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Chapter 1
Robust and Convergent Curvature and Normal
Estimators with Digital Integral Invariants ⇤

Jacques-Olivier Lachaud, David Coeurjolly, and Jérémy Levallois

Abstract We present, in details, a generic tool to estimate differential geometric
quantities on digital shapes, which are subsets of Zd . This tool, called digital integral
invariant, simply places a ball at the point of interest, and then examines the inter-
section of this ball with input data to infer local geometric information. Just counting
the number of input points within the intersection provides curvature estimation in
2D and mean curvature estimation in 3D. The covariance matrix of the same point
set allows to recover principal curvatures, principal directions and normal direc-
tion estimates in 3D. We show the multigrid convergence of all these estimators,
which means that their estimations tend toward the exact geometric quantities on —
smooth enough— Euclidean shapes digitized with finer and finer gridsteps. During
the course of the chapter, we establish several multigrid convergence results of dig-
ital volume and moments estimators in arbitrary dimensions. Afterwards, we show
how to set automatically the radius parameter while keeping multigrid convergence
properties. Our estimators are then demonstrated to be accurate in practice, with ex-
tensive comparisons with state-of-the-art methods. To conclude the exposition, we
discuss their robustness to perturbations and noise in input data and we show how
such estimators can detect features using scale-space arguments.

1.1 Curvature estimation on discrete data

Context and objectives. In many shape processing applications, the estimation of
differential quantities on the shape boundary is usually an important step. Their
correct estimation makes easier further processing, like quantitative evaluation, fea-
ture detection, shape matching or visualization. This paper focuses on estimating
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the curvature tensor on the boundary of digital shapes. Such digital structures are
subsets of the 3-dimensional digital space Z3 and come generally from the digiti-
zation of some Euclidean shape. Of course, the curvature tensor estimation should
be as close as possible to the curvature tensor of the underlying Euclidean shape
before digitization. Digital data form a special case of discrete data with specific
properties: (1) digital data cannot sample the boundary of the Euclidean shape (i.e.
they do not lie on the shape boundary), (2) digital data is distributed around the
true sample according to arithmetic noise, which looks rather uniform over a range
[�h,h] from a statistical point of view, where h is the digitization grid step. Another
way of stating these characteristics is to say that the Hausdorff distance between the
Euclidean shape and its digitization is some O(h). Of course, the quality of the esti-
mation should be improved as the digitization step gets finer and finer. This property
is called the multigrid convergence [KR04, CLR12]. It is similar in spirit with the
stability property in geometry processing: given a continuous shape and a specific
sampling of its boundary, the estimated measure should converge to the Euclidean
one when the sampling become denser (e.g. [ABK98, MOG11]).

Curvature estimation on meshes. Digital data being discrete in nature, it is in-
teresting to look at the curvature estimation techniques on triangulated meshes. In
computer graphics and geometry processing, there exists a vast family of techniques
to estimate either the mean or Gaussian curvatures, or sometimes the full curvature
tensor. Most of them are local (i.e. limited to a 1-ring or 2-ring of neighbors) but
exhibit correct results for nice meshes. They generally fall into three categories: fit-
ting, discrete methods, curvature tensor estimation. We may refer to [SMS+03] and
[GG06] for comprehensive evaluations, and Desbrun et al. [DHLM05] or Bobenko
and Suris [BS08] for an entirely discrete theory. Most of them do not have the-
oretical convergence guarantees even without noise on the mesh. We may quote
[PSK+02] and [Rus04] as approaches trying to tackle perturbation through averag-
ing.

For Gaussian curvature estimated with Gauss-Bonnet approach (angle defect),
Xu [Xu06] provides a stability theorem for triangulated mesh whose vertices lie
on the underlying smooth manifold, with valence 6 and parallelogram condition
(each 1-ring of neighbors is projected as a parallelogram onto a plane). Assuming a
sampling with density d , he provides an additional convergence property whenever
the sampling is perturbated by some O(d a), but a > 2 (inadequate for discrete
data). Note that if the triangulated mesh does not satisfy these requirements, such
estimation does not converge.

The integral measures of curvatures, based on normal cycle theory [CSM03,
CSM06] is another notable approach for estimating curvature information on a trian-
gulated mesh. The authors exhibit some convergence results for triangulated meshes
with vertices lying on the underlying smooth Euclidean shape boundary. In this case,
if the mesh has Hausdorff distance to shape boundary below e , convergence is ob-
tained with speed/error O(e) under some hypotheses.

Finally, in geometry processing, interesting mathematical tools have been de-
veloped to design differential estimators on smooth surfaces based on integral in-
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variants [PWY+07, PWHY09]. They consist in moving a kernel along the shape
surface and in computing integrals on the intersection between the shape and the
kernel. The authors have demonstrated that some integral quantities provide inter-
esting curvature information when the kernel size tends to zero. They also achieve
stability depending on the kernel radius and on e , for instance in the case of a mesh
sampling. Our new estimators rely on the same ideas.

Curvature estimation on point clouds. When having only discrete data (i.e. a point
cloud), the most natural way to approach curvature(s) is to fit a polynomial surface
of degree two at least. Perhaps the most representative of these techniques is the os-
culating jets of Cazals and Pouget [CP05]. The authors provide O(d 2) convergence
results when the data is a surface sampling, assuming d is the density of points.
There is no theoretical result in presence of noise, although the least-square fitting
of osculating jets is very robust to noise in practice.

Another family of techniques exploits the Voronoi diagram [ACSTD07, MOG09,
MOG11]. The idea behind these approaches is, instead of fitting the tangent space, to
estimate at best the orthogonal space. The convolved covariance measure introduced
by Mérigot et al. [MOG11] is particularly appealing since this measure achieves
robustness even for arbitrary compact sets, essentially in O(

p
e). It is, in some sense,

an integral measure of the covariance matrix of the normal cone around the point of
interest. However, convergence of curvature(s) is subject to several parameters r and
R which contribute contradictorily to the Hausdorff error. In practice, this approach
gives results comparable to osculating jets for curvatures.

Recently, several authors have developed new interesting approaches for estimat-
ing the normal vector field on noisy point clouds, even in the presence of sharp fea-
tures [LSK+10, BM12, ZCL+13]. Furthermore, Boulch and Marlet [BM12] gives
probabilistic convergence results. Although they cannot be used “as is” for curvature
computation, they could be used in parallel with curvature estimation techniques to
locate sharp features in a first pass, and to limit curvature estimations to smooth
zones.

Following integral invariants approaches proposed in [PWY+07, PWHY09],
Digne and Morel [DM14] propose several differential estimators on point clouds.
These estimators (normal vector field, curvature tensor. . . ) also consider a spher-
ical integration kernel and covariance matrices are constructed from point clouds
or oriented point clouds (i.e. points equipped with normal vector). For a large set
of estimators, the authors provide convergence results (as the spherical kernel ra-
dius tends to zero) in the continuous case. Our estimators on digital surfaces follow
similar principles making explicit convergence speed.

Last, a very recent approach coming from geometric measure theory uses the
theory of varifolds to design stable mean curvature estimations [Bue14, BLM15].
This theory is generic enough to include smooth manifolds, discrete meshes, point
clouds, and digital data into the same framework. For geometric estimation, this
approach requires to have both position and normal approximation. If both are con-
vergent (in some sense), then the regularized first variation of the varifold measure
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converges toward the mean curvature. The speed of convergence of this approach as
well as its accuracy in practice remain to be explored.

Curvature estimation on digital contours and surfaces. In digital geometry, we
usually consider multigrid convergence as an essential criterion [CLR12]. Hence,
in dimension 2, parameter free convergence results have been obtained for length
[CK04] and normal vector estimation [dVLF07]. Based either on binomial convolu-
tion principles [MBF08, EMC11], or polynomial fitting [PG11], convergence results
can also be obtained for higher order derivatives of digital curves. Algorithms are
parametrized by the size of the convolution or fitting kernel support and conver-
gence theorems hold when such support size is an increasing function of the grid
resolution and some shape characteristics.

For curvature estimation along 2D curves, multigrid convergence of parameter-
free estimators is still challenging, although accurate experimental results have
been obtained with maximal digital circular arcs [RL11] and with global optimiza-
tion [KL09]. In 3D digital space, several empirical methods exist for estimating
curvatures, but none achieves multigrid convergence (e.g. see [Len97, FM08]). In
[CLL13], we recently presented a digital estimator for mean curvature for 2D and
3D digital objects, which achieves multigrid convergence in O(h

1
3 ).

Desirable properties for digital curvature estimators. Our objective is to design
a curvature tensor estimator for digital data such that: (1) it is provably multigrid
convergent, (2) it is accurate in practice, (3) it is computable in an exact manner,
(4) it can be efficiently computed either locally or globally (evaluation at a single
surface point or extraction of the curvature tensor field), (5) it is robust to further
perturbations (like bad digitization around the boundary, outliers).

Contributions and outline of the chapter. We achieve such a goal by adapting
the integral invariant tool originally designed for smooth manifolds and triangulated
meshes [PWY+07, PWHY09]. We begin in Section 1.2 by giving some background
on digitization processes with a few useful lemma, and by recalling the multigrid
convergence property as well as integral invariants in the continuous setting. In or-
der to define a sound digital version of such object, it appears clearly that digital
moments (of up to 2nd order) must replace continuous moments. This is why we
study digital moments in Section 1.3 and we establish several results related to vol-
ume and moments approximation. Then, Section 1.4 shows how curvature in 2D
and mean curvature in 3D can be approximated with digital integral invariants. This
approach relies solely on simple volume estimates. We are then ready to address
in Section 1.5 the more involved issue of estimating principal curvatures and direc-
tions, as well as the normal vector. This is done by building a local digital covariance
matrix. Section 1.6 provides a method to automatically set the radius parameter of
integral invariants so as to achieve multigrid convergence. Section 1.8 presents a
comprehensive evaluation of the practical accuracy of our estimators. Their robust-
ness to perturbation on input data is then illustrated on numerous examples. Last,
such estimators are shown to be useful for feature detection on digital surfaces. Sin-
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gularities (edges) on shapes are detected by examining the behavior of curvature
estimators in scale-space.

1.2 Background: multigrid convergence and integral invariants

1.2.1 Digital space and digitizations operators

Since we are interested in evaluating both theoretically and experimentally the be-
havior of several differential estimators on digital object boundaries, we first have
to formalize links between Euclidean objects and digital ones with the help of a
digitization process. Let us consider a family X of compact subsets of Rd whose
smoothness requirements will be precised later. The digital space is defined as the
set of points of Rd with integer coordinates, naturally denoted by Zd . We denote
Gh(X) the Gauss digitization of X in a d�dimensional grid of grid step h:

Gh(X) :=
n

z 2 Zd ,(h · z) 2 X
o

, (1.1)

where h · z is the uniform scaling of z by factor h. If z 2 Zd , then Q(z) denotes the
(closed) unit d-dimensional cube of Rd centered on z and aligned with the axes of
Zd . We further define Qh(z) := h · Q(z), so-called h�cube, as the scaled version
of Q(z) (i.e. Qh(z) is a d-dimensional cube centered at h · z with edge length h). In
addition to the Gauss digitization operator, we consider the inner Jordan digitization
J�

h (X) and outer Jordan digitization J+
h (X) at step h of a shape X 2 X as follows

(see Figure 1.1):

J�
h (X) :=

n

z 2 Zd ,Qh(z) ⇢ X
o

, (1.2)

J+
h (X) :=

n

z 2 Zd ,Qh(z)\X 6= /0
o

. (1.3)

Given a digital set Z ⇢ Zd , the body of Z is the embedding of Z into Rd , denoted by
[·]h and defined as:

[Z]h :=
[

z2Z
Qh(z) . (1.4)

Let us now formalize relationships between Gauss, Jordan digitizations and the Eu-
clidean shape X . We call Jordan strip the digitization J0

h(X) := J+
h (X)\J�

h (X). Its
body is clearly a union of h-cubes, with a thickness of at least one h-cube. First, it
is straightforward to check that:

Lemma 1 J�
h (X) ⇢ Gh(X) ⇢ J+

h (X) and [J�
h (X)]h ⇢ X ⇢ [J+

h (X)]h.

From these objects, it is natural to consider the relations of ∂X , the topological
boundary of X , with the digitized boundaries ∂ [Gh(X)]h, ∂ [J�

h (X)]h or ∂ [J+
h (X)]h.

We have:
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Lemma 2 [J0
h(X)]h = [J+

h (X)]h \ Int([J�
h (X)]h) and ∂X ⇢ [J0

h(X)]h.

Proof. The first equality is straightforward. For the inclusion ∂X ⇢ [J0
h(X)]h, on the

one hand we have by Lemma 1 that [J�
h (X)]h ⇢ X , hence Int([J�

h (X)]h) ⇢ Int(X),
so ∂X \ Int([J�

h (X)]h) = /0. On the other hand we have by the same lemma that X ⇢
[J+

h (X)]h. By compacity of X , we have ∂X ⇢ X and thus ∂X ⇢ [J+
h (X)]h. Putting

these two facts together concludes.

X ∂X (h ·Gh(X))

h

[Gh(X)]h ∂ [Gh(X)]h

h

(h ·J�
h (X)) (h ·J+

h (X))

h

∂ [J�
h (X)]h ∂ [J+

h (X)]h

(h ·J0
h(X))

h

Fig. 1.1 Illustration of the digitization models and notations.

