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ROAM: a Rich Object Appearance Model with Application to Rotoscoping
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1University of Oxford

2Technicolor Research & Innovation

Figure 1: ROAM for video object segmentation. Designed to help rotoscoping, the proposed object appearance model allows
the automatic delineation of a complex object in a shot, starting from an initial outline provided by the user.

Abstract

Rotoscoping, the detailed delineation of scene elements
through a video shot, is a painstaking task of tremendous
importance in professional post-production pipelines. While
pixel-wise segmentation techniques can help for this task,
professional rotoscoping tools rely on parametric curves that
offer the artists a much better interactive control on the defi-
nition, editing and manipulation of the segments of interest.
Sticking to this prevalent rotoscoping paradigm, we propose
a novel framework to capture and track the visual aspect
of an arbitrary object in a scene, given a first closed out-
line of this object. This model combines a collection of local
foreground/background appearance models spread along the
outline, a global appearance model of the enclosed object
and a set of distinctive foreground landmarks. The structure
of this rich appearance model allows simple initialization,
efficient iterative optimization with exact minimization at
each step, and on-line adaptation in videos. We demonstrate
qualitatively and quantitatively the merit of this framework
through comparisons with tools based on either dynamic seg-
mentation with a closed curve or pixel-wise binary labelling.
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1. Introduction
Modern high-end visual effects (vfx) and post-production

rely on complex workflows whereby each shot undergoes
a succession of artistic operations. Among those, rotoscop-
ing is probably the most ubiquitous and demanding one
[7, 18]. Rotoscoping amounts to outlining accurately one
or several scene elements in each frame of a shot. This is a
key operation for compositing [30] (insertion of a different
background, whether natural or synthetic), where it serves
as an input to subsequent operations such as matting and
motion blur removal.1 Rotoscoping is also a pre-requisite
for other important operations, such as object colour grading,
rig removal and new view synthesis, with large amounts of
elements to be handled in the latter case.

Creating such binary masks is a painstaking task accom-
plished by trained artists. It can take up to several days of
work for a complex shot of only a few seconds, using dedi-
cated tools within video editing softwares like Silhouettefx,
Adobe After Effect, Autodesk Flame or The Foundry Nuke.
As discussed in [18], professional roto artists use mostly
tools based on roto-curves, i.e., parametric closed curves
that can be easily defined, moved and edited throughout
shots. By contrast, these artists hardly use brush-based tools,
even if empowered by local appearance modelling, graph-
based regularization and optic flow-based tracking as After
Effect’s ROTOBRUSH.

1The use of blue or green screens on set can ease compositing but
remains a contrived set-up. Even if accessible, such screens lead to chroma-
keying and de-spilling operations that are not trivial and are not suited to all
foreground elements, thus rotoscoping remains crucial.
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Due to its massive prevalence in professional workflows,
we address here rotoscoping in its closed contour form,
which we aim to facilitate. Roto-curves being interactively
placed in selected keyframes, automation can be sought ei-
ther at the key-frame level (reducing the number of user’s
inputs) or at the tracking level (reducing the number of re-
quired key-frames). In their recent work, Li et al. [18] offers
with ROTO++, a tool that helps on both fronts, thanks to an
elegant shape modelling.

In the present work, we explore a complementary route
that focuses on the automatic tracking from a given keyframe.
In essence, we propose to equip the roto-curve with a rich,
adaptive modelling of the appearance of the enclosed ob-
ject. This model, coined ROAM for Rich Online Appearance
Model, combines in a flexible way various appearance mod-
elling ingredients: (i) Local foreground/background colour
modelling, in the spirit of VIDEO SNAPCUT [3] but attached
here to the roto-curve; (ii) Fragment-based modelling to han-
dle large displacements and deformations and (iii) Global
appearance modelling, which has proved very powerful in
binary segmentation with graph cuts, e.g. in [6].

We would like to emphasize that our model is the first
that combines local appearance models along the closed con-
tour with global appearance model of the enclosed object
using discrete Green theorem, and pictorial structure to cap-
ture locally rigid deformations, in a principled structured
prediction framework. As demonstrated on recent bench-
marks, ROAM outperforms state-of-art approaches when a
single initial roto-curve is provided. It is in particular less
prone to spurious changes of topology that lead to eventual
losses than After Effect ROTOBRUSH, and more robust than
ROTO++ [18] in the absence of additional user inputs. This
robustness makes it appealing to facilitate rotoscoping, either
as a standalone tool, or combined with existing curve-based
tools such as ROTO++.

