 1 and v is in phase 1.5, v cannot be eligible for the ToPhase1 rule. Furthermore, there exists at least one woman in phase 1.5, the ToPhase2 rule is also not an eligible rule. If the pointer of v is incoherent, v is eligible only for the Reset rule. Now, let v be in Women. Because men's phase is 1.5, women cannot apply the Propose1, Confirm1, Propose2, Confirm2 and ToPhase1.5. The ToPhase1 rule is also not eligible: there is no blocking pair and the phases of men are not 1. Thus, the only possible rules for v are ToPhase2 (if v is in phase 1.5), Reset (if the pointer is incoherent) and BadInit (if v is in phase 2).

If in the transition C → C' at least one man (the Reset rule) or a woman (the BadInit rule in phase 2) is activated, the configuration C' is in the set of configurations where at least one node is in phase 1. Otherwise, if only women are activated for ToPhase2 or Reset rules, C' is in ({1.5}, {1.5, 2}, 0) ({1.5}, {2}, 0).

Lemma 14. In a configuration C in ({1.5}, {2}, 0) {1.5, 2}, {2}, 0), women are only enabled for the Reset and BadInit rules and men are enabled for rules ∈ {ToPhase2, Reset, Accept, Confirm}. Furthermore if C → C', then the configuration C' is in:

in ({1.5, 2}, {2}, 0) ({2}, {2}, 0) if in C, only women's Reset or men's ToPhase2, Accept and Confirm rules are activated.

in C 1 if in C, at least one men's Reset or women's BadInit rule is activated.

Proof. Let v be an eligible node in Women. By definition of C, there exists at least one man in phase 1.5. Then, rules Propose1, Propose2, Confirm1 and Confirm2 cannot be applied. Since women are already in phase 2 and there is no blocking pair, ToPhase2, ToPhase1.5 and ToPhase1 rules are also not eligible. Then, if the pointer of v is incoherent, v is eligible only for the Reset (the marriage is not reciprocal) and BadInit rules. Now, let v be in Men. Because v.phase = 1, v cannot activate ToPhase1.5. Since women are in phase 2, the ToPhase1 rule is also not enabled. Let us consider the Accept and Confirm rule and the two possible cases:

v.phase = 1.5. Because of the predicate AllCoherentPhase(v), this rules cannot be applied. v.phase = 2. If a woman is proposing to v, v can accept the proposal if it is the best proposal regarding their preference lists. But if he accepts and since the woman cannot answer in this configuration, there is no new marriage. If he confirms, that means they were already married (the woman had his identifier in her pointer of marriage). In any cases, that does not create a marriage and thereby also not a blocking pair. Moreover, the phase of nodes activated for these rules is still 2.

Finally, we consider C', the new configuration after the transition from C. If at least one woman has been activated for BadInit or one man for Reset, C' is in C 1 . Otherwise, nodes have been activated for ToPhase2, Accept and Confirm (men) or Reset (women) and C' is in ({1.5, 2}, {2}, 0) ({2}, {2}, 0).

Lemma 15. Any execution starting from a configuration C in ({1.5}, {1.5}, 0) ({1.5}, {1.5, 2}, 0) ({1.5}, {2}, 0) ({1.5, 2}, {2}, 0) takes O(n) moves to reach a configuration C' in C 1 or in ({2}, {2}, 0).

Proof. In C, by Lemma 13, we know that each man is eligible only for the Reset rule and each woman for the Reset and ToPhase2 rules. And when women are in phase 2, they are eligible for the BadInit rule. Then, at most n women in phase 1.5 are eligible for the ToPhase2 and Reset rules. Men's Reset and women's BadInit rules are also eligible, but, after their activation, the configuration is in C 1 . The configuration is now in ({1.5}, {2}, 0) where all pointers of proposal and marriage are coherent: there are no proposal (ToPhase2 sets this pointer to Null) and women's marriages are reciprocal (otherwise, before ToPhase2, she was eligible for Reset). Now, by Lemma 14, we know that men are eligible for rules ToPhase2, Reset, Accept and Confirm and women are eligible only for the Reset and BadInit rules. Note that since proposal and marriage pointers of women are coherent, Accept, Confirm, BadInit and women's Reset are not eligible (see the proof of Lemma 14). Moreover, we know that after a man's Reset, the configuration in in C 1 . Then, after at most n ToPhase2 rules, the reached configuration is in ({2}, {2}, 0), that is C'.

In overall, after at most 3n moves, that is O(n) moves, a configuration either in ({2}, {2}, 0) or in C 1 is reached.

Lemma 16. Let C be a configuration in ({1.5}, {1.5}, X) where X > 0. Any execution starting from C takes O(n) moves to reach a configuration C' in ({1}, {1, 1.5}, X) × .
Proof. Let us consider first a node v in Women. Since v is in phase 1.5 and all men are in phase 1.5, v is not eligible for any Propose1/2, Confirm1/2 or ToPhase1.5 rules. Since there are X blocking pairs, some women are involved in these blocking pairs. Women involved in a blocking pair are eligible for ToPhase1 and the others are eligible for ToPhase2 (because of the predicate BlockingPairW). Once they are in phase 2, while all men are in phase 1.5, they can do nothing (the BadInit rule is not eligible because after the ToPhase2 rule, women's proposal pointer is set to Null. v is also eligible for the Reset rule.

Let us consider now a node v in Men. Since v is in phase 1.5, he cannot be eligible for the Accept, Confirm and ToPhase1.5 rules. The ToPhase1 and ToPhase2 rules are also not eligible: there are at last X women in phase 1.5 and others in phase 2. Then v can only be eligible for the Reset rule.