The e-offset of a shape X is the set of points at distance lower or equal to e from
X . It is denoted by Xe . Furthermore, the medial axis MA(∂X) of ∂X is the subset of
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Rd whose points have more than one closest point to ∂X . The reach reach(X) of X
is the infimum of the distance between ∂X and its medial axis. Shapes with positive
reach have principal curvatures bounded by ±1/reach(X). They have a C2 smooth
boundary almost everywhere. The boundary of the Gauss digitization of X is close
to the surface ∂X for smooth shapes:

Theorem 1 ([LT14]) Let X be a compact domain of Rd such that the reach of ∂X
is greater than r . Then, for any digitization step 0 < h < 2rp

d
, the Hausdorff distance

between sets ∂X and ∂ [Gh(X)]h is less than
p

dh/2. Hence

∂ [Gh(X)]h ⇢ (∂X)
p

d
2 h . (1.5)

This is also true for Jordan digitizations, with lesser hypotheses on X , but with a
larger bound:

Lemma 3 Let X be a compact domain of Rd. Jordan digitizations of X are close to
the boundary of X in the Hausdorff sense:

∂ [J�
h (X)]h ⇢ (∂X)

p
dh , (1.6)

∂ [J+
h (X)]h ⇢ (∂X)

p
dh , (1.7)

[J0
h(X)]h ⇢ (∂X)

p
dh . (1.8)

Proof. First of all, one can check that ∂ [J0
h(X)]h = ∂ [J�

h (X)]h [ ∂ [J+
h (X)]h. It fol-

lows that proving the last inclusion implies the first two ones.
Now, let x 2 [J0

h(X)]h. There exists some h-cube Qh(z) that contains x, such that
(i) Qh(z)\ X 6= /0 since z 2 J+

h (X), and (ii) Qh(z) 6⇢ X since z 62 J�
h (X). From (i),

there exists y1 2 Qh(z) \ X . From (ii), there exists y2 2 Qh(z) and y2 62 X . The
straight segment [y1y2] joining y1 to y2 is an arc that goes from X to the comple-
mentary of X . By compacity of X , there exists some y3 2 [y1y2] with y3 2 ∂X . By
convexity of Qh(z), y1 2 Qh(z) and y2 2 Qh(z) implies [y1y2] ⇢ Qh(z). It follows
that y3 belongs also to Qh(z). We have just found a point in the same h-cube as x,
which lies in ∂X . Since two points in some h-cube may not be further away thanp

dh, x is no further away than this distance from ∂X .

The following result will also be useful.

Lemma 4 (Proof of Lemma 10 [LT14]) Let X be a compact domain of Rd such
that the reach of ∂X is greater than r , and let e be some value smaller or equal to
r . Then

Vol(∂Xe)  2d+1Area(∂X)e. (1.9)
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1.2.2 Multigrid convergence of global and local geometric

estimators

As discussed in various previous works (see for instance [CLR12] for a survey), the
idea of multigrid convergence is that when we define a quantity estimator on the
digitization of some shape X ⇢ Rd , we check if the estimated quantity converges
(theoretically and/or experimentally) to the associated one on X when h tends to
zero. More formally,

Definition 1 (Multigrid convergence for local geometric quantities) Given a
digitization process D, a local discrete geometric estimator Ê of some geometric
quantity E is multigrid convergent for the family of shapes X if and only if, for
any X 2 X, there exists a grid step hX > 0 such that the estimate Ê(Dh(X), x̂,h) is
defined for all x̂ 2 ∂ [Dh(X)]h with 0 < h < hX , and for any x 2 ∂X,

8x̂ 2 ∂ [Dh(X)]h with kx̂�xk•  h, |Ê(Dh(X), x̂,h)�E(X ,x)|  tX ,x(h), (1.10)

where tX ,x : R+ \ {0} ! R+ has null limit at 0. This function defines the speed of
convergence of Ê toward E at point x of X. The convergence is uniform for X when
every tX ,x is bounded from above by a function tX independent of x 2 ∂X with null
limit at 0.

Note that when a geometrical quantity is global (e.g. area or volume), we do
not need and explicit mapping between ∂X and ∂ [Dh(X)]h, and Definition 1 can be
rephrased to define the simpler multigrid convergence of global geometric quantities
[CLR12].

Instead of estimating the geometric quantity for all x̂ 2 ∂ [Gh(X)]h, classical lo-
cal discrete estimators estimate the quantity at cells of the cellular boundary of a
digital set, otherwise said at elements of the interpixel representation of the digital
set boundary (pointels, linels or surfels). We usually consider a canonical Euclidean
embedding of k�cells into Rd (1-cells are mapped into unitary Euclidean segments,
2-cells into unit squares. . . ), scaled by the factor h. Furthermore the estimated quan-
tity Ê(Dh(X), x̂,h) is constant for all x̂ belonging to the embedding of a boundary
k�cell.

1.2.3 Integral invariants in the continous setting

In geometry processing, integral invariants have been widely investigated to de-
fine estimators of differential quantities (see [PWY+07, PWHY09] for a complete
overview). For short, the main idea is to move a kernel on points x 2 ∂X and to com-
pute integrals on the intersection between X and the kernel. Even if different kernels
(e.g., Euclidean ball, Euclidean sphere) and different integration functions can be
considered, we focus here on volumetric integral invariants defined as follows:
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Definition 2 Given X 2 X and a radius R 2 R+⇤, the volumetric integral VR(x) at
x 2 ∂X is given by (see Fig. 1.3)

VR(x) :=
Z

BR(x)
c(p)dp , (1.11)

where BR(x) is the Euclidean ball with radius R and center x and c(·) the charac-
teristic function of X. In dimension 2, we simply denote AR(x) such quantity.

Several authors have detailed connections between VR(x) and curvature (resp. mean
curvature) at x for shapes in R2 (resp. R3) [BGCF95, PWY+07, PWHY09].

Lemma 5 ([PWHY09]) For a sufficiently smooth shape X in R2, x 2 ∂X, we have

AR(x) =
p
2

R2 � k(X ,x)

3
R3 +O(R4) , (1.12)

where k(X ,x) is the curvature of ∂X at x. For a sufficiently smooth shape X in R3

and x 2 ∂X, we have

VR(x) =
2p
3

R3 � pH(X ,x)

4
R4 +O(R5) , (1.13)

where H(X ,x) is the mean curvature of ∂X at x.

Such results are obtained by Taylor expansion at x of the surface ∂X approximated
by a parametric function y = f (x) in 2D and z = f (x,y) in 3D. From Eq. (1.12)
and (1.13) and with a fixed radius R, one can derive local estimators k̃R and H̃R

respectively:

k̃R(X ,x) :=
3p
2R

� 3AR(x)

R3 , H̃R(X ,x) :=
8

3R
� 4VR(x)

pR4 . (1.14)

In this way, as R tends to zero, both estimated values converge to expected ones
(respectively k and H). More formally:

k̃R(X ,x) = k(X ,x)+O(R), H̃R(X ,x) = H(X ,x)+O(R) . (1.15)

Similarly, directional information such as principal curvatures and thus Gaussian
curvature can be retrieved from integral computations. Indeed, instead of computing
the measure of BR(x)\ X as in Def. 2, we consider its covariance matrix. Given a
non-empty subset Y ⇢ Rd , the covariance matrix of Y is given by

V (Y ) :=
Z

Y
(p�Y )(p�Y )T dp =

Z

Y
ppT dp�Vol(Y )YY T

, (1.16)

where Y is the centroid of Y and Vol(Y ) its volume. For non negative integers p, q
and s, we recall the definition of pqs-moments mpqs(Y ) of Y :

mpqs(Y ) :=
ZZZ

Y
xpyqzsdxdydz . (1.17)
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Note that the volume Vol(Y ) is the 0-moment m000(Y ), and that the
centroid Y is the vector of 1-moments normalized by the 0-moment, i.e.
(m100(Y ),m010(Y ),m001(Y ))T /m000(Y ). For simplicity, let us denote by A the Eu-
clidean set BR(x)\X . The covariance matrix of A is then rewritten as2:

V (A) =

2

4

m200(A) m110(A) m101(A)
m110(A) m020(A) m011(A)
m101(A) m011(A) m002(A)

3

5

� 1
m000(A)

2

4

m100(A)
m010(A)
m001(A)

3

5⌦

2

4

m100(A)
m010(A)
m001(A)

3

5

T

. (1.18)

In [PWY+07], authors have demonstrated that eigenvalues and eigenvectors of
V (A) provide principal curvature and principal direction information:

Lemma 6 ([PWY+07], Theorem 2) Given a shape X 2 X, the eigenvalues l1, l2,
l3 of V (A), where A := BR(x)\ X and x 2 ∂X, l1 � l2 � l3, have the following
Taylor expansion:

l1 =
2p
15

R5 � p
48

(3k1(X ,x)+k2(X ,x))R6 +O(R7) , (1.19)

l2 =
2p
15

R5 � p
48

(k1(X ,x)+3k2(X ,x))R6 +O(R7) , (1.20)

l3 =
19p
480

R5 � 9p
512

(k1(X ,x)+k2(X ,x))R6 +O(R7) , (1.21)

where k1(X ,x) and k2(X ,x) denote the principal curvatures of ∂X at x.3

Hence, similarly to Eq. (1.14), one can define local estimators k̃R
1 , k̃R

2 and finally
the Gaussian curvature K̃R := k̃R

1 · k̃R
2 as functions of {li}1,2,3 and R. From Lemma 6,

all these estimators approach expected quantities when R tends to 0.
When dealing with digital shapes Dh(X), implementation of these estimators be-

comes straightforward: choose a radius R, center a Euclidean (or digital) ball at
chosen points of ∂ [Dh(X)]h (e.g. centroids of linels or surfels), compute the quanti-
ties (area, volume, covariance matrix) and finally estimate curvature information k̃ ,
H̃, k̃1, k̃2 or K̃.

However, several issues are hidden in this approach: What are meaningful values
for R according to the shape size and geometry ? Do points of ∂ [Dh(X)]h converge
to points x 2 ∂X for which Lemmas 5 and 6 are valid ? Does counting the number of
pixels (resp. voxels) converge to AR(x) (resp. VR(x)) ? Does the digital covariance
matrix converges to the expected one ? The rest of the chapter addresses all these
questions.

2 ⌦ denotes the usual tensor product in vector spaces.
3 There is a typographic error in the l1 expression in [PWY+07].
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1.3 Digital moments

Integral invariants rely on the precise estimation of the volume and covariance ma-
trix of specific Euclidean subsets. These quantities can be expressed as functions
of zeroth, first and second order moments of Euclidean subsets. It is thus of critical
importance to estimate properly moments in the digital world in order to use integral
invariants for approximating curvatures of digital shapes.

Since the approximation of moments is directly related to area and volume es-
timation, but also to integral approximation, there exists a vast litterature on this
topic. It is known since Gauss and Dirichlet that counting the number of integer
points within a convex set provides an order one approximation of its total area (in
2D) / volume (in dD). In fact, much better bounds are achievable for 2D shapes if
the boundary is strictly C3-convex [Hux90]. This holds also in higher dimensions
[KN91, M9̈9, Guo10]. The estimation of moments of digital sets was tackled in
a series of papers of Klette and Žunić [KŽ99, KŽ00, KŽ06]. To sum up their re-
sults, they give error upper bounds that are similar to Huxley’s bound for arbitrary
moments of 2D shapes.

However, we will not use these bounds for several reasons: (i) they are valid for
(strictly) smooth convex shapes while integral invariants may involve non smooth
and non convex shapes, (ii) the bounds are given as big “O” and some shape geom-
etry is hidden in the constant. We prefer possibly weaker bounds but we want them
to be explicit and valid for more general shapes.

1.3.1 Moments and digital moments

Let X be some compact domain of Rd . The p1 · · · pd-moment of X is defined as

mp1···pd (X) :=
Z

· · ·
Z

X
xp1

1 · · ·xpd
d dx1 . . .dxd . (1.22)

The 0 · · ·0-moment of X is the volume of X (denoted Vol(X)). For any subset Z of
Zd , the p1 · · · pd-digital moment of Z at step h is defined as

m̂p1···pd
h (Z) := hd+p1+···+pd Â

(z1,...,zd)2Z
zp1

1 · · ·zpd
d . (1.23)

The 0 · · ·0-digital moment of Z is the digital volume of Z (denoted by dArea(Z,h)

when d = 2 and by cVol(Z,h) when d � 3).
In the sequel, points and vectors of Rd and Zd are written in bold, and for some

point or vector z 2 Zd , its coordinates or components are written with subscripts
as z = (z1, . . . ,zd). We wish to bound the error between moments of X and digital
moments of the digitization of X as some function of the digitization gridstep h.
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We thus give a particular attention to moments and digital moments of h-cubes. The
following equalities are easily obtained by simple integration.

Lemma 7 Let z 2 Zd. Point z is the Gauss digitization of h-cube Qh(z), but also
its inner or outer Jordan digitization. First orders moments and digital moments of
h-cubes follow

m0···0(Qh(z)) = hd m̂0···0
h ({z}) = hd (1.24)

m10···0(Qh(z)) = hd+1z1 m̂10···0
h ({z}) = hd+1z1 (1.25)

m110···0(Qh(z)) = hd+2z1z2 m̂110···0
h ({z}) = hd+2z1z2 (1.26)

m20···0(Qh(z)) = hd+2
✓

z2
1 +

h2

12

◆

m̂20···0
h ({z}) = hd+2z2

1 (1.27)

Discrepancies between digital and continuous moments appear for moments
p1 · · · pd , when one of the pi is greater or equal to 2.

1.3.2 General results for volume estimation errors

The theorem below shows that the error between the volume of a shape X and the
naive volume estimation on its digitization by simple enumeration is smaller than
the volume of the offset of ∂X with distance

p
dh.