2. Related work and motivation
Rotoscoping is a form of interactive “video object”2 seg-

mentation. As such, the relevant literature is vast. For sake
of brevity, we focus mostly our discussion on works that
explicitly target rotoscoping or very similar scenarios.

2.1. Rotoscoping and curve-based approaches

Li et al. [18] recently released a very detailed study of
professional rotoscoping workflow. They first establish that
trained artists mostly use parametric curves such as Bezier
splines to delineate objects of interest in key-frames, “track”
them from one frame to the next, edit them at any stage of the
pipeline and, last but not least, pass them in a compact and
manipulable format to the next stage of the vfx pipeline, e.g.,

2Throughout, “video object”, or simply “object”, is a generic term to
designate a scene element of interest and the associated image region in the
video.

to the compo-artists. Professional rotoscoping tools such
as Silhouettefx, Blender, Nuke or Flame are thus based on
parametric curves, which can be either interpolated between
key-frames or tracked with a homographic “planar tracker”
when suitable. Sticking to this ubiquitous workflow, the
authors propose ROTO++ to speed it up. Bezier roto-curves
defined by the artist in the selected key-frames allow the real-
time learning of a non-linear low-dimensional shape space
based on a Gaussian process latent variable model. Shape
tracking between key-frames, as well as subsequent edits, are
then constrained within this smooth manifold (up to planar
transforms), with substantial gains in work time. Our work is
fully complementary to ROTO++: while ROAM does not use
a strong shape prior in its current form, it allows to capture
the dynamic appearance of the video object, something that
ROTO++ does not address.

In their seminal rotoscoping work, Agarwala et al. [1] pro-
posed a complete interactive system to track and edit Bezier
roto-curves. It relies on the popular active contour frame-
work [5, 14]: a curve, parametrized by control points, finely
discretized and equipped with a second-order smoothness
prior is encouraged to evolve smoothly and snap to strong
image edges. Their energy-based approach also uses local
optical flow along each side of the shape’s border. In contrast
to this work, our approach offers a richer local appearance
modelling along the roto-shape as well as additional intra-
object appearance modelling.

Similarly to [1], Lu et al. [19] recently introduced an
interactive object segmentation system called “coherence
parametric contours” (CPC), which combines planar tracking
with active contours. Our system includes similar ingredi-
ents, with the difference that the planar tracker is subsumed
by a fragment-based tracker and that the appearance of the
object and of its close surrounding is also captured and mod-
eled. We demonstrate the benefits of these additional features
on the evaluation dataset introduced by Lu et al. [19].

2.2. Masks and region-based approaches

Other notable approaches to interactive video segmenta-
tion address directly the problem of extracting binary masks,
i.e. labelling pixels of non-keyframes as foreground or back-
ground. As discussed in [18, 19], a region-based approach is
less compatible with professional rotoscoping, yet provides
powerful tools. Bai et al. [3] introduced VIDEO SNAPCUT,
which lies at the heart of After Effect’s ROTOBRUSH. Inter-
action in VIDEO SNAPCUT is based on foreground/back-
ground brushes, following the popular scribble paradigm
of Boykov and Jolly [6]. The mask available in a given
frame is tracked to the next frame through the propagation
of local windows that straddle its border. Each window is
equipped with a local foreground/background colour model
and a local shape template, both updated through time. Af-
ter propagation along an object-centric optical-flow, these
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windows provide suitable pixel-wise unaries that are fed to a
classic graph-cut. This approach provides a powerful way
to capture on-the-fly local colour models and combine them
adaptively with some shape persistence. However, being
based on graph-cut (pixel-wise labelling), ROTOBRUSH can
be penalized by its extreme topology flexibility: as will be
showed in the experiments, rapid movements of the object,
for instance, can cause large spurious deformations of the
mask that can eventually lead to complete losses in the ab-
sence of user intervention. In ROAM, we take inspiration
from the local colour modelling at the object’s border and re-
visit it in a curve-based segmentation framework that allows
tighter shape control and easier subsequent interaction.