In short, after at most n Reset (women) + (n -X) women's ToPhase2 the only eligible rule is ToPhase1 of a woman involved in a blocking pair or a man's Reset. Then, after 2n moves (if

X = 1), that is O(n) moves, a configuration C' in C 1 is reached. Lemma 17. Let C be a configuration in ({1.5, 2}, {1.5}, X) ({1.5, 2}, {1.5, 2}, X) ({2}, {1.5}, X) with X ≥ 0. Any execution starting from C takes O(n) moves to reach a configuration C' in C 1 .
Proof. A common feature to the configurations specified in Lemma 17 is that:

∃ w ∈ Women ∧ ∃ m ∈ Men : w.phase = 1.5 ∧ m.phase = 2
Let us consider first a node v in Men. Independently of phases, the Reset rule can be eligible. Notice that if a man is activated for Reset, the configuration is immediately in C 1 . Since there exist at least one woman in phase 1.5 and no node in phase 1, the predicate AllCoherentPhase(v) is False and then the rules Accept and Confirm are not eligible. For the same reason, the ToPhase2 rule is also not eligible. Since nodes can only be in phase 1.5 or 2, the ToPhase1.5 rule cannot be activated. Concerning the ToPhase1 rule, it can be eligible only if the node v is in phase 2 (because there exists a woman in phase 1.5) or if v is involved in a blocking pair.

In short, men in phase 1.5 are only eligible for the Reset rule and men in phase 2 are eligible for the Reset or ToPhase1 rules. (any of this two rules is sufficient to reach a configuration in C 1 ). Now, let us consider a node v in Women. Independently of phases, the Reset rule may be eligible. Then v cannot be eligible for Propose1, Confirm1, ToPhase2 and ToPhase1.5 because of men in phase 2. Since v and all men are not in phase 2 together, rules Propose2 and Confirm2 are not eligible. But if v is in phase 2, v may be activated for BadInit (and then the system reaches a configuration in C 1 ). Concerning the ToPhase1 rule, since there is at least a man in phase 2, all women in phase 1.5 are eligible. Married women involved in a blocking pair in phase 2 are also eligible for this rule. To summarize, a woman v is eligible for -Reset -ToPhase1 (if v is in phase 1.5 or in phase 2 with a blocking pair) So, after at most n Reset (women), women are only eligible for the ToPhase1 or BadInit rules and men for the Reset and ToPhase1 rules. Then, after the next activation, that is altogether O(n) moves, the configuration is in C 1 . We can note that here the problem comes from phases and not from blocking pairs. Lemma 18. Let C be a configuration in ({2}, {1.5, 2}, X) with X ≥ 0. Any execution starting from C takes O(n) moves to reach a configuration C' in C 1 .

Proof. Let us consider first a node u in Men. Independently of phases, the Reset rule can be enabled. Note that if a man is activated for Reset, the system reaches immediately a configuration in C 1 . Since there exists at least one woman in phase 1.5 and no node in phase 1, the predicate AllCoherentPhase(u) is False and then the rules Accept and Confirm are not enabled. Since men are in phase 2, the ToPhase2 ans ToPhase1.5 rules are also not enabled. Concerning the ToPhase1 rule, it may be enabled because a woman is in phase 1.5.

In short, men are only eligible for the Reset or ToPhase1 rules. (These two rules lead to a configuration in C 1 ). Now, let us consider a node u in Women. Independently of phases, the Reset rule may be enabled. Let u.phase = 1.5. Then u cannot be eligible for Propose1/2, Confirm1/2, BadInit and ToPhase1.5 because of the phase of u. Moreover, because men in phase 2, the ToPhase2 rule is also not enabled. Then, u is eligible for the ToPhase1 rule. Now, let u.phase = 2. Then, u cannot be eligible for Propose1, Confirm1, ToPhase2 and ToPhase1.5 (because of u's phase). In case of incoherence between proposal and marriage pointers, u is eligible for the BadInit rule. But if she is activated for this rule, the system reaches a configuration in C 1 . Concerning Propose2, Confirm2 and ToPhase1, there are several cases:

u is married: Propose2 and Confirm2 are not enabled. However, u can be activated for a ToPhase1 rule if u is involved in a blocking pair. u is single: u cannot be activated for a ToPhase1 rule, but for the Propose2 and Confirm2 rules. We know that men cannot apply Accept or Confirm.

But if proposal pointers are incoherent, a woman may propose to a man u and then confirm to u the marriage because of u's incoherent proposal pointer. Each woman may propose and confirm only once. Otherwise would mean that m 1 , a man better ranked for u, has been discovered after u's Propose2 or Confirm2. But when u made her proposal to m, m 1 wasn't interesting for u (better marriage or incoherent pointers). In any case, this means that m 1 has been activated for a Reset rule and then should be in phase 1. That is in contradiction with the fact that all men are in phase 2 and the system is now in a configuration in C 1 . Furthermore, this new marriage between m and u can create a new blocking pair, but we will see later in this proof that the system will reach a configuration where a node is in phase 1.

To summarize, a woman u is eligible for -Reset -BadInit if u is in phase 2 with incoherence between pointers but the system reaches a configuration in C 1 . -ToPhase1 if u is in phase 1.5 or in phase 2 with a blocking pair.

-Propose2 and Confirm2 if u is in phase 2.

So, after at most n Reset (women), and n -1 Propose2 and Confirm2 (there is at most one woman in phase 1.5) moves, nodes are only eligible for rules that set the phase to 1 (ToPhase1, men's Reset and BadInit)

Then, after at most O(n) moves, the system reaches a configuration in C 1 .

Lemma 19. Any execution starting from a configuration C in ({1.5}, {1.5, 2}, X) takes O(n) moves to reach a configuration C' in C 1 or in ({1.5}, {2}, X).