Theorem 2 Let X be a compact domain of Rd. Let D be any digitization process
such that J�

h (X) ⇢ Dh(X) ⇢ J+
h (X). Digital and continuous volumes are related as

follows:
�

�

�

Vol(X)� cVol(Dh(X),h)
�

�

�

 Vol(∂X
p

dh). (1.28)

Proof. First of all, 0-order continuous and digital moments of h-cubes coincide, so
we have the following equality:

cVol(Dh(X),h) = Â
z2Dh(X)

m̂0···0
h ({z})

= Â
z2Dh(X)

m0···0(Qh(z)) (Lemma 7)

= Vol([Dh(X)]h) . (1.29)

Then, by denoting ADB the symmetric difference between sets A and B, we bound
the volume difference as

|Vol(X)�Vol([Dh(X)]h)|  Vol(XD [Dh(X)]h) . (1.30)

Indeed, given two sets A and B, we have
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|Vol(A)�Vol(B)| = |Vol(A\B)�Vol(B\A)| (1.31)
 |Vol(A\B)+Vol(B\A)| (1.32)
 Vol(ADB) . (1.33)

Now, for any sets A,B,Y1,Y2 with A ⇢Y1 ⇢ B and A ⇢Y2 ⇢ B, we have Y1DY2 ⇢ B\A.
This follows from Y1DY2 = (Y1 [Y2)\ (Y1 \Y2). Then, obviously (Y1 [Y2) ⇢ B and
A ⇢ (Y1 \Y2).

Now, by Lemma 1, we have that [J�
h (X)]h ⇢ X ⇢ [J+

h (X)]h. But by hypothesis,
J�

h (X) ⇢ Dh(X) ⇢ J+
h (X), so we also have [J�

h (X)]h ⇢ [Dh(X)]h ⇢ [J+
h (X)]h. We may

thus apply the preceding property setting A := [J�
h (X)]h, B := [J+

h (X)]h, Y1 := X and
Y2 := [Dh(X)]h. We get

XD [Dh(X)]h ⇢ [J+
h (X)]h \ [J�

h (X)]h . (1.34)

Putting preceding relations together gives
�

�

�

Vol(X)� cVol(Dh(X),h)
�

�

�

 Vol([J+
h (X)]h \ [J�

h (X)]h) (using Eq.(1.29), (1.30) and (1.34))

 Vol([J0
h(X)]h) (definition of Jordan strip)

 Vol(∂X
p

dh) . (Lemma 3) (1.35)

This concludes.

It would be tempting to extend the preceding result to arbitrary moments. How-
ever, some moments are not non-negative measures and we cannot use directly the
preceding argument. Hence, we postpone results on moment estimation to a later
subsection.

Lemma 4 in conjunction with the preceding theorem allows us to relate this error
to the shape area, for smooth enough shapes.

Corollary 1 Let X be a compact domain of Rd such that the reach of ∂X is greater
than r , and h is smaller than rp

d
. Let D be any digitization process such that

J�
h (X) ⇢ Dh(X) ⇢ J+

h (X). Digital and continuous volumes are related as follows:
�

�

�

Vol(X)� cVol(Dh(X),h)
�

�

�

 2d+1
p

dArea(∂X)h . (1.36)

1.3.3 Volume approximation within a ball of radius R

Integral invariants rely on moment estimation along the boundary of a shape X
within a ball BR(x) of given radius R, for x 2 ∂X . Most results on volume and
moments estimation are valid for smooth enough shapes, which is not the case of
X \BR(x). We thus establish results for intersection of smooth shapes. The follow-
ing lemma is required.



14 Jacques-Olivier Lachaud, David Coeurjolly, and Jérémy Levallois

Lemma 8 Let A,B be compact domains of Rd and e some positive number. Then
(∂ (A\B))e = ((∂A)\B)e [ (A\ (∂B))e .

Proof. Fig. 1.2 illustrates this lemma. It suffices to show that ∂ (A \ B) = ((∂A)\
B)[ (A\ (∂B)). For ⇢ , this comes from the facts that ∂ (A\B) ⇢ A\B and ∂ (A\
B) ⇢ (∂A)[ (∂B). For � , let y be a point of (∂A)\B. If Int(A) is the interior of A,
we have that ∂A = A\ Int(A) since A is compact. It follows that y 2 (A\ Int(A))\B,
then y 2 (A \ B) \ (Int(A)\ B). But it holds that Int(A \ B) ⇢ (Int(A)\ B). Hence
(A \ B) \ Int(A \ B) � (A \ B) \ (Int(A) \ B). Noticing that (A \ B) \ Int(A \ B) =
∂ (A\B), we conclude that y 2 ∂ (A\B). The case y 2 A\∂B is similar.

A

B

∂A

B

A

∂B

(∂ (A\B))e ((∂A)\B)e (A\ (∂B))e

Fig. 1.2 Illustration of Lemma 8.

We prove below that the volume of the
p

dh-offset of the boundary of a compact
domain X intersected with a ball a radius R can be upper bounded by a constant
times h. Furthermore, this bound does not depend on the geometry of X , as long as
the radius R is smaller than half the reach of X .

Theorem 3 Let X be a compact domain of Rd such that the reach of ∂X is greater
than r . Let x 2 Rd. Let R (the radius of the ball) and h (the gridstep) be some
positive numbers such that h  Rp

2d
and 2R  r .

Vol
⇣

(∂ (X \BR(x)))
p

dh
⌘

 K1(d)Rd�1h , (1.37)

with K1(d) := 2
p

d
✓

d +
⇣

1+ 1p
2

⌘d
◆

Vd + 2
p

6
3

⇣

4+
p

2
2

⌘d
Vd�1. As a corollary, this

volume is upper bounded by 68Rh when d = 2, and upper bounded by 154R2h for
d = 3.

Proof. Lemma 8 shows that

Vol
⇣

(∂ (X \BR(x)))
p

dh
⌘

 Vol
⇣

(∂X \BR(x))
p

dh
⌘

+Vol
⇣

(X \∂BR(x))
p

dh
⌘

.

(1.38)
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The rightmost term is not hard to upperbound. Letting Vd be the volume of the d-
dimensional ball of radius 1, we proceed as follows:

Vol
⇣

(X \∂BR(x))
p

dh
⌘

 Vol
⇣

(∂BR(x))
p

dh
⌘

= Vol
⇣

BR+
p

dh(x))�Vol(BR�
p

dh(x)
⌘

= Vd

h

(R+
p

dh)d � (R�
p

dh)d
i

= 2Vd

2

4

✓

d
1

◆

Rd�1
p

dh+
b d�1

2 c

Â
k=1

✓

d
2k +1

◆

Rd�(2k+1)
⇣p

dh
⌘2k+1

3

5

 2Vd

2

4d
p

dRd�1h+Rd�1
p

dh
b d�1

2 c

Â
k=1

✓

d
2k +1

◆

1
p

2d�(2k+1)

3

5 (since
p

dh  R/
p

2)

 2Vd

"

d
p

dRd�1h+

✓

1+
1p
2

◆d p
dRd�1h

#

(since
d

Â
i=0

✓

d
i

◆

xd�i = (1+ x)d)

 2Vd

 

d +

✓

1+
1p
2

◆d
!

p
dRd�1h . (1.39)

The other term is harder to bound. The idea is to define a kind of cylinder of
thickness 2

p
dh that includes the set (∂X \ BR(x))

p
dh, and then we bound its vol-

ume.
We define the set P := ∂X \BR+

p
2dh(x). It is a d �1-manifold which is homeo-

morphic to a d �1-disk since R+
p

2dh  r . We choose thus a local parameteriza-
tion z : U ! P sending any u 2 U into P, where U ⇢ Rd�1. Let n be the function
that associates to each point of ∂X its outward unit normal vector. Let also N be
the function which assigns to each u 2 U the vector N(u) = n(z(u)), i.e. the unit
vector normal to ∂X at z(u). By definition of the reach, the map Zt : U ! Rd such
that Zt(u) = z(u)+ tN(u) is injective for �r  t  r . Let S denote the shape op-
erator of P, defined for surfaces by Sv := �—vN for any tangent vector v of P. It is
straightforward to check that S ∂z

∂ui
= � ∂N

∂ui
.

Looking now at partial derivatives of Zt , it follows that ∂Zt

∂ui
= (Id � tS) ∂z

∂ui
. The

deformation of an area element of z onto Zt is thus given by det(Id � tS) and we
may write:

Area(Zt(U )) =
Z

· · ·
Z

U

�

�

�

�

∂Zt

∂u1
^ · · ·^ ∂Zt

∂ud�1

�

�

�

�

du1 · · ·dud�1,

=
Z

· · ·
Z

U
det(Id� tS)

�

�

�

�

∂z
∂u1

^ · · ·^ ∂z
∂ud�1

�

�

�

�

du1 · · ·dud�1. (1.40)
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Now, since ∂X has positive reach, function N is differentiable almost everywhere
(a.e.). Furthermore, the normal vector variation is a.e. bounded by 1/r . It follows
that det(Id � tS)  (1 + |t|/r)d�1 almost everywhere. Injecting this inequality into
Eq.(1.40) gives

Area(Zt(U ))  (1+ |t|/r)d�1Area(P). (1.41)

For any x 2 R, 0 < x  r , the cylindric shape C(x) := {Zt(u),u 2 U , t 2 R,�x 
t  x} has a volume that is bounded as follows:

Vol(C(x)) =
Z x

�x
Area(Zt(U ))dt

 2Area(P)
Z x

0
(1+ t/r)d�1dt

= 2Area(P)
r
d

⇣

(1+ x/r)d �1
⌘

. (1.42)

We look more precisely at the volume of C(
p

dh). After some simple computations,
we get:

Vol(C(
p

dh))  2Area(P)
r
d

p
dh
r

0

@

d

Â
i=1

✓

d
i

◆

 p
dh
r

!i�1
1

A ,

 4

 

4+
p

2
4

!d p
d

d
Area(P)h, (1.43)

since
p

dh  Rp
2


p

2r
4 and using the binomial expansion of (1+

p
2

4 )d .

It remains to show that (i) (∂X \ BR(x))
p

dh ⇢ C(
p

dh) and (ii) to estimate
Area(P).

(i) Let y 2 (∂X \BR(x))
p

dh. There is some y0 2 ∂X \BR(x) with ky�y0k 
p

dh.
As y is within the reach of ∂X , since d(y,∂X) 

p
dh  r/2, there is only one

closest point y00 to y on ∂X . Let t be the distance ky � y00k. It follows that t 
ky�y0k 

p
dh since y0 belongs also to ∂X . And we may write y = y00 + tn(y00).

If y0 = y00, then y00 2 P and y belongs to C(
p

dh) since t 
p

dh.
Otherwise, we prove that ky0 �y00k 

p
2dh. Without loss of generality, assume y

is outside of X . Since y00 2 ∂X and X has reach greater than r , there is an outside
osculating ball of radius r at y00 [LT14], which contains no point of X except
y00. It contains of course y. We denote p the orthogonal projection of y0 onto the
straight line passing through y00 and pointing along the normal direction to ∂X .
This straight line goes through y and through the center c of this osculating ball.
We may also write p = y00 + pn(y00), where p is the signed distance between y00

and P along the normal direction. We use now Pythagoras’ theorem to get

ky0 �y00k2 = p2 +ky0 �pk2, ky0 �pk2 +(t � p)2 = ky�y0k2,
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which implies

ky0 �y00k2 = ky�y0k2 + t(2p� t). (1.44)

Using first the fact that c = y00 +rn(y00) and point y0 is outside the osculating ball
of radius r , and second the fact that ky�y0k 

p
dh, we obtain

ky0 �pk2 +(r � p)2 � r2 and ky0 �pk2 +(t � p)2  dh2

) dh2 � t2 +2p(r � t)

) p  dh2 � t2

r
(since t 

p
dh  r/2).

We now inject the last inequality into Eq.(1.44) to bound ky0 �y00k:

ky0 �y00k2  (ky�y0k2 � t2)+2
t
r

(dh2 � t2)

 2dh2. (since t/r < 1/2 and ky�y0k 
p

dh)

It follows that ky00 �xk  ky00 �y0k+ky0 �xk 
p

2dh+R, and since t 
p

dh
we conclude that y 2 C(

p
dh).

(ii)To estimate Area(P), we go back to its parametric definition as Area(z(U )).
Since the maximal distance of an element of P to x is R +

p
2dh and is smaller

than the reach, it follows that P projects injectively orthogonally on the tangent
plane to ∂X at x. We may thus choose U to be the orthogonal projection of
P onto this tangent plane. It follows that we can define z as 8u 2 U ,z(u) :=
(u1, . . . ,ud�1, f (u)), where f is a height function. The area of P is then:

Area(P) =
Z

· · ·
Z

U

�

�

�

�

∂z
∂u1

^ · · ·^ ∂z
∂ud�1

�

�

�

�

du1 · · ·dud�1.

=
Z

· · ·
Z

U

s

1+

✓

∂ f
∂u1

◆2
+ · · ·+

✓

∂ f
∂ud�1

◆2
du1 · · ·dud�1. (1.45)

Let D := R +
p

2dh. Now, on the boundary of a shape with reach greater than
r , the angle variation of the normal vector cannot exceed the angle variation on
the sphere of radius r . It follows that we can upperbound this angle variation by
measuring the angle variation b between the pole and a point at distance D of the
pole onto this sphere. One easily checks that sinb = D

2r . Since D = R+
p

2dh 

r , we get b  p
6 . It follows immediately that

�

�

�

∂ f
∂ui

�

�

�

cannot exceed the tangent of

b , that is
�

�

�

∂ f
∂ui

�

�

�

 tanb 
p

3
3 . We may now upperbound all partial derivatives in

Eq.(1.45) to get:
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Area(P) 
Z

· · ·
Z

U

r

1+
1
3

+ . . .+
1
3

du1 · · ·dud�1.


r

d +2
3

Area(U )


r

d +2
3

Vd�1(2R)d�1, (1.46)

since U is included in the disk of radius D centered on x and D  2R.

