

Networks-on-Chip Cortex Inspired Communication To Reduce Energy Consumption

Erwan Moréac, Johann Laurent, Pierre Bomel, André Rossi, Emmanuel Boutillon, Andrea Mineo, Maurizio Palesi

▶ To cite this version:

Erwan Moréac, Johann Laurent, Pierre Bomel, André Rossi, Emmanuel Boutillon, et al.. Networkson-Chip Cortex Inspired Communication To Reduce Energy Consumption. Design Automation Conference (DAC 2017), Jun 2017, Austin, TX, United States. , Design Automation Conference, DAC 2017. hal-01576029

HAL Id: hal-01576029 https://hal.science/hal-01576029

Submitted on 22 Aug 2017 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Networks-on-Chip Cortex Inspired Communication To Reduce Energy Consumption

Erwan Moréac¹, Johann Laurent¹, Pierre Bomel¹, André Rossi², Emmanuel Boutillon¹, Andrea Mineo³ and Maurizio Palesi³

> 1: Lab-STICC, CNRS UMR 6285, University of South Brittany, Lorient, France 2: LERIA, University of Angers, Angers, France 3: Department of Computer Science and Telecommunications Engineering, University of Catania, Catania, Italy

Università degli Studi di Catania

Introduction

Complex many-cores and SoCs contain one (if not several) NoCs. NoC power consumption can represent a significant proportion (40%) of the overall power consumption [M Taylor 2002].

Main components of a NoC

Cortex Inspired Communication

Brain is subjected to **two major constraints**:

- low level of available energy (i.e. sugar in the blood)
- 25 W overall maximum power dissipation [E R Kandel 2000]

The human brain stores and uses sensory information by using representational codes that rely on very few active neurons [P Lennie 2003].

Human neural system Network-on-chip

• Allow only **one transition** among a set of wires

Problem: only 1 bit of data sent

Use the bit position as an additionnal data For a bus of N wires, it gives log₂(N) bits of data

Related works

-Links power consumption computation:

$$P_d = \sum_{i=1}^{N_w} \alpha_i \times C_i \times V_{dd}^2 \times f_{clk}$$

- P_d, wires dynamic power consumption • C_i, wire i capacitance • N_w, the number of wires • α_i , wire i switching activity
 - V_{dd}, power supply • f_{clk}, clock frequency

Crosstalk effects have an important impact

-	-
Active nerve fibers rate: 1%	• Active wires rate per transmission : 50%
Power hungry neurons spikes	• Simultaneous wire transitions cause Crosstalk
Energy efficient coding representation	No data coding
	 Network maximum bandwidth under-used

Opportunities to reduce the NoC energy transmission cost

Tradeoff between bandwidth and energy efficiency

Proposition: Reduce the wire use rate to decrease energy consumption and delete Crosstalk

This is still not enough to send a data in one cycle, we must **decompose** a flit in several parts

Problem: Increase the packet transmission time

Allow the CIC transmission considering the network local state

Transmission strategies

CIC restriction according to the **local state** of the network. Three strategies are proposed:

- OCC : Buffer occupancy checking of the following router
- CONT : Contention checking at each output
- CONT+OCC : Restriction increased with both checking

Buffer occupancy checking architecture

JL

on links power consumption

 Several links energy optimizations have been proposed for NoCs:

- Bus coding to avoid Crosstalk in [M Taassori 2009]
- Serialized links [S Ogg 2008]
- Approximate computing [A Mineo 2013]

Only effective on very long wires

No tradeoff energy/throughput considered

Idea: mimic the brain processing, only few synapses among myriad are active at the same time.

Practical example

Clock cycle i	Data to send F[3 :0] (4 bits)	One-hot coding a ₁₅ -a ₀ (16 bits)	Data on links w ₁₅ -w ₀ (16 bits)
0	0001	0000 0000 0000 0010	0000 0000 0000 0010
1	1010	0000 0100 0000 0000	0000 0100 0000 0010
2	0101	0000 0000 0010 0000	0000 0100 00 <mark>1</mark> 0 0010
3	0001	0000 0000 0000 0010	0000 0100 0010 0000

Contention checking architecture

Results and conclusion

Application description

Dijkstra: compute the shortest path

Sapp: Susan-corners, Susan-edges, LU, Water and Water-spatial

Experimental set up

- ○5 clust app: same apps as 5 app, each app uses 4 cores in parallel
- •Full HD: 150MHz video flow through 6 image processing IPs

Cons

Strong delay overhead with OCC strategy

Pros

- The NoC need a frequency increase to run unidirectional high throughput video application
- Area overhead of 21% per router

0.95 0.90 0.85 0.80 ි 0.75

Classic NoC CIC with CONT □ CIC with CONT+OCC □ CIC with OCC

- Cycle-accurate, bit-accurate NoC simulator Application traces extraction from MPSoCBench Hardware overhead considered NoC 4x3 clocked at 1GHz, XY algorithm
- ~65nm CMOS technology,
- Wires length of 2mm, 32 bits

Up to 67% of links energy saving

- Up to 35% of total energy saving
- Delay between computations exploited

Adapt the method to design a CIC router

	CIC architecture with OCC strategy				CIC architecture with CONT			CIC architecture with				
					strategy			CONT+OCC strategy				
	Links	Encoder	Extra	Processing	Links	Encoder	Extra	Processing	Links	Encoder	Extra	Processing
Application	energy	use rate	delay	throughput	energy	use rate	delay	throughput	energy	use rate	delay	throughput
	(%)	(%)	(cycles)	(%)	(%)	(%)	(cycles)	(%)	(%)	(%)	(cycles)	(%)
Dijkstra	-67.7	99.6	42	0	-61.5	66.5	18	-0.001	-59.5	62.9	13	0
5	-63.6	0/1 08	21	-0.001	-57 5	64.4	8	-0.001	-50.6	58	7	0
applications	-05.0		∠⊥	-0.001	57.5	04.4	0	-0.001	-30.0	50	/	U
5 Clusters	-63.2	78 /	25653	_27.8/	-62.3	62.5	177/11	_12 5	_31 2	36	17	-0.01
applications	-05.2	70.4 23033	-27.04	-02.5	02.5	TCCHT	-12,3	-31.2	50	±/	-0.01	
Full HD	-64.1	78	42477	-42.2	-57.2	88	29070	-29	-57.2	87.5	29070	-28.9