Proof. Let us consider first a node v in Men. Since there is at least a woman in phase 1.5 and one in phase 2, v is eligible only for Reset. After his move, the reached configuration is in C 1 . Now, let us consider a node v in Women. v is eligible for Reset or BadInit (if v.phase = 2) if she has incoherent pointers, but not for both (After the move of a node with Reset, the guard of BadInit is False and if BadInit is applied, that means Reset was not enabled). For other rules, there are two cases:

-If v detects a blocking pair: she is eligible for the ToPhase1 rule for any phase.

-If v does not detect a blocking pair and is in phase 1.5, she is eligible for the ToPhase2 rule. Otherwise, she is eligible for any rule.

Then, if all women in phase 1.5 do not detect a blocking pair, and other nodes are not activated, a configuration in ({1.5}, {2}, X) is reached after at most 2n -1 moves (n Reset and n -1 ToPhase2). If there is at least one woman in phase 1.5, involving in and detecting a blocking pair, she is not eligible for ToPhase2 but for ToPhase1. With at most the same number of moves, the reached configuration is in C 1 .

Then, in O(n) moves, the reached configuration is either in C 1 or in ({1.5}, {2}, X).

Lemma 20. Any execution starting from a configuration C in ({1.5}, {2}, X) takes O(n) moves to reach a configuration C' in C 1 or in ({1.5, 2}, {2}, X).

Proof. Let us consider first a node v in Men. Since all women are in phase 2, men are eligible for several rules: Reset and either ToPhase2 or ToPhase1. Indeed, if a man is involved in a blocking pair, this is detected by the predicate BlockingPairM and this man is not eligible for ToPhase2 (other women are not eligible but the woman involved in the blocking pair). A man detects anyway a blocking pair. Indeed, if a woman has incoherent pointers, that means she is not married and then, she cannot be in a blocking pair. After a transition where at least one man is activated, the reached configuration is in C 1 ( if at least one Reset has been activated) or in ({1.5, 2}, {2}, X) (nodes have been ativated for only ToPhase2). Now, let us consider a node v in Women. v is eligible for the Reset or BadInit rules if she has incoherent pointers, but not for both. Indeed, if v is activated for the Reset rule, then her guard of BadInit is False (v.marriage and v.proposal have been set to Null). And if BadInit is applied, that means that Reset was not enabled and after BadInit, it is still not enabled.

There are two cases for other rules:

v is involved in a blocking pair and has her predicate BlockingPairW is True: she is eligible for the ToPhase1 rule. v is not involved in a blocking pair and is eligible for any rule.

Then, women are eligible for at most n Reset and after that, men are eligible for ToPhase2 and Reset and women for ToPhase1 or BadInit. Then, after O(n) moves, the reached configuration is then in C 1 (after a man's Reset or a woman's ToPhase1) or in ({1.5, 2}, {2}, X) (after only men's ToPhase2).

Lemma 21. Any execution starting from a configuration C in ({1.5, 2}, {2}, X) takes O(n) moves to reach a configuration C' in C 1 or in ({2}, {2}, X).

Proof. Let us consider first a node v in Men. If v is in phase 1.5, he is eligible for several rules: Reset and ToPhase2 if he does not detect a blocking pair.

If v.phase = 2, then he is eligible for several rules: Reset and ToPhase1 (if involved in a blocking pair) but also Accept and Confirm. In fact, if a woman is proposing to v, he can accept the proposal if it is the best proposal regarding the preference lists. But if he accepts and since the woman cannot answer in this configuration (see later), there is no new marriage. If he confirms, that means they were already married (the woman had his identifier in her pointer of marriage). In any cases, that does not create a marriage and thereby also not a blocking pair. Moreover, the phase of nodes activated for these rules is still 2. After the move of a node with one of this rules, the reached configuration is in C 1 (Reset) or in ({1.5, 2}, {2}, X) (ToPhase2, Accept and Confirm).

Now, let us consider a node v in Women. v is eligible for the Reset or BadInit rules if she has incoherent pointers, but not for both. Indeed, if v is activated for the Reset rule, then her guard of BadInit is False (v.marriage and v.proposal are set to Null). And if a BadInit is applied, that means that the Reset rule was not enabled and after the BadInit rule, it is still not enabled. There are two cases for other rules:

v is involved in a blocking pair and has her predicate BlockingPairW to True:

she is eligible for ToPhase1. v is not involved in a blocking pair and is eligible for any rule.

Then, after at most n Reset of women, the enabled rules are men's Reset (at most n) and ToPhase2 (at most n -X) and women's ToPhase1 and BadInit. After at most n -1 ToPhase2 of men, the reached configuration is in ({2}, {2}, X) except if at least one man's Reset, ToPhase1 or woman's ToPhase1 and BadInit are applied.

In short, after O(n) moves, the reached configuration is either in ({2}, {2}, X) or in C 1 .

Lemma 22. Let C be a configuration in ({2}, {2}, X) with X ≥ 0. Any execution starting from a configuration C takes O(n 2 ) moves to reach a configuration C' in C 1 or in ({2}, {2}, 0).

Proof. Let us consider a woman w not involved in a blocking pair. There are two possibilities:

she is married without blocking pair. In this case, she has nothing to do, except one BadInit. she is single. Then, she is eligible for the Reset, Propose2 and Confirm2 rules.

After her Reset (if she needs one), she is eligible for Propose2. There is now also two cases. She proposes to m and we assume that w is the best proposal for m. Then m accepts the proposal and both confirm one after the other. In all cases, because of the definition of C v and P v , m decreases his regret (either he was single and is now married or he was married and is now with a better ranked spouse). If m was involved in a blocking pair (w 1 , m), after this new marriage, the blocking pair may be resolved. Indeed, if w has a better priority for m than w 1 , there is no more blocking pairs (w 1 , m). Note that the pair (w, m) was not a blocking pair because w was single.