We are now in position to conclude the proof.

Vol
⇣

(∂X \BR(x))
p

dh
⌘

 Vol(C(
p

dh)) (using (i))

 4

 

4+
p

2
4

!d p
d

d
Area(P)h (with Eq.(1.43))

 2
p

6
3

 

4+
p

2
2

!d

Vd�1Rd�1h (with Eq.(1.46)).

In the last line, we also use the fact that for d � 2 we have
p

1+2/d 
p

2. Putting
all together gives the result.

1.3.4 Errors on volume and moment estimation within a ball of

radius R

Theorem 3 gives us the main key to upperbound the error in volume estimation,
and more generally moments estimation, within a ball around the boundary of a
compact domain X . We summarize in the following theorem our results on moments
estimation.

Theorem 4 Let X be a compact domain of Rd such that the reach of ∂X is greater
than r . Let D be any digitization process such that J�

h (X) ⇢ Dh(X) ⇢ J+
h (X). Let x be

any point of Rd. Let R (the radius of the ball) and h (the gridstep) be some positive
numbers such that h  Rp

2d
and 2R  r . Let (pi)i=1...d be the integers defining the

moment exponents, with 0  pi  2, and let s := p1 + · · ·+ pd, with s  2. Then
digital moments within a ball are multigrid convergent toward continuous moments
as follows

�

�mp1···pd (X \BR(x))� m̂p1···pd
h (Dh(X \BR(x)))

�

�

 K1(d)Rd�1(kxk• +2R)s h+
h4

12
VdRd , (1.47)
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where Vd is the volume of the unit d-dimensional ball. Furthermore, the term in h4

is only present when one pi is equal to 2.

Proof. The difficult part lies in the fact that moments may not be positive. To sim-
plify notations, let Y := X \ BR(x). We must split the error in moment estimation
into three sets, corresponding to parts of Y lying in [J�

h (Y )]h, in [Dh(Y )]h \ [J�
h (Y )]h

and in [J+
h (Y )]h \ [Dh(Y )]h.

�

�mp1···pd (Y )� m̂p1···pd
h (Dh(Y ))

�

�

 Â
z2J+

h (Y )\Dh(Y )

|mp1···pd (Y \Qh(z))|

+ Â
z2Dh(Y )\J�

h (Y )

�

�mp1···pd (Y \Qh(z))� m̂p1···pd
h ({z})

�

�

+ Â
z2J�

h (Y )

�

�mp1···pd (Qh(z))� m̂p1···pd
h ({z})

�

� (1.48)

The first term of this sum does not have any digital moment contribution since it
lies outside the digitization of X . The third term does not require to intersect Y with
the h-cube, since we are within the inner Jordan digitization.

1. We look at the third term. Lemma 7 tells us that it is equal to zero as long as 0 
pi  1 for 1  i  d. Otherwise, if one pi is equal to 2, it is then straighforward
to bound it as follows:

Â
z2J�

h (Y )

�

�mp1···pd (Qh(z))� m̂p1···pd
h ({z})

�

�= Â
z2J�

h (Y )

�

�

�

�

hd+4

12

�

�

�

�

(Lemma 7)

=
h4

12
Vol([J�

h (Y )]h)

 h4

12
Vol(Y ) , (1.49)

since the inner Jordan digitization of Y lies inside Y . It is clear then that Vol(Y ) =
Vol(X \BR(x))  Vol(BR(x)) = VdRd .

2. We now consider the second term. For some z 2 Dh(Y )\J�
h (Y ), we reason on the

sign of each component zi for i in 1 to d. We notice that, in the h-cube Qh(z),
the component xi has the same sign as zi except when zi = 0. Let ei = 1 when
zi � 0 and ei = �1 otherwise. We can thus eliminate the signs and rewrite the
difference below as:
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�

�mp1···pd (Y \Qh(z))� m̂p1···pd
h ({z})

�

�

=

�

�

�

�

Z

· · ·
Z

Y\Qh(z)
xp1

1 · · ·xpd
d dx1 . . .dxd �hd+s zp1

1 · · ·zpd
d

�

�

�

�

=

�

�

�

�

Z

· · ·
Z

Y\Qh(z)
(e1x1)

p1 · · ·(edxd)
pd dx1 . . .dxd �hd+s (e1z1)

p1 · · ·(edzd)
pd

�

�

�

�


�

�

�

�

Z

· · ·
Z

Y\Qh(z)
|e1x1|p1 · · · |edxd |pd dx1 . . .dxd �hd(e1hz1)

p1 · · ·(edhzd)
pd

�

�

�

�

(1.50)

The integral on the left is necessarily non-negative while the term on the right
is non-negative and is subtracted to it. It follows that this error can be upper
bounded by the maximum of both terms.
�

�mp1···pd (Y \Qh(z))� m̂p1···pd
h ({z})

�

�

= max
✓

Z

· · ·
Z

Y\Qh(z)
|e1x1|p1 · · · |edxd |pd dx1 . . .dxd ,hd(e1hz1)

p1 · · ·(edhzd)
pd

◆

(1.51)

Since points involved in the left integral are all in BR(x), it follows that the
left term is easily bounded by (kxk• + R)s Vol(Y \ Qh(z)). Since the point z
is in Dh(Y ) \ J�

h (Y ), we have z 2 J+
h (Y ) \ Int(J�

h (Y )) and Lemma 3, equation
Eq.(1.8), concludes that (hz) 2 ∂Y

p
dh. it follows that khzk•  kxk• + R +p

dh  kxk• + 2R, since h < R/
p

2d. The second term is thus bounded by
(kxk• +2R)s Vol(Qh(z)). Since Vol(Y \Qh(z))  Vol(Qh(z)), we obtain

Â
z2Dh(Y )\J�

h (Y )

�

�mp1···pd (Y \Qh(z))� m̂p1···pd
h ({z})

�

�

 (kxk• +2R)s Vol([Dh(Y )\J�
h (Y )]h). (1.52)

3. We finally look at the first term of the sum, which is easier to bound:

Â
z2J+

h (Y )\Dh(Y )

|mp1···pd (Y \Qh(z))|  (kxk• +R)s Â
z2J+

h (Y )\Dh(Y )

Vol(Y \Qh(z)).

 (kxk• +R)s Vol([J+
h (Y )\Dh(Y )]). (1.53)

Since Dh(Y ) \ J�
h (Y ) and J+

h (Y ) \ Dh(Y ) are disjoint, we may add inequalities
Eq.(1.52) and Eq.(1.53) as
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Â
z2Dh(Y )\J�

h (Y )

�

�mp1···pd (Y \Qh(z))� m̂p1···pd
h ({z})

�

�+ Â
z2J+

h (Y )\Dh(Y )

|mp1···pd (Y \Qh(z))|

 (kxk• +2R)s Vol([J+
h (Y )\J�

h (Y )]h)

 (kxk• +2R)s Vol
⇣

(∂Y )
p

dh
⌘

(Lemma 3, Eq.(1.8), page 7)

 (kxk• +2R)s K1(d)Rd�1 h (Theorem 3)

This concludes by simple addition of the bound on the third term, i.e. Eq.(1.49).

1.3.5 Conclusion

In this section we have determined links between continuous and digital moments
of order up to 2 in arbitrary dimension. We have established several approximation
error bounds for arbitrary compact domains. Furthermore, we have been able to esti-
mate the approximation error on moments of intersections of a smooth shape with a
ball of radius R and center x. Our error bound only depends on the dimension of the
space, the radius R of the ball and the norm kxk•, and scales linearly with the digiti-
zation gridstep h. It is worthy to note that our results apply for arbitrary digitization
processes, as long as they contain the inner Jordan digitization and are included in
the outer Jordan digitization. In particular, it includes the Gauss digitization. We will
use these results in the next sections to show the multigrid convergence of curvature
estimators based on digital integral invariants.

1.4 Multigrid convergence of mean curvature in 2D and 3D

We show in the section that the local mean curvature on the boundary of a digi-
tal shape can be approximated simply by intersecting the digital shape with a ball
around the point of interest and counting the number of digital points within. This
is related to integral invariants results [PWHY09] (recalled in Lemma 5, page 9),
which requires only the computation of the volume of the shape intersected with a
ball.

1.4.1 Definition of mean curvature estimators

We begin by defining a 2D digital curvature estimator and a 3D digital mean curva-
ture estimator, whose computation requires only the enumeration of digital points
within a neighborhood around the point of interest.
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Definition 3 (2D integral digital curvature estimator) For any positive radius R,
we define the 2D integral digital curvature estimator k̂R of a digital shape Z ⇢ Z2 at
any point x 2 R2 and for a grid step h > 0 as:

80 < h < R, k̂R(Z,x,h) :=
3p
2R

�
3dArea(BR/h(x/h)\Z,h)

R3 . (1.54)

Definition 4 (3D integral digital mean curvature estimator) For any positive ra-
dius R, we define the 3D integral mean digital curvature estimator ĤR of a digital
shape Z ⇢ Z3 at any point x 2 R3 and for a grid step h > 0 as:

80 < h < R, ĤR(Z,x,h) :=
8

3R
�

4cVol(BR/h(x/h)\Z,h)

pR4 . (1.55)

As one can see on Fig. 1.3, these estimators place a ball of Euclidean radius R
around the point of interest x and count the number of digital points of Z, scaled back
in (hZ)d , within this ball. A simple linear formula is then applied on this number to
get a curvature approximation.

The 2D example displayed on Fig. 1.3 indicates that the finer the digitization step,
the better the approximation. This is indeed true, at least for shapes with smooth
enough boundary.

x x

Fig. 1.3 Illustration of 2D integral digital curvature estimator k̂R. The shape X is a disk of radius
7.5. To the left, the digitization gridstep h is 1, while h is 0.5 to the right. We choose a ball of radius
R = 3 and we wish to estimate the curvature at some arbitrary point x. We count the number of
digital points within the orange ball, centered at x and of radius 3. To the left we count 12 points.
Hence for h = 1, the estimated curvature k̂3(G1(X),x,1) is 3p/(2 ⇥3)�3 ⇥12 ⇥ 12/33 ⇡ 0.237.
To the right we count 50 points. Hence for h = 0.5, the estimated curvature k̂3(G0.5(X),x,0.5) is
3p/(2⇥3)�3⇥51⇥0.52/33 ⇡ 0.154. Ground truth curvature is 1/7.5 ⇡ 0.133.

1.4.2 Convergence at points of ∂X (weak formulation)

In this section, we show that the curvature estimator k̂R (resp. the mean curvature
estimator ĤR) converges to the expected curvature (resp. mean curvature) for points
x belonging to the boundary of a compact shape X , as long as X has positive reach.
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A preliminary version of this theorem that requires X to be convex with C3-smooth
boundary has been published in [CLL13].

Theorem 5 (Convergence of curvature estimator k̂R along ∂X) Let X be a com-
pact domain of R2 such that its boundary ∂X is C3-smooth and has reach greater
than r .

Then the curvature estimator k̂R at any point x of ∂X is multigrid convergent
to the curvature k(X ,x) of X at point x for the Gauss digitization process, with
convergence speed at least O(h

1
3 ) when R = Q(h

1
3 ) and R < r/2. More precisely,

we have
80 < h  R

2
,
�

�k̂R(Gh(X),x,h)�k(X ,x)
�

� O
⇣

h
1
3

⌘

. (1.56)

Proof. Note that the boundary is smooth enough so that integral invariants do have a
Taylor expansion (and Lemma 5 applies). Furthermore, the domain being compact,
it has necessarily a positive reach. Since the Gauss digitization lies in the Jordan
strip (Lemma 1, page 5), we are in the hypotheses of Theorem 4. We bound the
curvature approximation error as follows:

|k̂R(Gh(X),x,h)�k(X ,x)|

�

�k̂R(Gh(X),x,h)� k̃R(X ,x)
�

�+O(R) (from Eq.(1.15), page 9)

=

�

�

�

�

�

3AR(x)

R3 �
3dArea(BR/h(x/h)\Gh(X),h)

R3

�

�

�

�

�

+O(R) (from Eq.(1.54) and (1.14))

=
3

R3

�

�m00(X \BR(x))� m̂00
h (Gh(X \BR(x)))

�

�+O(R) . (1.57)

The last equality follows from the definitions of AR and dArea expressed as 00-
moments, and also from the fact Gh(X \BR(x)) = BR/h(x/h)\Gh(X) (this is easily
checked for Gauss digitization). Theorem 4 then implies

|k̂R(Gh(X),x,h)�k(X ,x)|  3K1(2)

R2 h+O(R) . (1.58)

The error is the sum of two terms, in which R has an opposite effect. The right term
requires a radius R tending to zero, while the left term is minimized by a large radius.
If R is chosen as some function kha , where k is a constant, then the asymptotically
minimizing error is for a = 1

3 .

We have a similar result for the digital mean curvature estimator on 3D shapes.

Theorem 6 (Convergence of mean curvature estimator ĤR along ∂X) Let X be
a compact domain of R3 such that its boundary ∂X is C3-smooth and has reach
greater than r .

Then the mean curvature estimator ĤR at any point x of ∂X is multigrid con-
vergent to the mean curvature H(X ,x) of X at point x for the Gauss digitization
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process, with convergence speed at least O(h
1
3 ) when R = Q(h

1
3 ) and R < r/2.