More recently, Fan et al. introduced JUMPCUT [10], an-
other mask-based approach where frame-to-frame propaga-
tion is replaced by mask transfer from the key-frame(s) to
distant frames. This long-range transfer leverages dense
patch correspondences computed over the inside and outside
of the known mask, respectively. The transfered mask is
subsequently refined using a standard level set segmentation
(region encoded via a spatial map). A salient edge classi-
fier is trained online to locate likely fragments of object’s
new silhouette and drive the level set accordingly. They re-
ported impressive results with complex deformable objects
going through rapid changes in scene foreground. However,
similarly to ROTOBRUSH, this agility might also become
a drawback in real rotoscoping scenarios, as is the lack of
shape parametrization. Also, the underlying figure/ground
assumption (the object is moving distinctly in front of a back-
ground) is not met in many cases, e.g. rotoscoping of a static
scene element or of an object in a dynamic surrounding.

3. Introducing ROAM
Our model consists of a graphical model with the follow-

ing components: (i) a closed curve that defines an object and
a collection of local foreground/background3 appearance
models along it; (ii) a global appearance model of the en-
closed object; and (iii) a set of distinctive object’s landmarks.
While the global appearance model captures image statistics
as in graph-cut approaches [6, 25], it is the set of local fg/bg
appearance models placed along the boundary that enables
accurate object delineation. The distinctive object’s land-
marks organized in a star-shaped model (Fig. 3, left) help to
prevent the contour from sliding along itself and to control
the level of non-rigid deformations. The landmarks are also
used to robustly estimate a rigid transformation between
the frames to “pre-warp” the contour, which significantly
speeds-up the inference. In addition, the control points of
the roto-curve, as well as the local fg/bg models and the
landmarks are maintained through time, which provides us

3“Foreground/background” terminology, “fg/bg” in short, merely refers
here to inside and outside of the roto-curve; it does not imply that the object
stands at the forefront of the 3D scene with a background behind it.

I
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Figure 2: Graphical model of ROAM. In joint model de-
fined by energy E(X ,Y; I) in (1), contour node variables
(white squares) form a closed 1-st order chain conditioned
on image data (grey box) and landmark variables (white cir-
cles), the latter variables forming a shallow tree conditioned
on all others.

with different types of temporal correspondences.
Given a colour image I = {Ip}p∈P , a conditional graph-

ical model (Fig. 2) is defined through the energy function

E(X ,Y; I) := EC(X ; I) + EL(Y; I) + EJ(X ,Y), (1)

where EC and EL depend only on the roto-curve configura-
tion X and the landmarks configuration Y respectively, and
EJ links the two together (independently of the image). In
the following, we describe these three energy terms in detail.

3.1. Curve-based modelling: EC

While Bezier splines are a popular representation for roto-
scoping [1, 18], we simply consider polygonal shapes here:
roto-curve X is a polyline with N vertices x1 . . .xN ∈ Z2

and N non-intersecting edges en = (xn,xn+1), where
xN+1 stands for x1, i.e. the curve is closed. Given an orien-
tation convention (e.g. clockwise), the interior of this curve
defines a connected subset R(X ) ⊂ P of the image pixel
grid (Fig. 3, left), which will be denoted R in short when
allowed by the context.

Energy EC is composed of two types of edge potentials
ψloc
n and ψglob

n that relate to local and global appearance
respectively:

EC(X ; I) :=

N∑
n=1

[ψloc
n (en) + ψglob

n (en)]. (2)

As with classic active contours [14], the first type of potential
will encapsulate both a simple `2-regularizer that penalizes
stretching and acts as a curve prior (we are not using second-
order smoothing in the current model), and a data term that
encourages the shape to snap to strong edges. It will in
addition capture colour likelihood of pixels on each side
of each edge via local appearance models. The second set
of potentials results from the transformation of object-wise
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colour statistics (discrete surface integral) into edge-based
costs (discrete line integrals).

Note that, since we do not impose any constraint on the
various potentials, the one specified below could be replaced
by more sophisticated ones, e.g. using semantic edges [8]
instead of intensity gradients, or using statistics of convolu-
tional features [12] rather than colour for local and global
appearance modelling.