If each BPs in C is resolved by a single woman, the number of blocking pair decreases and it can not grow since men are only improving their marriage. Since there are O(n 2 ) possible matches, there are O(n 2 ) blocking pairs. If all women make their proposals to each man in a blocking pair, in at most O(n 2 ) moves, there is no more blocking pairs and the configuration is then in ({2}, {2}, 0). If before resolving all the blocking pairs, a married woman involved in one of them is activated (for ToPhase1), the system reaches a configuration in C 1 .

Proposition 2. Let C be a configuration in ({1.5, 2}, {1.5, 2}, X) × with X ≥ 0 and C' ∈ C 1 . In any execution, C → C' appears at most once.

Proof. Let us suppose that the transition C→ C' is possible twice. Let us denote by C 0 and D 0 configurations in ({1.5, 2}, {1.5, 2}, X) where X ≥ 0 and by C 1 and D 1 configurations in C 1 . Let T be the first transition C 0 → C 1 where a node v is moving to phase 1 and T' the second transition D 0 → D 1 .

Let us analyze each case: first v is in Women. She has two rules that change her phase to 1 : ToPhase1 and BadInit. These two rules have the same actions: v.proposal is set to Null and v.phase to 1. Note that BadInit is enabled only in phase 2 and ToPhase1 in both phase 1.5 and 2.

First, let us assume that in T, v is activated for BadInit. Then, in C 1 , v.proposal = Null. In this phase, she can propose and confirm marriage. But, since she is in phase 1.5 or 2 in D 0 , there is a transition T 0 from C 2 to C 3 between C 1 and D 0 , where she is activated for ToPhase1.5. By Lemma 10 there is no more BP with v and by Lemma 11 and 12, the reached configuration is in ({1.5}, {1.5}, 0). The ToPhase1 has set v.proposal to Null and v.phase = 1.5, she is not eligible for both rules ToPhase1 and BadInit. Then, v is enabled for ToPhase2 and v.proposal is set to Null: v is not eligible for BadInit in phase 2. . By Lemma 15, the reached configuration is in ({2}, {2}, 0), there is also no blocking pair and she is not enabled for ToPhase1. Now, let us assume that in T, v is activated for ToPhase1. Thus, v.proposal = Null in C 1 . After that, the execution is the same as explain above.

To summarize, by contradiction, no woman can be enabled twice for a transition to phase 1 from configuration in ({1.5, 2}, {1.5, 2}, X ≥ 0) × .

Because if a woman is in phase 1, men are eligible for ToPhasse1 from phase 1.5 or 2 and because women cannot move twice to phase 1, men cannot be eligible the second time (T') for ToPhase1. Furthermore, men are not eligible for the Reset in T'. Indeed, v.phase = 1 in C 1 and v.phase ∈ {2, 1.5} in D 0 . Then, v has been eligible for at most one ToPhase1.5. Then, if he was eligible for Reset, it was before ToPhase1.5. Then, by Lemma 10 there is no more BP with v and by Lemma 11 and 12, the reached configuration is in ({1.5}, {1.5}, 0). Finally, by Lemma 15, the reached configuration is in ({2}, {2}, 0), there is also no blocking pair and she is not enabled for ToPhase1. In all this configurations, men are not eligible for the ToPhase1 (women cannot move to phase 1) and Reset (No new marriage/proposal) To summarize, men and women are not eligible for rules that change their phase to 1 and perform T'. In any execution, C → C' appears at most once. Proposition 3. Any execution takes O(n 4 ) moves to reach a configuration C in ({2}, {2}, 0). Proof. For each set of configurations C = ({1.5, 2}, {1.5, 2}, X) × with X >= 0 listed below, we show how any execution starting from a configuration in C reaches a configuration either in C 1 or in ({2}, {2}, 0). For doing that, we indicate the lemmas justifying the reachability from one set of configurations to another. Note that each such sub-execution takes O(n 2 ) moves.

1. From ({1.5}, {1.5}, X) to:

-({1}, {1, 1.5}, X) × , for X > 0: Lemma 16.

-C 1 or ({2}, {2}, 0), for X = 0: Lemma 15. 2. From ({1.5}, {1.5, 2}, X) to C 1 or ({1.5}, {2}, X):

for X > 0: Lemma 19, for X = 0: Lemma 15. 3. From ({1.5}, {2}, X) to C 1 or ({1.5, 2}, {2}, X):

for X > 0: Lemma 20, for X = 0: Lemma 15. 4. From ({1.5, 2}, {2}, X) to: C 1 or ({2}, {2}, X) :

for X > 0: Lemma 21, -X = 0: Lemma 15. 5. From ({1.5, 2}, {1.5}, X) to C 1 , for X ≥ 0: Lemma 17. 6. From ({1.5, 2}, {1.5, 2}, X) to C 1 , for X ≥ 0: Lemma 17. 7. From ({2}, {1.5}, X) to C 1 , for X ≥ 0: Lemma 17. 8. From ({2}, {1.5, 2}, X) to C 1 , for X ≥ 0: Lemma 18. 9. From ({2}, {2}, X) to C 1 or ({2}, {2}, 0), for X ≥ 0: Lemma 22. Now, we consider a configuration C' in C 1 . By Lemma 7, any execution starting from C' takes O(n 2 ) moves to reach a configuration C 1 in ({1}, {1, 1.5}, X) × ({1.5}, {1.5}, 0). If C 1 is in ({1.5}, {1.5}, 0), the case is listed above (item 1). If C 1 is in ({1}, {1, 1.5}, X) × , by Lemma 10, any execution starting in C 1 takes O(n 4 ) to reach a configuration C 2 in ({1}, {1, 1.5}, 0) ({1}, {1.5}, 0). Then, by Lemmas 11 and 12, any execution from C 2 takes O(n) moves to reach a configuration in ({1.5}, {1.5}, 0). From there, by Lemma 15, any execution takes O(n) moves to reach a configuration either in C 1 or in ({2}, {2}, 0). Thus, starting from C', any execution reaches a configuration either in C 1 or in ({2}, {2}, 0).