More precisely, we have

80 < h  Rp
6
,
�

�ĤR(Gh(X),x,h)�H(X ,x)
�

� O
⇣

h
1
3

⌘

. (1.59)

Proof. The proof follows exactly the same steps as the proof of Theorem 5, since
on the one hand integral invariants also have a Taylor expansion in 3D and on the
other hand Theorem 4 applies in arbitrary dimension. We bound the curvature ap-
proximation error as follows:

|ĤR(Gh(X),x,h)�H(X ,x)|

�

�ĤR(Gh(X),x,h)� H̃R(X ,x)
�

�+O(R) (from Eq.(1.15), page 9)

=

�

�

�

�

�

4VR(x)

pR4 �
4cVol(BR/h(x/h)\Gh(X),h)

pR4

�

�

�

�

�

+O(R) (from Eq.(1.55) and (1.14))

=
4

pR4

�

�m000(X \BR(x))� m̂000
h (Gh(X \BR(x)))

�

�+O(R) . (1.60)

The last equality follows from the definitions of VR and cVol expressed as 000-
moments, and also from the fact Gh(X \ BR(x)) = BR/h(x/h) \ Gh(X). Theorem 4
then induces

�

�ĤR(Gh(X),x,h)�H(X ,x)
�

� 4K1(3)

pR2 h+O(R) . (1.61)

As in 2D, the error is the sum of two terms, in which R has an opposite effect. We
also obtain that the asymptotically minimizing error is for R = kh

1
3 , with k some

constant.

1.4.3 Multigrid convergence for smooth enough shapes

Theorem 5 and Theorem 6 are not multigrid convergence theorems, since conver-
gence results are only valid on points of ∂X . However, the exact location of ∂X
is generally unknown, and only approximate digital data is available. To achieve
multigrid convergent theorems, we have to take into account the possible error in
the position at which the curvature is estimated.

We therefore examine the perturbation of the moments when they are evaluated
at a shifted position x+ t.

Lemma 9 For any point x, a positive number R, and any vector t with norm t :=
ktk2  R, we have
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|Vol(BR(x+ t))�Vol(BR(x))|  3d

2d VdRd�1 t . (1.62)

Proof. We simply bound this difference of volumes by the volume of the difference
of two balls with same center, as illustrated on Fig. 1.4. More precisely, we have:

|Vol(BR(x+ t))�Vol(BR(x))| = |Vol(BR(x+ t)DBR(x))|


�

�

�

Vol
⇣

BR+ t
2
(q)\BR� t

2
(q)
⌘

�

�

�

,

where q is the midpoint between x and x + t. Since Vd is the volume of the unit
d-dimensional ball, it follows that:

|Vol(BR(x+ t))�Vol(BR(x))|  Vd

⇣

(R+
t
2
)d � (R� t

2
)d
⌘

 3d

2d VdRd�1 t .

x

x+ t
q

x

x+ t

Fig. 1.4 Left: illustration of Lemma 9 for bounding volume. The symmetric difference of two
balls is included in the shell with thickness equal to the distance between the centerpoints of these
two balls and centered at their midpoint. Right: illustration of Lemma 11 for bounding moments.
The symmetric difference of two balls is included in the shell with thickness equals to twice the
distance between the centerpoints of these two balls and centered on one of the ball.

We may now prove the uniform multigrid convergence of both the 2D curvature
estimator k̂R and the 3D mean curvature estimator ĤR towards respectively the cur-
vature k and the mean curvature H for the Gauss digitization process and smooth
enough shapes.

Theorem 7 (Multigrid convergence of 2D curvature estimator k̂R) Let X be a
compact domain of R2 such that its boundary ∂X is C3-smooth and has reach
greater than r .
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Then the curvature estimator k̂R is multigrid convergent to the curvature k for
the Gauss digitization process on such shapes X, with convergence speed at least
O(h

1
3 ) when R = Q(h

1
3 ) and R < r/2. More precisely, we have

80 < h  R
2

, 8x 2 ∂X , 8x̂ 2 ∂ [Gh(X)]h with kx̂�xk•  h,

�

�k̂R(Gh(X), x̂,h)�k(X ,x)
�

� O
⇣

h
1
3

⌘

. (1.63)

More precisely the bound is no greater than ( 27
4 p

p
2+3K1(2))R�2h+O(R).

Proof. Note that from Theorem 1 (page 7), we have that any point of ∂X is close
to a point of ∂ [Gh(X)]h (distance less than h/

p
d) and the converse is also true. We

proceed similarly as in Theorem 5, using Eq.(1.15) to get:

|k̂R(Gh(X), x̂,h)�k(X ,x)|

�

�k̂R(Gh(X), x̂,h)� k̃R(X , x̂)
�

�+
�

�k̃R(X , x̂)� k̃R(X ,x)
�

�+O(R).

The first error term is bounded by 3K1(2)
R2 h (see proof of Theorem 5). We take care

of the second error term, letting t := x̂�x and t := ktk2 :

�

�k̃R(X , x̂)� k̃R(X ,x)
�

�=
3

R3 |AR(x̂)�AR(x)|

=
3

R3 |Vol(BR(x+ t)\X)�Vol(BR(x)\X)|

 3
R3 |Vol(BR(x+ t))�Vol(BR(x))|

 27
4

pR�2 t . (using Lemma 9)

The last bound is valid since t = kx̂�xk2 
p

2h by the fact that kx̂�xk•  h. By
hypothesis, h  R/2, so t < R.

We have just shown
�

�k̃R(X , x̂)� k̃R(X ,x)
�

� 6p
p

2R�2h, which concludes.

We have a similar result for the 3D mean curvature estimator, whose proof fol-
lows the same arguments.

Theorem 8 (Multigrid convergence of 3D mean curvature estimator ĤR) Let X
be a compact domain of R3 such that its boundary ∂X is C3-smooth and has reach
greater than r .

Then the 3D mean curvature estimator ĤR is multigrid convergent to the mean
curvature H for the Gauss digitization process on such shapes X, with convergence
speed at least O(h

1
3 ) when R = Q(h

1
3 ) and R < r/2. More precisely, we have

80 < h  Rp
6
, 8x 2 ∂X , 8x̂ 2 ∂ [Gh(X)]h with kx̂�xk•  h,

�

�ĤR(Gh(X), x̂,h)�H(X ,x)
�

� O
⇣

h
1
3

⌘

. (1.64)
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More precisely the bound is no greater than (18
p

3+4K1(3)/p)R�2h+O(R).

1.5 Multigrid convergence of curvature tensor in 3D

We show in this section how we can approach the whole curvature tensor by simply
intersecting a ball with the digital input shape. However, we do not simply count the
number of digital points within but we rather compute the digital covariance matrix.
The digital covariance matrix is shown to be close to the covariance matrix, which
is known to contain curvature information. Although most of the results presented
here could be naturally extended to arbitrary dimension d, we prefer to expose them
in 3D.

1.5.1 Digital covariance matrix and digital principal curvature

estimators

Similarly to the covariance matrix, the digital covariance matrix is defined through
zeroth, first and second order digital moments.

Definition 5 (Digital covariance matrix) For any digital subset Z ⇢ Z3, its digital
covariance matrix Vh at step h is

Vh(Z) :=

2

4

m̂200
h (Z) m̂110

h (Z) m̂101
h (Z)

m̂110
h (Z) m̂020

h (Z) m̂011
h (Z)

m̂101
h (Z) m̂011

h (Z) m̂002
h (Z)

3

5

� 1
m̂000

h (Z)

2

4

m̂100
h (Z)

m̂010
h (Z)

m̂001
h (Z)

3

5⌦

2

4

m̂100
h (Z)

m̂010
h (Z)

m̂001
h (Z)

3

5

T

. (1.65)

Following the truncated Taylor expansion of Lemma 6, we define estimators of
principal curvatures from the diagonalization of the digital covariance matrix.

Definition 6 Let Z ⇢ Z3 be a digital shape and h > 0 a grid step. For R � h, we
define the integral principal curvature estimators k̂R

1 and k̂R
2 of Z at point y 2 R3

and step h their respective integral principal direction estimators ŵR
1 and ŵR

2 , and
the integral normal estimator n̂R as

k̂R
1 (Z,y,h) :=

6
pR6 (l̂2 �3l̂1)+

8
5R

, ŵR
1 (Z,y,h) := n̂1 (1.66)

k̂R
2 (Z,y,h) :=

6
pR6 (l̂1 �3l̂2)+

8
5R

, ŵR
2 (Z,y,h) := n̂2 (1.67)

n̂R(Z,y,h) := n̂3 , (1.68)
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where l̂1 � l̂2 � l̂3 are the eigenvalues of Vh(BR/h(y/h) \ Z), and n̂1, n̂2, n̂3 are
their corresponding eigenvectors.

In the following subsections, we show that such estimators are indeed multigrid
convergent to their respective geometric quantity. Proofs rely on the convergence of
digital moments, on the stability of moments with respect to small displacements,
and on matrix perturbation theory. Most of the work presented here has been pub-
lished in [CLL14].

1.5.2 Some properties of covariance matrix and moments

Before proving the multigrid convergence, we need to establish a few preliminary
lemmas. First of all, we notice easily that covariance matrices are translation invari-
ant.

Lemma 10 Translation invariance for covariance matrices:

• 8Y ⇢ R3, 8v 2 R3, V (Y +v) = V (Y ).
• 8Z ⇢ Z3, 8v 2 Z3, 8h > 0, Vh(Z +v) = Vh(Z).

Then, we must examine how moments are perturbated by a positionning error of
the ball.

Lemma 11 For any point x, a positive number R, and any vector t with norm t :=
ktk2  R, we have
�

�m000(BR(x+ t))�m000(BR(x))
�

� O(tR2), (1.69)
�

�m100(BR(x+ t))�m100(BR(x))
�

� O(tR3)+O(kxk•tR2), (1.70)
�

�m200(BR(x+ t))�m200(BR(x))
�

� O(tR4)+O(kxk•tR3)+O(kxk2
•tR2). (1.71)

Other moments with same order have the same respective bounds. Furthermore,
these relations remain true if both BR(x + t) and BR(x) are intersected with the
same set X.

Proof. We notice first that Eq.(1.69) has already been established in Lemma 9. For
higher order moments pqs, we will use the following fact:

/0 6= Y1 ⇢ Y2 ⇢ R3 ) sup
Y⇢Y1

|mpqs(Y )|  sup
Y⇢Y2

|mpqs(Y )| . (1.72)

As in Lemma 9, we notice that the difference of balls is included in the difference
of two balls with same center. This is illustrated in Fig. 1.4, right.
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|mpqs(BR(x+ t))�mpqs(BR(x))|  sup
Y⇢BR(x+t)DBR(x)

|mpqs(Y )| ,

 sup
Y⇢BR+t (x)\BR�t (x)

|mpqs(Y )| .

Hereafter we denote SR,t(x) := BR+t(x)\BR�t(x).
For first order moments, we translate the shape to the origin, then we use the

previous result plus the fact that the centered 100-moment is maximized for the
x-positive half-ball4:

sup
Y⇢SR,t (x)

|m100(Y )|  sup
Y⇢SR,t (0)

|m100(Y )|+ |x1| ·m000(Y )

= m100(B+
R+t(0)�B+

R�t(0))+O(|x1|tR2)

= 2p(R3t +Rt3)+O((kxk•)tR2)

= O(tR3)+O(kxk•tR2). (1.73)

For second order moments, we translate the shape to the origin, then we use the two
previous results plus the fact that the 200-moment is maximized for the ball:

sup
Y⇢SR,t (x)

|m200(Y )|  sup
Y⇢SR,t (0)

|m200(Y )|+2|x1| · |m100(Y )|+ x2
1 ·m000(Y )

= m200(SR,t(0))+kxk•(O(tR3)+O(kxk•tR2))+kxk2
•O(tR2)

= O(tR4)+O(kxk•tR3)+O(kxk2
•tR2) (1.74)

Other moments are proved similarly.

1.5.3 Multigrid convergence of digital covariance matrix

With Lemma 10 and Lemma 11, we can prove the multigrid convergence of the
digital covariance matrix. Theorem 9 establishes its simple convergence (covariance
matrices are computed at the same point y) and then Theorem 10 establishes its
multigrid convergence.

Theorem 9 (Convergence of digital covariance matrix) Let X be a compact do-
main of R3 such that its boundary ∂X has reach greater than r .

Then for any grid step h and radius R with 0 < h  R/
p

6 < r/(2
p

3), for arbi-
trary y 2 R3 with d(y,∂X)  h, we have:

�

�Vh(BR/h(y/h)\Gh(X))�V (BR(y)\X)
�

� O(R4h).

4 B+
R (x) denotes the x-positive half ball of center x and radius R. Remember that xi is the i�th

component of x.
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The constants hidden in the big O do not depend on the shape size or geometry. k ·k
denotes the spectral norm on matrices.

Proof. To simplify expressions, we set A := BR(y)\X , Ah := BR/h(y/h)\Gh(X) =
Gh(BR(y) \ X) (the last equality is valid for the Gauss digitization). We begin by
translating the sets A and Ah towards the origin w.r.t. y. We must use a vector that
takes into account the digitization, hence we shift Ah by the vector

⇥ y
h
⇤

, the integer
vector closest to y

h , and we shift A with the vector h
⇥ y

h
⇤

. We further set Ãh := Ah �
⇥ y

h
⇤

and Ã := A � h
⇥ y

h
⇤

. With these definitions and the translation invariance of
digital covariance matrixes (Lemma 10), we get

Vh(BR/h(y/h)\Gh(X)) = Vh(Ah) = Vh

⇣

Ãh +
hy

h

i⌘

= Vh(Ãh)

= Vh(Gh(Ã)). (1.75)

The last equality comes from the fact that Ãh = Gh(A) �
⇥ y

h
⇤

= Gh(A � h
⇥ y

h
⇤

) =
Gh(Ã). We use also the translation invariance of the (continuous) covariance matrix
to get

V (BR(x)\X) = V (A) = V
⇣

Ã+h
hy

h

i⌘

= V (Ã). (1.76)

With Eq.(1.75) and Eq.(1.76), we rewrite the covariance estimation error as:

kVh(BR/h(y/h)\Gh(X))�V (BR(x)\X)k = kVh(Gh(Ã))�V (Ã)k. (1.77)

We take a closer look at Vh(Gh(Ã)):

Vh(Gh(Ã)) =

"

m̂200
h (Ãh)

. . .