Local appearance model. Each edge en is equipped with
a local appearance model pn = (pf

n, p
b
n) composed of a

fg/bg colour distribution and of a rectangular support Rn,
with the edge as medial axis and a fixed width in the perpen-
dicular direction (Fig. 3, right). Denoting Rin

n and Rout
n the

two equal-sized parts of Rn that are respectively inside and
outside R, we construct a simple edge-based energy term
(the smaller, the better) that rewards edge-configurations
such that colours in Rin

n (resp. Rout
n ) are well explained by

model pf
n (resp. pg

n) and edge en is short and goes through
high intensity gradients:

ψloc
n (en) :=−

∑
p∈Rin

n

ln pf
n(Ip)−

∑
p∈Rout

n

ln pb
n(Ip) (3)

+ µ‖xn+1 − xn‖2 −
∑
p∈en

λ‖∇I(p))‖2,

with µ and λ two positive parameters.

Global appearance model. A global appearance model
captures image statistics over the object’s interior. As such,
it also helps pushing the roto-curve closer to the object’s
boundary, especially when local boundary terms are not able
to explain foreground and background reliably. Defining
p0 = (pf

0, p
b
0) the global fg/bg colour distribution, the bag-

of-pixel assumption allows us to define region energy term∑
p∈R

ln
pb

0(Ip)

pf
0(Ip)

. (4)

This discrete region integral can be turned into a discrete con-
tour integral using one form of discrete Green theorem [27].
Using horizontal line integrals for instance, we get∑

p∈R
ln
pb

0(Ip)

pf
0(Ip)

=

N∑
n=1

∑
p∈en

αn(p)Q(p)︸ ︷︷ ︸
:=ψglob

n (en)

, (5)

where Q(p) =
∑

“q6p′′ ln(pb
0(Ip)/pf

0(Ip)) is the discrete
line integral over pixels to the left of p on the same row, and
αn(p) ∈ {−1,+1} depends on the direction and orientation,
relative to curve’s interior, of the oriented edge en. In (5),
the second sum in r.h.s. is taken over the pixel chain resulting
from the discretization of the line segment [xn,xn+1] with
the final vertex excluded to avoid double-counting.

P
R(X )

X

xn

xn+1

en
Rin

n

Rout
n

Rn

R(X )

ym

ym+1

Figure 3: Structure and notations of proposed model.
(Left) A simple closed curve X outlines the object region
R(X ) in the image plane P . Several landmarks, forming
a star-shaped graphical model, are defined in this region.
(Right) Each edge en of the closed polyline defines a re-
gion Rn that staddles R(X ); each node xn of the polyline
is possibly connected to one or several landmarks.

3.2. Landmark-based modelling: EL
Our model also makes use of a set Y of M distinctive

landmarks y1 . . .yM ∈ R(X ) detected inside the object of
interest. Similarly to pictorial structures [11], these land-
marks form the leaves of a star-shaped graphical model4

with a virtual root-node y0. This part of the model is de-
fined by leaf potentials φm(ym) and leaf to root potentials
ϕm(y0,ym):

EL(Y; I) :=

M∑
m=1

φm(ym) +

M∑
m=1

ϕm(y0,ym). (6)

Each landmark is associated with a model, e.g. a template
or a filter, that allows the computation of a matching cost
at any location in the image. The leave potential φm(ym)
corresponds to the negative matching cost for m-th land-
mark. The pairwise potentials ϕm penalize the difference in
`2-norm between the current configuration and the one, Ŷ ,
estimated in previous frame:

ϕm(y0,ym) =
1

2
‖ym − y0 − ŷm + ŷ0‖2. (7)

3.3. Curve-landmarks interaction: EJ
The joint energy EJ(X ,Y) captures correlation between

object’s outline and object’s landmarks. Based on proximity,
shape vertices and landmarks can be associated. Let denote
n ∼ m the pairing of vertex xn with landmark ym. Energy
term EJ decomposes over all such pairs as:

EJ(X ,Y) =
∑
n∼m

ξnm(xn,ym). (8)

For each pair n ∼ m, the interaction potential is defined as:

ξmn(xn,ym) =
1

2
‖xn − ym − µmn‖2, (9)

where µmn is the landmark-to-vertex shift vector in the first
image.

4The star shape is used for its simplicity but could be replaced by another
tree-shaped structure.
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4. Using ROAM
Sequential alternating inference. Using ROAM to out-

line the object of interest in a new image amounts to solving
the discrete optimization problem:

min
X ,Y

E(X ,Y; I), (10)

where E is defined by (1) and depends on previous
curve/landmarks configuration (X̂ , Ŷ) through several of
its components. Despite this problem could be formulated
as an integer linear program, we opt for simpler alternating
optimization with exact minimization at each step which
converges within a few iterations.