By Proposition 2, any execution starting from a configuration C contains at most one transition to C 1 .

In summary, we have listed above all possible types of configurations and showed that, in each case, a configuration in ({2}, {2}, 0) is reached in O(n 4 ) moves.

Since m 1 =BestMarriage(w) in D 1 , we have p(w, m 1 ) ≤ p(w, m 2 ). To prove that p(w, m 1 ) < p(w, m 2 ), we prove that m 1 = m 2 .

Moreover, p(m 1 , m 1 .marriage) > p(m 1 , w) in D 0 . Let D 2 → D 3 be the last transition before F 0 in which w.proposal(D 3 ) = m 1 . Observe that it can be the transition F 0 → F 1 .

By assumption, variable w.proposal remains constant between D 1 and D 2 . Since w does not execute rule BadInit (Lemma 23), variable w.marriage equals Null between D 1 and D 2 . This implies that 1. Married( w) is false between D 1 and D 2 ; 2. w can execute rules Propose2 or Confirm2 using Lemma 23, We consider these two cases. So using Lemma 28, we have p(m 1 , w) > p(m 1 , m 1 .marriage(D 4 ) ≥ p(m 1 , m 1 .marriage(F 0 )). Thus m 1 is not in C w in F 0 , and m 1 = m 2 .

And this concludes the proof.

Lemma 30. Let E be a sub-execution starting from C 1 and ending at C 2 such that for each configuration in E, all nodes are in phase 2. Let w be in Women. The configuration after this move is in a configuration C 1 with (∃ v ∈ V : v.phase = 1). Now, let us consider w. First, we consider the case where she is enabled for BadInit. Since she is in phase 2, w.marriage = Null ∧w.proposal = Null. But the predicate IncoherentPointersW is False (otherwise, w.marriage would be reset to Null and the BadInit rule not enabled). Thus, we also have v.marriage = v.proposal. Therefore, w.marriage = w 1 and w.proposal = w 2 . Note first that w is married, otherwise she would be eligible for Reset. As such, Pro-pose2 and Confirm2 are not enabled. Furthermore, there is no blocking pair, thus ToPhase1 is not enabled. The state of the node can only change with the BadInit rule. After this move, the configuration is in C 1 . Now, consider the case where w.proposal = BestMarriage(w) and let us see all the sub-cases. We make the assumption that w.marriage = Null if w.proposal = Null. Otherwise, we are in the previous case.

Let C 0 → C 1 , C 2 → C 3 ,
1. If BestMarriage(w) = Null then w.proposal = m 1 -If w is not married, m 1 can accept the proposal, but w cannot confirm (because BestMarriage(w) = w.proposal) and is only eligible for the Propose2 rule for the same reason. The reached configuration is thus in ({2}, {2}, 0) where the two conditions of this proposition statement are no satisfied. -If w is married, m 1 can accept the proposal if this marriage is more interesting for him. Since w.marriage = Null, w cannot confirm the marriage. Moreover, he is unable to propose to another woman (w.marriage = Null). Thus, he is only eligible for one rule : BadInit. The reached configuration is in the set of configurations with (∃ v ∈ V : v.phase = 1). 2. If BestMarriage(w) = m 1 then either:

w.proposal = Null. It is the normal case: if w is married, she is enabled for the ToPhase1 rule. Otherwise, she is enabled for Propose2. w.proposal = m 2 . Since BestMarriage(w) = w.proposal, w cannot confirm if m 2 accepts the proposal. Since w.marriage = Null, w is eligible for the Propose2 rule.

To summarize, either the reached configuration C is in the set of configurations where ∃ v ∈ V : v.phase = 1 or in ({2}, {2}, 0) where the two conditions of this proposition statement are no satisfied. If C 1 is C 1 , by Lemmas 7, 10,11, 12 and 15, the system reaches a configuration C' in ({2}, {2}, 0) in O(n 4 ) moves. All nodes have been activated for transition rule ToPhase2 and they have reset their proposal pointer. Because Reset is mutually exclusive with other rules (thanks to the predicate IncoherentPointersM), if necessary, marriage-pointers have been reset before the activation for ToPhase2. Then C' has no woman enabled for BadInit or man for Reset, and if w.proposal = Null then w.proposal = BestMarriage(w).

Proposition 5. Let E be a sub-execution starting from C 1 and ending at C 2 such that for each configuration in E, all nodes are in phase 2. Assume that C 1 is in ({2}, {2}, 0) such that 1. no man is enabled for a Reset rule; 2. no woman w is enabled for a BadInit rule and if w.proposal = Null, then w.proposal = BestMarriage(w).

E contains at most O(n 2 ) moves.

Proof. Let w be a woman. Let A i → B i be a transition in which w executes rule Propose2. Let α be the number of times where w executes rule Propose2 in E. From Lemma 29, we have w(w, w.proposal(A i )) < w(w, w.proposal(A i+1 )), for 1 ≤ i < α. So, since the function w() is upper bounded by n + 1, then w executes rule Propose2 in E at most n + 2 times. From Lemma 30, if w executes three consecutive rules, them one of them corresponds to an execution of rule Propose2. Thus, w executes at most O(n) moves.

Let m be a man. Using Lemma 27 and applying the same result as previously, w executes rule Accept (resp. Confirm) at most O(n) times. In total, E contains at most O(n 2 ) moves.

Corollary 1. Let E be an execution starting from a configuration in ({2}, {2}, 0) such that 1. no man is enabled for the Reset rule, 2. no woman w is enabled for the BadInit rule and either w.proposal = Null or w.proposal = BestMarriage(w).

E contains O(n 2 ) moves.