#

� 1
m̂000

h (Ãh)

"

m̂100
h (Ãh)

...

#

⌦
"

m̂100
h (Ãh)

...

#T

.

We may rewrite the factor in front of the tensorial product using Theorem 4:

1
m̂000

h (Ãh)
=

1
m000(Ã)

+

✓

1
m000(Ã)

◆2
O(R2h).

Since Ã is some translation of X \ BR(y), it has the same volume. This volume is
some Q(R3) since y is at most at distance h of ∂X and h  R/

p
6. We get:

1
m̂000

h (Ãh)
=

1
m000(Ã)

+O(R�4h). (1.78)

We upperbound the terms in the tensorial product. We write t := y � h
⇥ y

h
⇤

, which
is the center of the ball of Ã. As an example, we examine its top left term and use
again Theorem 4:
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m̂100
h (Ãh)⇥ m̂100

h (Ãh) =
�

m100(Ã)+O
�

R2 (ktk• +2R)h
��2

=
�

m100(Ã)
�2

+O(R7h)+O(R6h2). (1.79)

The last equality comes from the fact that |m100(Ã)|  m100(B+
R+

p
3h

(0))  2pR4

and that ktk• is smaller than h which is smaller than a constant times R.
Other terms of the tensorial product are upper bounded similarly. We look now

at the upper left term of the whole covariance matrix difference:
�

�

�

�

Vh(Gh(Ã))�V (Ã)
�

1,1

�

�

�

=

�

�

�

�

m̂200
h (Ãh)� 1

m̂000
h (Ãh)

�

m̂100
h (Ãh)

�2 �m200(Ã)+
1

m000(Ã)

�

m100(Ã)
�2
�

�

�

�

.


�

�m̂200
h (Ãh)�m200(Ã)

�

� (using Eq.(1.78) and Eq.(1.79))
(1.80)

+

�

�

�

�

�

✓

1
m000(Ã)

+O(R�4h)

◆

⇣

�

m100(Ã)
�2

+O(R7h)+O(R6h2)
⌘

�
�

m100(Ã)
�2

m000(Ã)

�

�

�

�

�

 O(R2(ktk• +2R)2)h+O(R3h4) (Theorem 4)

+O(R4h)+O(R3h2)+O(R2h3). (using m100(Ã) = O(R4))
(1.81)

Noticing that from ktk•  h and h  R/
p

6, we conclude for this term. All other
terms of the matrix are upperbounded in a similar way.

Theorem 10 (Multigrid convergence of digital covariance matrix) Let X be a
compact domain of R3 such that its boundary ∂X has reach greater than r .

Then the digital covariance matrix is multigrid convergent toward the covariance
matrix for the Gauss digitization on such shapes X for any radius R < r

2 . More
precisely, we have

80 < h <
Rp
6
, 8x 2 ∂X , 8x̂ 2 ∂ [Gh(X)]h with kx̂�xk•  h,

�

�Vh(BR/h(x̂/h)\Gh(X))�V (BR(x)\X)
�

� O(R4h) . (1.82)

The constants hidden in the big O do not depend on the shape size or geometry. k ·k
denotes the spectral norm on matrices.

Proof. We split the difference of matrices into two parts:

kVh(BR/h(x̂/h)\Gh(X))�V (BR(x)\X)k
 kVh(BR/h(x̂/h)\Gh(X))�V (BR(x̂)\X)k+kV (BR(x̂)\X)�V (BR(x)\X)k.

The first term is directly bounded by O(R4h) with Theorem 9, since point x̂ is at
distance less than h/

p
3 from ∂X according to Theorem 1. It remains to bound
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the second term. Denoting t := x̂ � x, t := ktk2, and X 0 := X � x, we simply shift
everything to the origin using the invariance by translation of the covariance matrix:

kV (BR(x̂)\X)�V (BR(x)\X)k = kV (BR(t)\X 0)�V (BR(0)\X 0)k. (1.83)

We will apply Lemma 11 for the different moments occuring in the covariance
matrix V . We denote by Yt the set BR(t)\X 0 and by Y0 the set BR(0)\X 0.

kV (Yt)�V (Y0)k =

�

�

�

�

�

"

m200(Yt)�m200(Y0)
. . .

#

� 1
m000(Yt)

"

m100(Yt)
...

#

⌦
"

m100(Yt)
...

#T

+
1

m000(Y0)

"

m100(Y0)
...

#

⌦
"

m100(Y0)
...

#T
�

�

�

�

�

�

. (1.84)

Matrix V (Yt)�V (Y0) contains differences of geometrical moments of order two
(e.g. m200(Yt) � m200(Y0)) and quantities in the form of D := m100(Yt)

2

m000(Yt)
� m100(Y0)2

m000(Y0)

(component (1,1) in V (Yt) � V (Y0) matrix). From Lemma 11, every error on
second-order moments is in O(tR4). To bound D quantities, we first observe that
|m000(Yt)� m000(Y0)| = pR2(t + O(t2)+ O(tR2)) using Theorem 7 in [PWHY09].
Hence, we get

D =
m100(Yt)2

m000(Y0)+O(tR2)
� m100(Y0)2

m000(Y0)

= O(tR2)
m100(Yt)2

m000(Y0)2 +
m100(Yt)2 �m100(Y0)2

m000(Y0)
.

Since a
b+O(x) = a

b + a
b2 O(x), a2 � b2 = (a � b)(a + b), and using again Lemma 11,

we have

D = O(tR4)+(m100(Yt)+m100(Y0))
m100(Yt)�m100(Y0)

m000(Y0)

= O(tR4)+(O(tR3)+O(R4))
m100(Yt)�m100(Y0)

m000(Y0)

Since the boundary of X 0 = X � x goes through point 0 and is smooth, the volume
of Y0 = BR(0)\X 0 is some Q(R3). Then, Lemma 11, Eq.(1.70), bounds the error of
the 100-moments. Last, we have t < R since t <

p
3h and h < R/

p
6. It follows

D = O(tR4)+(O(tR3)+O(R4))
O(tR3)

Q(R3)
= O(tR4).



Title Suppressed Due to Excessive Length 33

The same bound is found for all terms of the matrix. Putting everything together
gives the result.

1.5.4 Useful results of matrix perturbation theory

We have shown above that the digital covariance matrix tends toward the continuous
covariance matrix, if we compute it on the intersection of the shape with a ball.
We have defined curvature estimators from the eigenvalues and eigenvectors of the
digital covariance matrix. To show their multigrid convergence, it is thus necessary
to understand how an error on a matrix can perturbate its eigen decomposition. This
is why we present first useful results from matrix perturbation theory [BF60, Dav63,
SS90, Bha97] before establishing the multigrid convergence of our estimators.

Let M and M0 be two symmetric matrices, we want to quantify the difference
between the eigenvalues and eigenvectors of M and the eigenvalues and eigenvectors
of M0 as functions of norms of M �M0. For instance, if M0 is the covariance matrix
of a noisy data and M the noise-free covariance matrix, matrix perturbation results
would allow us to bound eigenvalues defect (and thus principal curvature defect as
described in Lemma 6).

Let (l ,n) be an eigenpair of M, i.e., l is an eigenvalue of M and n its associated
eigenvector. The eigengap dl (M) associated to an eigenvalue l is the minimum dis-
tance between l and any distinct eigenvalue of M. Note that the eigengap vanished
if l has multiplicity greater than 1. We also consider the operator norm (or 2�norm)
of a matrix:

kMkop := sup
kxk2=1

kMxk2 , (1.85)

please note that if mmax := maxmi j2M |mi j|, then mmax  kMkop 
p

nm · mmax for
n⇥m matrix M.

The main theorem we use is due to Davis-Kahan [Dav63] presented in a simpli-
fied version due to [Mér09]:

Theorem 11 (Davis-Kahan) Let M and M0 be two symmetric matrices, l an eigen-
value of M and d := dl (M). Then for every eigenpair (l ,n) of M, there exists an
eigenpair (l 0,n 0) of M0 such that:

|l �l 0| 
p

2kM �M0kop and kn �n 0k 
2kM �M0kop

d
, (1.86)

provided that kM �M0kop < d
p

2.

Concerning eigenvalues, stronger results can be used to pair eigenvalues of M to
eigenvalues of M0. For instance, sorting the values by increasing order and using the
rank to pair values leads to an equivalent result on the eigenvalue difference. We
mention here the Lidskii-Weyl inequality, which bounds eigenvalues defect without
constraint on the eigengap:
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Theorem 12 (Lidskii-Weyl inequality) If li(M) denotes the ordered eigenvalues
of some symmetric matrix M and li(M0) the ordered eigenvalues of some symmetric
matrix M0, then maxi |li(M)�li(M0)| 

p
2kM �M0kop.

Another consequence of Theorem 11 is that the eigengap between eigenvalues
plays an important role in eigenvector deviations. For example, if M is a covariance
matrix of a perfectly symmetric shape around the Oz axis, one eigenvalue would
have multiplicity 2. Any infinitely small perturbations of the shape breaking the
symmetry would lead to large defects of the eigenvectors associated to the eigen-
values with infinitely small eigengaps (in other words, the two eigenvectors could
rotate around the third one).

In the our context where eigenvalues/eigenvectors are used to estimate principal
curvature and principal directions, it means that on some flat or spherical surface
patches, we can expect convergence of the principal curvature values but not the
direction (in the sense of the norm of the vector deviation).

1.5.5 Multigrid convergence of integral principal curvature

estimators

The multigrid convergence of (local) digital covariance matrix and stability results
of matrix perturbation theory induce multigrid convergence for integral principal
curvature estimators:

Theorem 13 (Multigrid convergence of integral principal curvature estimators
k̂R

1 and k̂R
2 ) Let X be a compact domain of R3 such that its boundary ∂X has reach

greater than r and has C3-continuity.
Then, for the Gauss digitization process, the integral principal curvature estima-

tors are multigrid convergent toward the principal curvatures on such shapes X for
well-chosen gridsteps h and radius R. More precisely, setting R = kh

1
3 with k an

arbitrary positive constant, we have

8h 2 R, 0 < h < min

 

⇣ r
2k

⌘3
,

✓

kp
6

◆

3
2
!

,

8x 2 ∂X ,8x̂ 2 ∂ [Gh(X)]h with kx̂�xk•  h,

kk̂R
1 (Gh(X), x̂,h)�k1(X ,x)k  O(h

1
3 ) , (1.87)

kk̂R
2 (Gh(X), x̂,h)�k2(X ,x)k  O(h

1
3 ) . (1.88)

Proof. First of all, requirements on h imply that h < Rp
6

and R < r
2 . We are thus

in the hypotheses of Theorem 10, which indicates that the digital covariance matrix
is multigrid convergent to the covariance matrix. We denote M0 := Vh(BR/h(x̂/h)\
Gh(X)) and M := V (BR(x)\X). It follows from this convergence property that:
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kM0 �Mkop  O(R4h).

Since both M and M0 are symmetric, it follows from matrix perturbation theory
(Theorem 12) that eigenvalues of M and M0 are close. Recalling that l1 � l2 � l3
are the eigenvalues of the covariance matrix M and l̂1 � l̂2 � l̂3 are the eigenvalues
of the digital covariance matrix M0, it follows that 8i 2 {1,2,3}, |l̂i �li| < O(R4h).
For instance, for k̂R

1 , we write:

k̂R
1 (Gh(X), x̂,h) =

6
pR6 (l̂2 �3l̂1)+

8
5R

=
6

pR6

�

l2 �3l1 +O(R4h)
�

+
8

5R
.

With the hypothesis of C3-continuity, we can substitute the truncated Taylor ex-
pansion of Lemma 6 into the latter equation. After some simple calculations, we
get:

k̂R
1 (Gh(X), x̂,h) = k1(X ,x)+O(R)+O(h/R2). (1.89)

Setting R = kha , we optimize the value a to minimize all errors. The optimal value
is a = 1

3 and the bound follows. The reasoning is strictly similar for k̂R
2 .

As noticed in [CLL14], slightly better bounds could be obtained if the shape X
has a C3-boundary with strictly positive curvature and if the distance between x
and x̂ could be reduced. The formulation of this theorem in [CLL14] (Theorem 6)
requires that the shape X can be decomposed into a finite number of monotonous
pieces. Here, this is unnecessary since we have rewritten convergence theorems of
digital moments for shapes with the sole property of having positive reach (see
Section 1.3).