In the first step, we fix the roto-curve X and find the best
configuration of landmarks Y using dynamic programming.
Exact solution for such a problem can be obtained in two
passes, solving exactly

min
y0

min
y1:M

M∑
m=1

(
φm(ym) + ϕm(y0,ym) +

∑
n∼m

ξmn(xn,ym)
)
.

(11)

Default implementation leads to complexity O(MS2), with
S the size of individual landmark state-spaces, i.e. the num-
ber of possible pixel positions allowed for each. However,
the quadratic form of the pairwise terms allows making it
linear in the number of pixels, i.e. O(MS), by resorting to
generalized distance transform [11].

In the second step, we fix the landmarks Y and find the
best configuration of contour X . This is a classic first-order
active contour problem. Allowing continuous values for
nodes coordinates, a gradient descent can be conducted with
all nodes being moved simultaneously at each iteration. We
prefer the discrete approach, whereby only integral positions
are allowed and dynamic programming can be used [2]. In
that formulation, exact global inference is theoretically pos-
sible, but with a prohibitive complexity of O(NP 3), where
P = card(P) is the number of pixels in images. We follow
the classic iterative approach that considers only D possible
moves ∆x for each node around its current position. For
each of the D positions of first node x1, Viterbi algorithm
provides the best moves of all others in two passes and with
complexityO(ND2). Final complexity is thusO(ND3) for
each iteration of optimal update of previous contour, solving:

min
∆x1

min
∆x2:N

N∑
n=1

(
ψloc
n (en + ∆en) + ψglob

n (en + ∆en)

+
∑
m∼n

ξmn(xn + ∆en,ym)
)
. (12)

Note that sacrifying optimality of each update, the complex-
ity could even been reduced as much as O(ND) [29].

Given some initialization for (X ,Y), we thus alternate
between two exact block-wise inference procedures. This
guaranties convergence toward a local minima of joint energy

E(X ,Y; I). Also, the complexity of each iteration is linear
in the number of vertices and landmarks, linear in the number
of pixels, and cubic in the small number of allowed moves
for a curve’s vertex.

Online learning of appearance models. Local fg/bg
colour models pns and global colour model p0 are GMMs.
Given the roto-curve in the initial frame, these GMMs are
first learned over region pairs (Rin

n , R
out
n )s and (R,P \ R)

respectively and subsequently adapted through time using
Stauffer and Grimson’s classic technique [26].

Selection and adaption of landmarks. A pool of dis-
tinctive landmarks is maintained at each instant. They can
be any type of classic interest points. In order to handle
texture-less objects, we use maximally stable extremal re-
gions (MSERs) [21]. Each landmark is associated with a
correlation filter whose response over a given image area
can be computed very efficiently [13]. At any time, land-
marks whose filter response is too ambiguous are deemed
insufficiently discriminative and removed from the current
pool in the same way tracker loss is monitored in [13]. The
collection is re-populated through new detections. Note that
correlation filters can be computed over arbitrary features
and kernelized [13]; for simplicity, we use just grayscale
features without kernel function.

Allowing topology changes. Using a closed curve is
crucial to comply with rotoscoping workflows and allows
the definition of a rich appearance model. Also, it prevents
abrupt changes of topology. While this behavior is overall
beneficial (See §5), segmenting a complete articulated 3D
object as in Fig. 1 might turn difficult. Roto-artists natu-
rally handle this by using multiple independent roto-curves,
one per meaningful part of the object. As an alternative for
less professional, more automatic scenarios, we propose to
make ROAM benefit from the best of both worlds: standard
graph-cut based segmentation [6], with its superior agility,
is used to propose drastic changes to current curve, if rel-
evant. Space-dependent unaries are derived in ad-hoc way
from both global and local colour models and combined with
classic contrast-dependent spatial regularization.5 The ex-
act minimizer of this instrumental cost function is obtained
through graph-cut (or its dynamic variant for efficiency [16])
and compared to the binary segmentation associated to the
current shape X . At places where the two differ significantly,
a modification of current configuration (displacement, re-
moval or addition of vertices) is proposed and accepted if it
reduces the energy E(X ,Y; I).