Proof. First, we will prove by contradiction that all configurations after C 1 are in ({2}, {2}, 0). We assume that there exists a sub-execution E starting from C 1 and ending by transition C 2 → C 3 such 1. all nodes are in phase 2 for each configuration between C 1 and C 2 in E , 2. there exists a node in phase 1 in C 2 in E , First, assume there is a woman w is in phase 1. Thus it implies that w executes a rule in order to change its phase. Since all nodes are in phase 2 in C 2 , w executes rule ToPhase1. So, it implies that w is married and BlockingPairW(w) is True. This contradicts the fact that if Married(w) is True in C then BlockingPairW(w) is false in C (see Lemma 29) Thus there exists a man m such that m is in phase 1. Thus it implies that m executes a rule in order to change its phase. Since all nodes are in phase 2 in C 2 , m executes rule Reset. This contradicts the assumption of this corollary.

To sum up, all configurations after C 1 are in ({2}, {2}, 0) and the corollary holds by applying Proposition 5.

1:

  Reset : (* Reset pointers of marriage and proposal *) 2:{ IncoherentPointersW(w) } 3:w.marriage ← Null, w.proposal ← Null 4: BadInit : (* Reset the pointer of proposal *) 5:

  proposal } 15: w.marriage ← w.proposal, w.proposal ← Null 16: Propose2: (* Propose in phase 2*) 17: { ¬IncoherentPointersW(w) ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 2 18: ∧ BestMarriage(w) = w.proposal ∧ w.marriage = Null } 19: w.proposal ← BestMarriage(w) 20: Confirm2: (* Confirm a proposal in phase 2 *) 21: { ¬IncoherentPointersW(w) ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 2 22: ∧ Response(w) ∧ w.marriage = Null 23: ∧ BestMarriage(w) = w.proposal } 24: w.marriage ← w.proposal, w.proposal ← Null 25: ToPhase1.5: (* To the phase 1.5 *) 26: { ¬IncoherentPointersW(w) ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 1 27: ∧ ¬BlockingPairW(w) } 28: w.phase ← 1.5, w.proposal ← Null 29: ToPhase2: (* To the phase 2 *) 30: { ¬IncoherentPointersW(w) ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 1∈ N (w) : (m.phase = 1 ∧ w.phase = 2) 36: ∨ (m.phase = 2 ∧ w.phase = 1.5)] 37: ∨ 38: [(w.phase ∈ {2, 1.5} ∧ BlockingPairW(w))]) } 39: w.phase ← 1, w.proposal ← Null Algorithm 2 for m ∈ Men 1: Reset: (* Reset pointer of marriage *) 2: { IncoherentPointersM(m) } 3: m.marriage ← Null 4: m.phase ← 1 5: Accept: (* Accept a proposal except in phase 1.5 *) 6: { ¬IncoherentPointersM(m) ∧ AllCoherentPhase(m) 7: ∧ BestProposal(m) = Null ∧ ¬AlreadyEngaged(m) } 8: m.proposal ← BestProposal(m) 9: Confirm: (* Confirm a marriage *) 10: { ¬IncoherentPointersM(m) ∧ m.proposal.marriage = m 11: ∧ AllCoherentPhase(m) } 12: m.marriage ← m.proposal, m.proposal ← Null 13: ToPhase1.5: (* To the phase 1.5 *) 14: { ¬IncoherentPointersM(m) ∧ ∀ w ∈ N (m) : w.phase = 1.5 15: ∧ m.phase = 1 ∧ ¬BlockingPairM(m) ∧ ¬AlreadyEngaged(m) } 16: m.phase ← 1.5, m.proposal ← Null 17: ToPhase2: (* To the phase 2 *) 18: { ¬IncoherentPointersM(m) ∧ ∀ w ∈ N (m) : w.phase = 2 19: ∧ m.phase = 1.5 ∧ ¬BlockingPairM(m) } 20: m.phase ← 2, m.proposal ← Null 21: ToPhase1: (* To the phase 1 *) 22: { ¬IncoherentPointersM(m) ∧ ( 23: [(∃ w ∈ N (m) : w.phase ∈ {1.5, 1}) ∧ m.phase = 2] 24: ∨ 25: [(∃ w ∈ N (m) : w.phase = 1) ∧ m.phase = 1.5]) } 26: m.phase ← 1, m.proposal ← Null 4 Proof of Correctness and Time Complexity

  1. ({1.5}, {1.5}, X) or 2. ({1.5, 2}, {1.5}, X) or 3. ({1.5, 2}, {2}, X) or 4. ({2}, {1.5, 2}, X) or 5. ({1.5}, {1.5, 2}, X) or 6. ({1.5, 2}, {1.5, 2}, X) or 7. ({1.5}, {2}, X) or 8. ({2}, {1.5}, X) or 9. ({2}, {2}, X)

Proof.

  Let us consider cases. If w.marriage(C) = w.marriage(C'), there are two cases in phase 1: 1. w.marriage(C) = m and w.marriage(C') = Null 2. w.marriage(C) = m and w.marriage(C') = m 1 (Since single women in phase 1 or 1.5 cannot been eligible for a Propose1 rule, the case w.marriage(C) = Null and w.marriage(C') = m is not possible. (Married(w) in C is False))