As indicated by Theorem 11, convergence of principal curvature directions is
more tricky. The problem lies near places of the surface where there are umbili-
cal points, i.e. places where principal curvatures are equal. Otherwise said, at these
points, two eigenvalues coincide and their eigenvectors span a plane. We can never-
theless state:

Theorem 14 (Multigrid convergence of integral principal direction estimators
ŵR

1 and ŵR
2 and of integral normal estimator n̂R) Let X be a compact domain of

R3 such that its boundary ∂X has reach greater than r and has C3-continuity.
Then, for the Gauss digitization process, the integral principal direction estima-

tors are multigrid convergent toward the principal directions w1 and w2 on such
shapes X for well-chosen gridsteps h and radius R, provided the principal curva-
tures are distinct. The integral normal vector estimator is also multigrid convergent
toward the normal direction n. More precisely, setting R = kh

1
3 with k an arbitrary

positive constant, we have
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9hX 2 R+, 8h 2 R, 0 < h < hX ,

8x 2 ∂X ,8x̂ 2 ∂ [Gh(X)]h with kx̂�xk•  h,

kŵR
1 (Gh(X), x̂,h)�w1(X ,x)k  1

|k1(X ,x)�k2(X ,x)|O(h
1
3 ) , (1.90)

kŵR
2 (Gh(X), x̂,h)�w2(X ,x)k  1

|k1(X ,x)�k2(X ,x)|O(h
1
3 ) , (1.91)

kn̂R(Gh(X), x̂,h)�n(X ,x)k  O(h
2
3 ) . (1.92)

NB: Involved vectors are oriented to point to the same side.

Proof. As stated in Theorem 11, eigenvectors of two similar symmetric matrices are
close provided the corresponding eigengap is not null. We take the same notations
as in the proof of Theorem 13 and we recall that kM0 �Mkop  O(R4h). We denote
(l1,n1), (l2,n2) and (l3,n3) the decreasing eigenpairs of M and (l̂1,n1), (l̂2,n2)
and (l̂3,n3) the decreasing eigenpairs of M0. Since no confusion may arise, we write
k1 for k1(X ,x) and k2 for k2(X ,x). We start by expressing the eigengaps di(M)
using Lemma 6:

d1(M) := l1 �l2 =
p
24

(k2 �k1)R6 +O(R7),

d3(M) := l2 �l3 =
3p
32

R5 � p
1536

(69k2 +5k1)R6 +O(R7),

d2(M) := min(d1(M),d3(M)).

As R approaches zero as h tends toward zero, it is clear that there exists some hX > 0
such that d1(M)  d3(M). Hence we suppose hereafter that d2(M) = d1(M).

If k1 6= k2, it follows from Theorem 11 that

kn̂1 �n1k  2
d1(M)

kM �M0kop

 48
p(k2 �k1)

O
✓

h
R2

◆

+O
✓

h
R

◆

. (1.93)

By Definition 6, n̂1 = ŵR
1 (Gh(X), x̂,h). Second, Theorem 3 of [PWY+07] tells that

the eigenvectors of M are close to the directions of the principal curvatures and of
the normal. More precisely, we have:

\(n1,w1(X ,x)) = O
✓

R
k2 �k1

◆

,

\(n2,w2(X ,x)) = O
✓

R
k2 �k1

◆

,

\(n3,n(X ,x)) = O
�

R2� .
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Third, for unit vectors u and v, ku � vk = 2sin a
2 where a is the angle between u

and v. If 0  a  p
2 , it is thus straightforward to check that ap

2
 sina  a and

ap
2

 ku�vk  a . Putting these three facts together with Eq.(1.93) gives:

�

�ŵR
1 (Gh(X), x̂,h)�w1(X ,x)

�

� kn̂1 �n1k+kn1 �w1(X ,x)k

 1
|k1 �k2|

O
✓

h
R2

◆

+O
✓

R
k2 �k1

◆

,

 1
|k1 �k2|

O
⇣

h
1
3

⌘

,

since R = kh
1
3 . The proof for the second principal direction is strictly similar, since

d2(M) = d1(M). For the normal estimator, we use the relation on d3(M) to get:

kn̂3 �n3k  2
d3(M)

kM �M0kop

 48
3p

O
✓

h
R

◆

+O(h).

Since n̂3 = n̂R(Gh(X), x̂,h) by definition and with the same reasoning as above, we
derive:

kn̂R(Gh(X), x̂,h)�n(X ,x)k  kn̂3 �n3k+kn3 �n(X ,x)k

 O
✓

h
R

◆

+O(R2) = O
⇣

h
2
3

⌘

,

since R = kh
1
3 .

To conclude this section, we have shown that digital integral invariants provide
convergent estimates of curvatures values and directions in 3D. Furthermore, they
provide also a 3D normal estimator to digital surfaces, whose worst case conver-
gence speed is very fast compared to the literature (see [CLR12] for a survey). Last,
everything has been presented for the 2D and 3D case, but most of the results remain
valid in arbitrary dimension. This is due to the fact that we have shown the conver-
gence of digital moments in arbitrary dimension, and other stability results come
from matrix perturbation theory, which are also valid in arbitrary dimension. Only
the Taylor expansion of integral invariant in general dimension is missing. We will
show in the next sections that these estimators compare well with other estimators
in practice.
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1.6 Parameter-free digital curvature estimation

In the multigrid convergence framework, the notion of scale is explicit with param-
eter h. For instance, convergence results can be obtained for any radius integration
kernel R in O(h

1
3 ). In some practical situations, we have to analyze a given dig-

ital object Z ⇢ Zd without any information about its Euclidean embedding. As a
consequence, setting suitable values for R can be challenging. Note that beside inte-
gral invariant estimators described in the previous sections, most existing curvature
estimators are also parametrized by such kernel size or window size parameter.

In this section, we propose techniques to automatically set such radius parameter
for a given digital object Z in dimension 2 and 3 with the property that if Z comes
from a multigrid digitization process, then we remain in the convergence theorem
hypothesis. For short, the key point here is to rely on a geometrical information
extracted from the digital contour, here maximal digital straight segments, from
which multigrid parameter h can be retrieved. Let us first formalize this property.

1.6.1 Asymptotic laws of straight segments along the boundary of

digitized shapes and scale determination

First of all, we remind the definition of digital straight segment [Rev91, KR04].

Definition 7 (Standard Line and Digital Straight Segment) The set of points
(x,y) 2 Z2 satisfying µ  ax�by < µ + |a|+ |b|, with a, b and µ integer numbers,
is called the standard digital line with slope a/b and shift µ . Any connected subset
of pixels of a standard digital line is a digital straight segment (DSS for short).

On a digital set Z ⇢ Z2, we denote by Bd(Z) its (cellular) topological boundary
composed of pointels (0-cell) and linels (1-cell). Following the discussion in Section
1.2.3, the canonical embedding of Bd(Z) into R2 coincides with ∂ [Z]h. On Bd(Z),
we can define maximal segments and maximal segment pencils:

Definition 8 (Maximal Segment and Maximal Segment Pencil [LVdV07]) The
pointels composing the digital boundary Bd(Z) form a 4-connected contour.
They can thus be numbered consecutively as (pi)i=0...n�1. A sequence of pointels
(pi, . . . ,p j), indices taken modulo n, is a maximal segment on ∂Z iff {pi, . . . ,p j}
is a DSS, while neither {pi�1,pi, . . . ,p j} nor {pi, . . . ,p j,p j+1} are DSS. At a
given pointel p 2 Bd(Z), the pencil of maximal segment at p is the set of maximal
segments on Bd(Z) containing p.

In many situations, maximal segments and maximal segment pencils play a very
important role in multigrid digital contour geometry processing [Lac06, dVLF07].
For the purpose of this paper, let us focus on the asymptotic properties of lengths of
maximal segment:
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Lemma 12 (Asymptotic Laws of Maximal Segments [Lac06, dVLF07]) Let X
be some convex shape of R2, with at least C3-boundary and non-null bounded cur-
vature. The discrete length of maximal segments in Bd(Z) for Z = Gh(X) follows:

• the shortest is lower bounded by W(h� 1
3 );

• the longest is upper bounded by O(h� 1
2 );

• their average length, denoted LD(Z), is such that:

Q
⇣

h� 1
3

⌘

 LD(Z)  Q
✓

h� 1
3 log

✓

1
h

◆◆

. (1.94)

We now have the key ingredient for the scale inference of Z (if Z is the digiti-
zation of a C3 Euclidean shape): If we compute the average length of all maximal
segments in Bd(Z), Eq. (1.94) allows us to retrieve the scale parameter h. We can
now introduce our parameter free curvature estimator in 2D:

Definition 9 Given Z ⇢ Z2, the parameter-free digital curvature estimator k̂⇤ at a
pointel p 2 Bd(Z) is defined as:

k̂⇤(Z,p) :=
3p

2r(Z)
� 3A(Z,p)

r(Z)3 , (1.95)

where r(Z) = L2
D(Z) and A(Z,p) = Card(Br(Z)(p)\Z).

To rephrase the definition, we first compute the average discrete length of all maxi-
mal segments on Bd(Z). Then r is the square of this length. The estimation k̂⇤(Z,p)
is a function of the number of digital points in Z intersected with the ball of radius
r centered at p. This definition mimics continuous definition in Eq. (1.14) and is a
scale-independent version of Definitions 3 and 4 (pages 21 and 22 respectively).

1.6.2 Parameter-free digital curvature estimators

In dimension 2, k̂⇤(Z,p) is parameter-free and only related to a digital object Z.
However, if Z is the digitization of a continuous shape X , i.e. if Z = Gh(X), then
multigrid convergence is obtained:

Theorem 15 (Multigrid convergence of curvature estimator k̂⇤ [LCL14])
Let X be some convex shape of R2, with at least C3-boundary and non null
bounded curvature. Let Z = Gh(X). Then, there exist a positive constant h0, for any
0 < h  h0, we have, 8x 2 ∂X and 8p 2 Bd(Z)

khp�xk•  h )
�

�

�

�

1
h

k̂⇤(Z,p)�k(X ,x)

�

�

�

�

 O
✓

h
1
3 log2

✓

1
h

◆◆

. (1.96)

Note that p 2 Bd(Z) implies hp 2 ∂ [Gh(X)]h. The parameter-free curvature is
rescaled by h in order to compare comparable shapes. To sketch the proof, Eq. (1.94)



40 Jacques-Olivier Lachaud, David Coeurjolly, and Jérémy Levallois

implies that hr(Z) is in O
⇣

h
1
3 log2 � 1

h
�

⌘

. Theorem 7 (page 25) only requires the ker-

nel radius R to be in O(h
1
3 ) to achieve multigrid convergence. In [LCL14], we show

that considering R = O
⇣

h
1
3 log2 � 1

h
�

⌘

does not change the convergence property.

1.6.3 Local parameter-free digital curvature estimator and 3D case

Several extensions can be considered. The first one is a local definition of k̂⇤(Z,p).
Indeed, Def. 9 imposes the same radius parameter for each point of Bd(Z) (average
of all maximal segment lengths). We may be interested in a local version to obtain
adaptive estimations. For instance, a local version is easily defined by considering,
at each point p, the average length of DSS in its maximal segment pencil, denoted
r(Z,p). Hence, we define:

k̂⇤
l (Z,p) :=

3p
2r(Z,p)

� 3A0(Z,p)

r(Z,p)3 , (1.97)

where A0(Z,p) = Card(Br(Z,p)(p)\Z).
Doing so, we cannot prove anymore the multigrid convergence of 1

h k̂⇤
l (Z,p)

since in the maximal pencil, we may have pathological DSS with too long length
(those in O(h

1
2 ) in Lemma 12). However, experimental evaluation shows good con-

vergence properties and we observe that k̂⇤
l (Z,p) outperforms k̂⇤(Z,p).

A second extension considers the 3D case with Z ⇢Z3. In this case, we first want
to construct a mean curvature estimator setting the radius kernel R to geometrical
characteristics, denoted r 0, of Bd(Z). A first issue is that in dimension 3, even if
digital planes can be defined, no result similar to Lemma 12 exists. In [LCL14],
we have presented a slice based approach: intersecting Z with planes aligned with
grid axis defines a set of 2D digital curves on which maximal DSS can be computed
and thus average maximal DSS length can be obtained. Similarly, at a given surfel s,
two specific 2D curves can be defined and thus local parameter-free estimator can be
defined considering average DSS length in the two maximal segment pencils con-
taining the projection of s. As in the local 2D case, some pathological configurations
may occur preventing us to have a complete convergence proof of such estimators
(see details in [LCL14]). However, experimental convergence can be observed. The
following section details these results.

1.7 Experimental evaluation

In this section, all presented estimators are evaluated experimentally and compared
with state-of-the-art techniques.
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1.7.1 Implementation details

Integral invariant estimators are based on spherical kernels with radius given by
R = kha as described in theorem statements. Then, the digital object boundary is
tracked and the kernel is centered on each surface elements. For 2D and 3D mean
curvature estimators, the volumetric integral of the intersection between the kernel
and the object is computed; for 3D principal curvature estimators, the covariance
matrix of this intersection is computed and then eigenvalues and eigenvectors are
deduced from it by diagonalization.

A brute-force implementation would lead to a computational cost of O((R/h)d)
per surface element (i.e. the size of the kernel at grid step h). However, all quantities
are additive and we can take advantage of the digital surface structure to consid-
erably speed up this algorithm: if we consider a surface tracker for which surface
elements are processed by proximity (the current surface element is a neighbor of
the previous one through a translation vector d ), the area/volume estimation can be
done incrementally:

dArea(Gh(X)\BR(x+d ),h) = dArea(Gh(X)\BR(x),h)

+ dArea(Gh(X)\ (BR(x+d )\BR(x)),h)

� dArea(Gh(X)\ (BR(x)\BR(x+d )),h) .

Similarly we have for moments:

m̂p,q,s (Gh(X)\BR(x+d ),h) = m̂p,q,s (Gh(X)\BR(x),h)

+ m̂p,q,s (Gh(X)\ (BR(x+d )\BR(x)),h)

� m̂p,q,s (Gh(X)\ (BR(x)\BR(x+d )),h) .