5Note that this instrumental energy is too poor to compete on its own
with proposed model, but is a good enough proxy for the purpose of propos-
ing possibly interesting new shapes at certain instants. It is also very
different from the one in the final graph-cut of VIDEO SNAPCUT where
unaries are based on the already computed soft segmentation to turn it into
a hard segmentation. Also, graph-cut segmentation is the final output in
VIDEO SNAPCUT, unless further interaction is used, while we only use it to
explore alternative topologies under the control of our joint energy model.
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5. Results
We report experimental comparisons that focus on the

minimum input scenario: an initial object selection (curve or
mask, depending on the tool) is provided to the system and
automatic object segmentation is produced in the rest of the
shot.6 We do not consider additional user interactions.

Datasets. We evaluate our approach on the recent CPC ro-
toscoping dataset [19]. It contains 9 videos consisting of 60
to 128 frames which represent typical length of shots for ro-
toscoping. These sequences were annotated by professional
artists using standard post-production tools. We also provide
qualitative results on shots from the ROTO++ [18] dataset
for which the authors have not released the ground-truth yet,
as well as from the VIDEO SNAPCUT dataset [3].

In addition to that, we use the DAVIS video segmentation
dataset [22] which comprises 50 challenging sequences with
a wide range of difficulties: large occlusions, long-range
displacements, non-rigid deformations, camouflaging effects
and complex multi-part objects. Let us note that this dataset
is intended to benchmark pixel-based video segmentation
methods, not rotoscoping tools based on roto-curves.

Evaluation Metrics. We use standard video segmenta-
tion evaluation metrics and report the average accuracy, i.e.,
the proportion of ground-truth pixels that are correctly iden-
tified, and the more demanding average intersection-over-
union (IoU), i.e., the area of the intersection of ground-truth
and extracted objects over the area of their union. We also
report runtimes and evolution of IoU as sequences proceed.

Baselines. We compare with several state-of-the-art meth-
ods. Our main comparison is with recent approaches that
rely on a closed-curve, i.e., CPC [19] and ROTO++ [18].
We initialize all methods with the same object and measure
their performance over the rest of each sequence. Since
ROTO++ requires at least two key-frames to benefit from its
online shape model, we report scores with letting the method
access the ground-truth of the last frame as well. We also
run it with the initial keyframe only, a configuration in which
ROTO++ boils down to the Blender planar tracker.

In addition to that, we also compare with two ap-
proaches based on pixel-wise labelling: JUMPCUT [10]
and VIDEO SNAPCUT [3] as implemented in After Ef-
fect ROTOBRUSH and three recent video-segmentation ap-
proaches [9, 20, 28]. As a naive baseline, we use a combina-
tion of a bounding-box tracker [13] and GRABCUT [25].
Ablation study. To evaluate the importance of each part
of our model, we consider 4 different configurations:
• Baseline: negative gradient with `2-regularizer;
• Lean: baseline + local appearance model;
• Medium: lean + landmarks;
• Full: medium + automatic re-parametrization and

global appearance model;
6Video results are available at https://youtu.be/

UvO7IacS9pQ

Table 1: Quantitative evaluation on CPC dataset (∗: partial
evaluation only, see text)

Avg. Avg. Time (s) / frame
Method Accuracy IoU min max avg

GCUT [25] + KCF [13] .891 .572 0.394 0.875 0.455
AE ROTOBRUSH [3] .992 .895 — — —

ROTO++(1 keyframe) [18] .969 .642 — — 0.108
ROTO++(2 keyframes) [18] .974 .691 — — 0.156

CPC [19] .998∗ .975∗ — — —
NLCV [9] .896∗ .194∗ — — —
BSVS [20] .991 .872 — — —

OBJECTFLOW [28] .968 .502 — — —
ROAM: Baseline Conf. .993 .932 0.011 0.155 0.040

ROAM: Lean Conf. .995 .938 0.092 0.377 0.102
ROAM: Medium Conf. .995 .939 0.279 0.875 0.652

ROAM: Full Conf. .995 .951 0.874 8.78 3.052

For all configurations, we used cross-validation (maximizing
the mean IoU) on the training fold of the DAVIS dataset to
set the parameters and kept them fixed for all experiments.