  First, assume that w executes rule Propose2 in D 2 → D 3 . We are in the case where D 2 → D 3 is the same transition F 0 → F 1 . Between D 1 and D 2 , the local variable of w remains contained. It implies that In D 2 , we have m 1 = BestMarriage(w), and m 1 = m 2 . Second, assume that w executes rule Confirm2 in D 2 → D 3 . So, in D 2 , we have m 1 .proposal = w, w.proposal = m 1 , and AlreadyEngaged(m 1 ). Thus, in D 2 , m 1 is enabled for rules Accept and Confirm. Thus in D 3 , Married(w). Moreover, Lemma 28 implies that for ∀m ∈ Men, p(m, m.marriage(D 0 )) ≥ p(m 2 , m 2 .marriage(D 2 )). Thus, this means that BlockingPairW( w) is False in D 3 . Since F 0 , w.marriage = Null, then w should execute a rule between D 3 and F 0 . Let D 4 → D 5 be the first transition between in D 3 and F 0 in which w should execute a rule. Since in D 4 , w.marriage = m 1 , then Married(w) equal false (Lemma 23). Thus m 1 .marriage = w in D 4 . Thus, there exists an transition in which m 1 executes Confirm between D 3 and D 4 . Let H 1 → H 2 be the first transition after D 3 in which m 1 executes Confirm. So, it implies that in H 1 , m 1 .marriage = w and m 1 .marriage = w. Since m 1 .marriage remains constant between D 3 and H 1 , Married(w) is True between D 3 and H 1 . Using the same argument for configuration D 3 , BlockingPairW( w) is False between D 3 and H 1 .

  C 4 → C 5 be three transitions corresponding to three consecutive rules executed by w. Then w executes rule Propose2 once between C 0 and C 5 . Proof. Using Lemma 23, w can only execute Propose2, Reset, and Confirm2. Assume that in C 0 → C 1 , w executes rule Confirm2. Then, in C 1 , there exists a man m such that w.marriage(C 1 ) = m. Since w does not execute any rule, then in C 2 , we have w.marriage(C 2 ) = m. Using Lemma 23, since w executes a rule in C 2 → C 3 , w executes rule Reset in C 2 → C 3 . Moreover, since in C 3 , w.marriage(C 3 ) = Null, Lemma 23 implies that w executes rule Propose2 in transition C 4 → C 5 . And the lemma holds We apply the same argument when w executes rule Confirm2 in C 0 → C 1 . Proposition 4. Let C be a configuration in ({2}, {2}, 0), where 1. a man is enabled for Reset or 2. a woman w is enabled for BadInit or if w.proposal = Null then w.proposal = BestMarriage(w). Any execution starting from C takes O(n 4 ) moves to reach a configuration C' in ({2}, {2}, 0), where neither of these conditions is satisfied. Proof. Let m be a man eligible for Reset. As nodes do not change their phase because there is no BP, by Corollary 5, after O(n 2 ) moves, there is no other remaining moves than the m's Reset. m is eligible for the Reset, it means that [(m.marriage.marriage = m) ∨ (m.marriage = m.proposal)]. In the first case, if (m.marriage.marriage = m) in C, men's pointers do not change without Reset. In fact, a woman w cannot set w.marriage to m. Indeed, a woman cannot propose to m because of the definition of C v (since m.marriage = w, p(m, w) < p(m, m.marriage) is not True ). If the proposition pointer of w is already set to m, she can only confirm if m.proposal is set to w. We are also in the second case of the condition of Reset. Thus, (m.marriage.marriage = m) is always True until m is activated for Reset. Second case, if (m.marriage = m.proposal) is always True until the Reset is done because of the predicate ¬IncoherentPointersM(m) included in each rule (Reset is the only eligible rule if its guard is True ). Then, m stays eligible for the Reset rule.

  ToPhase1 (Predicate BlockingPairW(w) is True). After this move, if w is in 1.5 he is eligible for the ToPhase1 rule. -Accept rule if a woman is proposing to m and that her proposal is the best proposal for m in C. Since P v is defined respecting the preference of the proposing woman and m, m accept only if the marriage is beneficial for both of them. But in C 0 (such tat C * → C 0 ), an other better ranked woman may propose to m. Then, m is eligible O(n) times. -Confirm rule. When m confirm, he is already considered married (after the Confirm1 rule of the woman). But he is not eligible twice, because it would mean he has a new marriage (and then a woman has been activated for a Confirm1 rule).

Appendix Closure Proof

Lemma 1. Let C be a terminal configuration. For any node v, the predicates IncoherentPointersM(v) and IncoherentPointersW(v) are False.

Proof. If there exist some nodes for which these predicates are True, they are eligible for the Reset rule, which gives a contradiction with the fact that the configuration is terminal.

Lemma 2. Let C be a terminal configuration. Let v ∈ Men. Then predicate AllCoherentPhase(v) is True in C.

Proof. Assume that AllCoherentPhase(v) is False, by contradiction. There exists some u ∈ Women such that:

1. if v.phase = 2 then u.phase ∈ {1, 1.5} 2. if v.phase = 1 then u.phase = 2 Predicate IncoherentPointersW(u) is False by Lemma 1. If u.phase ∈ {2, 1.5} then u is eligible for the ToPhase1 rule since v ∈ N (u) and because of points 1 and 2. If u.phase = 1 then v is eligible for ToPhase1. This contradicts the fact that the configuration is terminal. Lemma 3. Let C be a terminal configuration and v be a node. If there exists a node u ∈ N (v) such that v.marriage = u then u.marriage = v.

Proof. Assume first that v ∈ Men and that v.marriage = u ∈ Women. If u.marriage = v then predicate IncoherentPointersM(v) is True, which is not possible in a terminal configuration, by Lemma 1.

Assume now that v ∈ Women, that v.marriage = u with u ∈ Men and that u.marriage = v. Necessarily u.proposition = v or IncoherentPointersW(v) is True, which is not possible by Lemma 1. We also have that the predicate IncoherentPointersM(u) is False by Lemma 1. This implies that AllCoherentPhase(u) is False or u eligible for Confirm. This gives a contradiction, by Lemma 2.

Proof. Assume by contradiction that there exists some node v in phase 1 in configuration C.

We check first the case in which v ∈ Women. Let u ∈ Men. We have that predicate IncoherentPointersM(u) is False for u and v by Lemma 1. Observe now that u is in phase 1 or it is eligible for the ToPhase1 rule. Thus we can assume that all men are in phase 1 as well.