Then, if we precompute all kernels Gh(BR(0 ± d ) \ BR(0)) for some d displace-
ments (based on surface element umbrella configurations, 8 in 2D and 26 in 3D
for kdk• = h), the computational cost per surface element can be reduced to
O((R/h)d�1). Finally, in the ideal case of a Hamiltonian traversal of the surface,
only the first surfel has to be computed using kernel BR(x̂) and every subsequent
neighboring surfel is processed using sub-kernels Gh(BR(0±d )\BR(0)).

To perform precise performance evaluation in both the multigrid framework and
with respect to the state of the art, we need a family of Euclidean shape X on which
the estimated quantity is known. Table 1.1 and Figure 1.5 present continuous shapes
considered in this analysis. Please note that, for parameter-free curvature estimators,
only convex ones match with theorem statements. However, we can still experimen-
tally evaluate the behavior of estimators when considering shapes that do not satisfy
all theorem hypotheses.

All curvature estimators have been implemented in DGTAL [tDGtal]. DGTAL is
an opensource library devoted to digital geometry tools. Beside proposing curva-
ture integral invariant based estimators, this library offers mathematical shapes with
known curvature values and Gauss digitization of such objects on a grid with grid-
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Shape Equation (parametric in 2D,
implicit in 3D)

Parameters Domain kmin kmax

Ellipse (x(t),y(t)) = (r(t) ·
cos(t),r(t) · sin(t)) with
r(t) = bp

1�(a2�b2)/a2 ·cos(t+f)

(a,b) = (20,7) [�20,20]2 0.018 0.408

Flower (x(t),y(t)) = (r(t) ·
cos(t),r(t) · sin(t)) with
r(t) = r1 + r2 · cos(p · t)

(r1,r2, p) = (20,7,6) [�20,20]2 �1.414 0.383

AccFlower (x(t),y(t)) = (r(t) ·
cos(t),r(t) · sin(t)) with
r(t) = r1 + r2 · cos(p · t3)

(r1,r2, p) = (20,5,3) [�20,20]2 �10.45 3.1482

Sphere x2 + y2 + z2 �a2 = 0 a = 9 [�10,10]3 0.111 0.111
Rounded
cube

x4 + y4 + z4 �a4 = 0 a = 9 [�10,10]3 0 0.282

Goursat’s
surface

ax4 + ay4 + az4 + bx2 + by2 +
bz2 + c = 0

(a,b,c) = (0.03,�2,�8) [�10,10]3 �0.15 0.453

Table 1.1 Equations, parameters and domains of Euclidean shapes considered in the experimental
evaluation (t 2 [0,2p] for parametric curves). Please refer to Fig. 1.5 for illustrations.

(a) (b) (c) (d) (e) (f)

Fig. 1.5 Illustrations of 2D and 3D shapes considered in the experimental evaluation (please refer
to Table 1.1 for equations and parameters): Ellipse (a), Flower (b), Accelerated Flower (c), Sphere
(d), Rounded cube (e) and Goursat’s surface ( f ).

step h. Furthermore, many existing curvature estimators from the literature are also
available, making easy comparative evaluations.

1.7.2 Multigrid convergence analysis

We have first checked experimentally that the a parameter (for the ball radius
R = kha ) should indeed be set around 1

3 to get multigrid convergence. This was
empirically observed in [CLL14], where a complete discussion on convergence be-
havior for different a values is detailed. In all following experiments, we have set
a to 1

3 .
In Figures 1.6 and 1.7, we compare our digital integral invariant estimators (II) to

state-of-the-art methods for respectively the l• and l2 error norms. In dimension 2,
other curvature estimators are: curvature from Most-centered Maximal Segment with
length information (MDSS) [CMT01, dVLF07], curvature from Most-centered Dig-
ital Circular Arc (MDCA) [RL11] and Binomial based convolution (BC) [EMC11].
In dimension 3, we have considered the curvature estimation from polynomial sur-
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face approximation (Jet Fitting) [CP05]. For the latter, we have also chosen a win-
dow size in kh

1
3 . In Fig. 1.8, we detail timings in logscale for various estimators on

the flower shape in 2D and the rounded cube in 3D. As expected, approaches based
on object recognition in dimension 2 (MDSS and MDCA) provide faster computa-
tions. We also observe that II is a bit slower but has an asymptotic behavior much
more favorable that BC. In dimension 3 (Fig. 1.8-(b)), we observe that Jet fitting
and II behaviors are similar and that II is 10 times faster than our implementation of
Jet fitting [tCGal].

Finally, Figure 1.9 illustrates various curvature maps on binary shapes.

1.7.3 Parameter-free estimators

As described in Section 1.6, the ball radius can be deduced by the contour/surface
geometry in order to design a parameter-free estimator. More precisely, in dimension
2, setting the radius to the square of the average length of all maximal DSS allows
us to keep a multigrid convergence property (estimator k̂⇤(Z, p) in Theorem 15).
Furthermore, this ball radius can be defined locally (estimator k̂⇤

l (Z, p)) to capture
local behavior of the contour and thus reduce the l2 error. The main drawback of the
locally adapted estimator is that since radius may change for each surfel, we cannot
use anymore the incremental propagation of area/volume or moments as described
in Section 1.7.1. We can define an intermediate estimator based on a quantification
of all local ball radii along the contour using for instance a k-means approach (k̂⇤

K=5
denotes the local curvature estimator defined from a quantification of ball radii into
5 classes). Figures 1.10 and 1.12 present convergence results in dimension 2 and
3 respectively. As expected, we observe the multigrid convergence of parameter-
free estimators for both l• and l2 error metrics. Furthermore, we can observe that
local approaches (and local approaches based on a quantification) induce smaller
l2 errors. This means that better estimation can be obtained if we locally adapt the
ball radius to the curve/surface geometry. Represented in scale-scale, Figure 1.11
shows the scale that has been selected for a 2D flower shape. Finally, in Figure
1.13, we show the multiresolution behavior of k̂⇤(Z, p). Indeed, since the parameter
depends only on the object geometry, we can obtain consistent curvature estimation
whichever is the object resolution.

1.8 Discussion, applications and further works

1.8.1 Robustness to noise

Thanks to the volumetric integration principle of Integral Invariant estimators, ro-
bustness to noise and outliers can be expected. Intuitively, if the noise is modeled
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Fig. 1.6 Multigrid analysis of the estimation error with l• norm in 2D and 3D.

as a zero-mean noise around the object surface or if outliers are of measure zero,
geometrical moments would be stable.

Experimentally, robustness in dimension 2 and 3 can be observed in Figure 1.14.
Our noise model consists in swapping the grid point value at p with probability de-
fined by a power law b 1+dt(p) for some user-specified b 2 [0,1] (dt(p) corresponds
to the distance of p to the boundary of the original digital shape). Such noise model,
so-called KANUNGO noise [Kan96], is particularly well-adapted to evaluate the sta-
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Fig. 1.7 Multigrid analysis of the estimation error with l2 norm in 2D and 3D.

bility of digital geometry algorithms. As expected, integral invariants approaches
provide robust estimation as the noise parameter increases. Since Jet Fitting consid-
ers a principal component analysis of the point set, robustness to noise can also be
observed for this approach. In dimension 2, methods which rely on the geometry of
the digital contour (MDCA, MDSS) are highly perturbated, even for limited noise
parameters.
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(a) (b)

Fig. 1.8 Timings in milliseconds for 2D estimators on a flower (a) and 3D estimators on a rounded
cube (b). Results have been obtained on a Intel Xeon 2.27GHz desktop machine.

Fig. 1.9 Integral invariant based differential estimators on a digital surface (2563 OCTAFLOWER
shape). From left to right, mean curvature, Gaussian curvature, first principal direction, second
principal direction and normal vector field (zooms in third row)).
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Fig. 1.10 Comparison in log-space of parameter-free curvature l• errors in dimension 2 (first row),
and parameter-free mean and principal curvatures (second row) l• errors on a multigrid ellipsoid.

Fig. 1.11 Curvature scale-space analysis of a flower: x�axis is the curvilinear abscissa, y�axis is
the kernel radius, curvature values are mapped between the blue (lowest curvature) and the yellow
color (highest curvature). In black are drawn the radius r(Z) for global estimator k̂⇤ (first row),
radii r(Z, p) for local estimator k̂⇤

l (second row), and radii r(Z, p) after K�mean clustering for
local estimator k̂⇤

K=5. (last row).
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Fig. 1.12 Comparison in log-space of parameter-free curvature l2 errors in dimension 2 (first row),
and parameter-free mean and principal curvatures (second row) l2 errors on a multigrid ellipsoid.

Fig. 1.13 (Left) Mean curvature mapped on “bunny” at different resolution using Ĥ⇤
l (yellow color

is the highest curvature, blue the lowest).

1.8.2 Feature detection with multiscale approach

As discussed in previous sections, integration radius should be set properly to have
relevant curvature estimations. The radius should be set either by the user or auto-
matically thanks to the parameter-free approach. In this section, we use the radius
as a scale-space parameter to detect features on digital surfaces. First of all, as de-
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Fig. 1.14 Robustness of II estimator on the OCTAFLOWER shape: mean, (a)� (b), and Gaussian
curvature, (c)� (d), estimation on a noise-free and noisy surface (noise level=0.5). Comparison of
2D estimators on different level of noise on an ellipse (e). Comparison of 3D estimators for mean
( f ) and principal curvatures (g and h) on different level of noise on an ellipsoid.
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Fig. 1.15 Scale-space analysis on a spherical shape (a) and a shape with a singularity (b).

scribed in Eq. (1.12) and (1.13), area and volume at a point x on a smooth manifold
∂X are related to curvature in 2D and mean curvature in 3D. If we consider now
a piece-wise smooth surface X and a point x lying on a C1-discontinuity of ∂X ,
Pottmann et al. [PWY+07, PWHY09] have shown that area and volume are related
to left/right side curvatures but also solid angle of normal vectors at x (see Figure
1.15):

AR(x) =
a0R2

2
� k� +k+

6
R3 +O(R4) , (1.98)

VR(x) =
2a0R3

3
� p(H� +H+)

8
R4 +O(R5) . (1.99)

If we define now the following quantities:

GX ,x(R) :=
3p
2R

� 3AR(x)

R3 , GX ,x(R) :=
8

3R
� 4VR(x)

pR4 . (1.100)

At a smooth C3 point x, these quantities converge to k(X ,x) and H(c,x) respectively
as R tends to zero (see Section 1.2.3, Eq. (1.15)). On the contrary, at singular point
x, we have:

GX ,x(R) =
3
2

1
R

(p �a0)+
k� +k+

6
+O(R) , (1.101)

GX ,x(R) =
8
3

1
R

(1� a0

p
)+

H� +H+

2
+O(R) . (1.102)

In other words, as R tends to zero, these quantities have a dominant 1
R term. We do

not go further into details, please refer to [LCL15] for a complete state-of-the-art
discussion and mathematical insights but feature detector on digital surfaces can be
defined looking to the behavior of GX ,x(R) and GX ,x(R) for a given range of radii:
if the quantities remain constant, we classify x as belonging to a smooth part of the
object. If the quantities follow Q(R�1) speed, we classify x as belonging to an edge.
In Figure 1.16 we present some classification results into Edge (red), Flat (green)
and Smooth (blue) classes on both noise-free and noisy data for the same set of
parameters.
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Fig. 1.16 Evaluation of feature detection on perfectly digitized and noisy shapes. SpheresUnion:
400⇥200⇥200 voxels, CubeSphere: 2003 voxels, Fandisk: 5123 voxels, OctaFlower: 5123 voxels.
The range of radii used for all classifications is given by rmin = 5 and rmax = 25.

1.8.3 Current limitations and possible research directions

We have presented a whole set of estimators based on integral invariant principle
that can be applied to analyse the local geometry of digital shapes: mean and prin-
cipal curvatures, normal and principal directions. We have shown that they achieve
multigrid convergence for some classes of shapes et we have made explicit their con-
vergence speed. Furthermore, these estimators compare favorably to other methods
in practice, even in the presence of noise.

These estimators suffer of course of some limitations. A first limitation is that
these estimators require to know an approximation of the volumetric shape X . An
approximation of the boundary of X is not a usable input for these estimators. This is
a strong limitation when analyzing clouds of points. Fortunately, in digital geometry,
most input shapes are approximations of X .

Secondly, these estimators are multigrid convergent for a whole range of radii
and, even in the case of the parameter-free curvature estimator, it is not obvious
what is the optimal value for the k parameter. We know pretty clearly the bound on
errors related to moment estimations, but the error bound on the Taylor expansion is
not explicit. Certainly, the parameter k depends in some ways on maximal curvature
derivatives, but this result remains to be shown.

Thirdly, these estimators are rather costly to compute for “big” digital shapes
(about 12s for a 2563 object with R = 5, about 58s with R = 10). However, this has
to be tempered by the fact that this is the price of being robust to noise. Indeed, even
if the object is highly perturbated along its boundary, the volumetric integrals make
the estimators very robust.
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Many research directions could be carried on from this point. A first one would be
to use other kernels than the simple ball. A good candidate is the Gaussian kernel,
because computations could be conducted in the Fourier domain. Hence, compu-
tations will be almost linear in the size of the object, whatever the kernel radius.
Furthermore, multiscale analysis would be much less costly to compute. It remains
to show that their multigrid convergence.

Another direction is related to Voronoi based approaches, especially to Voronoi
Covariance Measure methods [MOG09, MOG11, CLT14]. They are also based on
covariance analysis, not of the shape but of the tangent cone. Such approaches are
thus complementary and should be combined. Besides, looking at image processing
methods, VCM approaches share similarities with image curvature estimators based
on the image structure tensor [RvV02, LT05], and could also benefit from Fourier
analysis.

Further information on digital integral invariant estimators can be found in
[CLL13, CLL14, LCL14, LCL15].
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