Quantitative results. The quantitative results for the
CPC dataset are summarized in Tab. 1. While average
accuracy is quite similar and saturated for all methods, all
configurations of ROAM outperform all baselines. In terms
of IoU, all versions of ROAM outperform significantly all
others with the full configuration being the best. The rea-
son why landmarks (“medium conf.”) do not add much to
ROAM is that the CPC dataset does not exhibit many large
displacements. The CPC method [19] was evaluated only
on the first ten frames of each sequence since their authors
have released results only on these frames and not yet their
code. Hence, the scores reported in Tab. 1 for CPC are based
on partial videos, as opposed to the scores for all the other
methods (including ours). When similarly restricted to the
first 10 frames, ROAM performs on par with CPC for all the
sequences except “drop” sequence. This sequence shows a
water drop falling down – a transparent object, making color
models (both local and global) useless if not harmful, and
exhibits a very smooth round shape. For this sequence, the
CPC method [19] performs better since it uses Bézier curves
and relies solely on the strength of the image gradients.

Results for the DAVIS dataset are reported in Tab. 2.
While our method is on par with JUMPCUT (pixel-wise
labelling), we again significantly outperform ROTO++ by
almost 25 IoU points (note that using ROTO++ with only
two keyframes is not a typical scenario, however, this shows
how complementary our approaches are). Despite [20] is bet-
ter by 100 and [28] by 17 IoU points on DAVIS, our model
outperforms [20] by 80 and [28] by 450 points on the CPC.
In other words, our approach should in the worst case be
considered on par. However, we would like to stress that
[9, 20, 28] are not our (main) competitors since all are based
on pixel-wise labelling and as such cannot provide the same
flexibility for rotoscoping as the closed contour counter-
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Table 2: Quantitative comparisons on DAVIS dataset
Average Accuracy Average IoU Time / frame (s)

Method Validation set Training set Full set Validation set Training set Full set min max avg
GRABCUT [25] + Tracker [13] 0.896 0.914 0.907 0.277 0.296 0.289 0.405 0.675 0.461

JUMPCUT [10] 0.952 0.957 0.956 0.570 0.632 0.616 — — —
AE ROTOBRUSH [3] 0.951 0.942 0.946 0.533 0.479 0.500 — — —

ROTO++ (single keyframe)[18] 0.910 0.922 0.917 0.248 0.310 0.284 — — 0.118
ROTO++ (two keyframes) [18] 0.925 0.933 0.930 0.335 0.394 0.358 — — 0.312

NLCV [9] 0.948 0.963 0.957 0.551 0.701 0.641 — — —
BSVS [20] 0.966 0.974 0.971 0.683 0.709 0.665 — — —

OBJECTFLOW [28] — — — 0.600 0.732 0.711 — — —
ROAM: Baseline Conf. 0.930 0.937 0.932 0.358 0.385 0.377 0.017 0.113 0.049

ROAM: Lean Conf. 0.935 0.937 0.936 0.409 0.417 0.412 0.187 0.641 0.342
ROAM: Medium Conf. 0.942 0.952 0.948 0.532 0.591 0.564 0.302 1.785 0.746

ROAM: Full Conf. 0.952 0.956 0.953 0.583 0.624 0.615 0.546 7.952 3.058

Table 3: Different types of contour warping for handling long
displacements on a subset of sequences of the DAVIS dataset.

Average Average
Warping method Accuracy IoU

Optical flow 0.878 0.312
Node projection from landmark tracking 0.906 0.480

Robust rigid transf. from landmarks 0.934 0.581

part [18]. Note, that we could not provide more quantitative
comparisons since results/implementations of other methods
were not available from the authors. In particular, compar-
ison with the CPC method [19] would be interesting since
the DAVIS dataset [22] exhibits many large displacements
and major topology changes.

Comparing the different configurations of ROAM – local
appearance models add 3 points, landmarks 15 and global
model with re-parametrization another 5 points – demon-
strates the importance of all components of our framework.
To examine behaviour of each method in detail, we report
IoU score for each frame in Fig. 7, with in addition the effect
of varying the size of the displacement space in ROAM (from
windows of 3× 3 to 13× 13 pixels) represented with a blue
shadow. It can be seen that ROAM is more robust in time,
not experiencing sudden performance drops as others.

Importance of landmarks and warping. Using alternat-
ing optimization has one more benefit. We can use the
predicted position of landmarks in the next frame to estimate
the transformation between the two and “warp” the contour
to the next frame. This allows us to reduce the number of D
possible moves of nodes which i) significantly speeds-up the
algorithm, ii) allows us to handle large displacement and iii)
allows to better control non-rigid deformations.