There are two different cases for woman v:

she is married and has a blocking pair with some node u 1 ∈ Men. Assume without loss of generality that u 1 corresponds to BestMarriage(v). Necessarily v.proposition = u 1 or v eligible for Propose1.

There are two cases for man u 1 :

Convergence to a Stable Marriage Lemma 23. Let E be a sub-execution starting from C 1 and ending at C 2 such that for each configuration in E, all nodes are in phase 2. Assume that a transition D 0 → D 1 in E results from the activation of (a rule of ) a woman w.

1. The activated rule is not in {ToPhase1, BadInit}; 2. If w.marriage = Null in D 0 , then the activated rule is either Propose2 or Confirm2; 3. If w.marriage = Null and Married(w) is False in D 0 , then the activated rule is rule Reset.

Moreover, a woman w 1 is enabled for any rule in

Proof. Since w is in phase 2 in D 0 (assumption of this lemma), w is enabled for any rule in {ToPhase1.5, ToPhase2, Confirm1, Propose1}. Moreover, since w remains in phase 2 in D 1 , w can not execute rules ToPhase1 and BadInit. If it is the case, then w will be in phase 1 in D 1 , and this fact contradicts the assumption of this lemma.

Assume that w executes a rule in D 0 → D 1 . We consider two cases. Lemma 24. Let E be a sub-execution starting from C 1 and ending at C 2 such for each configuration in E, all nodes are in phase 2. Assume that a transition D 0 → D 1 in E results from the activation of (a rule of ) a man m. Assume that AlreadyEngaged(m) in D 0 . In D 0 , m is enabled for Confirm in D 0 (due to its guard). Moreover, since not execute Accept in D 0 → D 1 Lemma 25. Let m be in Men. Let E be a sub-execution starting from C 1 and ending at C 2 such that for each configuration in E, all nodes are in phase 2. Let D 0 → D 1 and F 0 → F 1 be two transitions corresponding to two consecutive activations by m of the same rule.

1. If this rule is Confirm, then m exactly executes one Accept rule between D 1 and F 0 .

2. If this rule is Accept, then m exactly executes one Confirm rule between D 1 and F 0 .

Proof. First, let D 0 → D 1 and F 0 → F 1 be two transitions corresponding to two consecutive Confirm executed by m.

We prove that m executes an Accept during these two transitions at least once. We have: m.proposal = Null in D 1 and m.proposal = Null in F 0 according to the Confirm rule. So, m has to execute a rule to modify its proposal-variable between D 1 and F 0 . Since E is a sub-execution such that for each configuration in E, all nodes are in phase 2, m can execute only Accept or Confirm. Among the two rules Confirm or Accept, there is one rule doing that: Accept. Thus, m executes such that a rule at least once between D 1 and F 0 .

Second, Let D 0 → D 1 and F 0 → F 1 be two transitions corresponding to two consecutive rules Accept executed by m. We prove that m executes a Confirm during these two transitions at least once.

We now prove the second point. According to the Accept rule, m.proposal = Null in D 1 and m.proposal = Null in F 0 . So, m has to execute a rule between D 1 and F 0 to modify its proposal-variable. Since E is a sub-execution such for each configuration in E, all nodes are in phase 2, m can execute only Accept or Confirm rule. Among these two rule, there is one rule doing that: Accept. Thus, m executes such a rule at least once between D 1 and F 0 .

By combining the previous two facts, the lemma holds. Proof. Now, we will prove the first point. First, let D 0 → D 1 and F 0 → F 1 be two transitions corresponding to two consecutive rules Confirm executed by m.

From Lemma 25, there only exists one transition A → B between D 1 and F 0 in which m executes rule Accept. From the definition of rule Accept, we have p(m, m.marriage(A)) > p(m, m.proposal(B)).

Since m does not execute any rule between D 1 and A, his local variables remain constant, and p(m, m.marriage(D 1 )) > p(m, m.proposal(B)).

Moreover, since m does not execute any rule between B and F 0 , his local variables remain constant, and p(m, m.marriage(D 1 )) > p(m, m.proposal(F 0 )).

Thus, since from the definition of rule Accept, we have p(m, m.marriage(F 0 )) > p(m, m.proposal(F 1 )), we can conclude that we have p(m, m.marriage(D 1 )) > p(m, m.marriage(F 1 )).

We will prove the second point. Let D 0 → D 1 and F 0 → F 1 be two transitions corresponding to two consecutive rule Accept executed by m. From Lemma 25, there only exists one transition A → B between D 1 and F 0 in which m executes rule Confirm. From the definition of rule Confirm, we have m.marriage(B) = m.proposal(A).

From the definition of rule Accept, we have

So, we can conclude that p(m, m.proposal(D 1 )) > p(m, m.proposal(F 1 )).

Lemma 28. Let E be a sub-execution starting from C 1 and ending at C 2 such that for each configuration in E, all nodes are in phase 2. Let m be in Men.

Assume that C 1 is in ({2}, {2}, 0) such that 1. no man is enabled for a Reset rule; 2. no woman w is enabled for a BadInit rule and if w.proposal = Null, then w.proposal = BestMarriage(w). Second, for the case where m executes rule Confirm, we apply the same result in the first case, using Lemma 27.

Lemma 29. Let w be in Women. Let E be a sub-execution starting from C 1 and ending at C 2 such that for each configuration in E, all nodes are in phase 2. Assume that C 1 is in ({2}, {2}, 0) such that 1. no man is enabled for a Reset rule; 2. no woman w is enabled for a BadInit rule and if w.proposal = Null, then w.proposal = BestMarriage(w).

Let D 0 → D 1 and F 0 → F 1 be two transitions corresponding to two consecutive activations of Propose2 by w. Then, we have