We have experimented with three settings for warping of
contour: using a smoothed optical flow masked as in [23],
moving each node by averaging the motion of all landmarks
connected to given node and robustly estimating similarity
transformation with RANSAC from position of landmarks.
Table 3 and Fig. 8 show the effect of using robustly estimated
similarity transformation from position of landmarks.

Figure 4: Qualitative results on the DAVIS dataset: Com-
parisons on blackswan and car-roundabout sequences, be-
tween (from top to bottom for each sequence): JUMPCUT,
ROTOBRUSH, ROTO++ and ROAM.
Global colour models and reparametrization. We inves-
tigated the effects of adding reparametrization and global
colour models to our framework. The numeric benefits of
these elements can be seen in Tab. 2 and qualitative results
on the surfer sequence from VIDEO SNAPCUT dataset are
provided in Figs. 5 and 10. Observe that the local colour
models are a powerful way to capture local appearance com-
plexities of an object through a video sequence. However,
self-occlusions and articulated motion can cause these mod-
els to fail (right arm crossing the right leg of the surfer). Our
contour reparametrization allows the efficient handling of
this situation. Furthermore, the beneficial effect of the global
colour models can be observed in Fig. 10, where the right
foot of the surfer is successfully tracked along the whole
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video.

#125              #126               #135 

Figure 5: Using proposals based on graph-cut: Proposals
(in pink) obtained through graph-cut minimization of an
instrumental labeling energy using current colour models
allows ROAM to monitor and accommodate drastic changes
of object’s outline (Bottom). Without this mechanism, parts
of surrounding water get absorbed in surfer’s region, between
the leg and the moving arm (Top).

(a)    (b)           (c)   (d) 

Figure 6: Assessing first part of the model. (a) Edge
strength only; (b) Global colour model; (c) Edge strength
combined with global colour model; (d) With full cost func-
tion EC , including local colour modeling, on frame 13 from
surfer sequence.

Qualitative results. Result samples on several sequences
from DAVIS dataset in Fig. 4 demonstrate the superior ro-
bustness of ROAM compared to other approaches when roto-
scoping of the first image only is provided as input (and last
image as well for ROTO++). Additional results are provided
in the supplementary material.

Timing breakdown. Table 4 provides detailed timing
breakdown for our algorithm. These timings were obtained
on an Intel Xeon 32@3.1GHz CPU machine with 8GB RAM
and Nvidia GeForce Titan X GPU. Note that only part of
the approach (evaluation of various potentials and dynamic
programming) was run on the GPU. In particular, the re-
parametrization steps could also be easily run on the graphics
card, yielding real-time performance.

Convergence. Fig. 9 demonstrates that the alternating
optimization described in §4 converges quickly within a few
iterations.

Table 4: Timing details for full configuration of ROAM.
Step Min. Max. Avg.

DP Contour 0.018 0.113 0.084
DP Landmarks 0.003 0.072 0.052

Local models edge terms 0.342 0.671 0.581
Other terms 0.012 0.015 0.013

Reparametrization 0.032 7.403 2.226
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Boat Car-shadow
Figure 7: Evolution of IoU for different sequences of the
DAVIS dataset. For our method, the blue shadow indicates
influence of varying the label space size for each node (set
of possible moves in dynamic programming inference).

Landmarks Frame 15 Frame 25
Figure 8: Benefit of landmarks-based modeling. Auto-
matically detected landmarks (orange bounding boxes) are
accurately tracked on the plane sequence. This further im-
proves the control of the boundary (bottom), as compared to
ROAM without landmarks (top).
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Figure 9: Energy vs. number of iterations on three se-
quences from the experimental datasets.

6. Conclusion
We have introduced ROAM, a model to capture the ap-

pearance of the object defined by a closed curve. This model
is well suited to conduct rotoscoping in video shots, a diffi-
cult task of considerable importance in modern production
pipelines. We have demonstrated its merit on various com-
petitive benchmarks. Beside its use within a full rotoscoping
pipeline, ROAM could also be useful for various forms of
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object editing that require both accurate enough segmenta-
tion of arbitrary objects in videos and tracking through time
of part correspondences, e.g. [15, 24]. Due to its flexibility,
ROAM can be easily extended; in particular, with the recent
ROTO++ and its powerful low-dimensional shape model.
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