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Abstract—Biometric authentication systems verify the identity
of individuals based on what they are. As they are error
prone, they can reject genuine individuals or accept impostors.
Researchers of the field quantify the quality of their algorithm
by benchmarking it on several databases. However, although the
standard evaluation metrics state the performance of their system,
they are unable to explain the reasons of their errors. This
paper presents a novel way to visualize the evaluation results
of a biometric authentication system which helps to find which
individuals or samples are sources of errors. This knowledge
could help to fix the algorithms. A biometric database of scores
is modeled as a partitioned power-graph with nodes representing
biometric samples and power-nodes representing individuals. A
novel recursive edge bundling method is also applied to reduce
clutter. This proposal has been successfully applied on several
biometric databases and has proved its efficiency.

I. INTRODUCTION

Biometric authentication allows to authenticate individuals
based on what they are [1]. Some modalities are common in
operational scenarios, as border control the AADHAAR project
in India with face [2] or fingerprint recognition [3], while others
are more confidential, like keystroke dynamics [4] or veins
recognition [5]. A biometric authentication system is composed
of two main modules which deeply rely on machine learning
and signal processing algorithms (Figure 1): the enrollment
module computes the biometric reference of an individual
thanks to its enrollment samples in order to model this individ-
ual, and the verification module takes the decision to accept
the claimant if the matching score computed by comparing
its query sample against the claimed biometric reference is
higher than the decision threshold (which is a parameter of
the biometric authentication system). The machine learning
and signal processing methods involved during the different
steps executed by the enrollment and verification modules
generate errors like false rejection of genuine individuals and
false acceptance of impostors. These errors imply the need to
evaluate the performance of biometric authentication systems;
the standard evaluation consists in selecting a database of
biometric samples, specifying an evaluation protocol to produce
scores on which various evaluation metrics are applied (see II).
Usually, for a database of [ individuals with £ + T' samples
per individual, the first £/ samples of each individual are used
to compute its biometric reference, while the 7" remaining ones
are used to compute the verification scores by comparing each

sample to each biometric reference.

Although this allows to compare and sort systems to select
the best one for an appropriate operational scenario, this does
not help to understand which individuals or which samples
are at the origin of these errors. The aim of this paper is to
present a new interactive visualisation based on partitioned and
bundled power-graphs [6] to focus the attention on individuals
and samples generating these errors. Thanks to his analysis, the
researcher in biometric authentication could better understand
the errors reasons and fix the authentication algorithm. The
method proposed in this paper shows more information than the
Zoograph [7] which has been designed for the same purpose.
A power-graph PG = (V, PV, EV, EPV, EV PV) is a graph-
like structure containing two kinds of nodes: the nodes V' and
the power-nodes PV with each power-node representing a
strong partition of V U PV. EV is the set of edges from one
node to another node (the nodes are individually linked), £ PV
is the set of power-edges from a power-node to another power-
node (all the nodes represented by the source power-node are
linked to the nodes represented by the target power-node),
and EV PV is the set of power-edges from a node to another
power-node (the node is linked to all the nodes represented
by the power-node). This can be seen as a generalisation of
quotient-graphs [8] with the additional ability to link nodes to
meta-nodes.

This paper presents two novelties: (i) the method to model
and visualize the result of a biometric authentication algorithm,
through a partitioned and bundled power-graph, able to
highlight the wrong individuals and samples, and (ii) a recursive
algorithm to compute edge bundles in a partitioned (power-
)graph which reduces the edge-node overlap in comparison to
standard edge bundling methods by avoiding areas of the screen
space reserved to other partitions. Although no contributions
are brought to the power-graph [6] representation, this recursive
edge bundling method helps to improve their visualisation. The
paper is organised as follows. Section II presents common
evaluation procedures of biometric authentication systems.
Section III and IV respectively explain how to model and
visualize a biometric score database with a power-graph to
highlight bad behaviors. Section V presents the experimental
protocol used to evaluate our contribution, while section VI
presents and discusses the results and section VII concludes
this paper.
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Figure 1. Simplified summary of a biometric authentication system, with its
two main modules for enrollment and verification.

II. EVALUATION FOR BIOMETRIC AUTHENTICATION

Various evaluation [9] metrics exist to evaluate the authenti-
cation performance of a biometric authentication system. The
False Match Rate (FMR) is the rate of false acceptance (i.e.,
samples rejected instead of being accepted) by the matching
algorithm for single template comparison attempts (interscores);
the False Non Match rate (FNMR) is the rate for false
rejection (i.e., samples accepted instead of being rejected)
by the matching algorithm for single template comparison
attempts (intrascores); finally, the Equal Error Rate (EER) is
this error rate of the operational point where FMR and FNMR
are equal.

It is also possible to visually evaluate biometric authen-
tication algorithms: the Receiver operating characteristic
curve (ROC) [10]: plots the FMR on the x-axis against the
corresponding FNMR (more exactly 1-FNMR) on the y-axis
depending on the decision threshold; the Zooplot [11] displays
all the individuals of the dataset in a scatter plot where
their coordinates correspond to their mean genuine and mean
impostor scores; the Zoograph [7] improves it by (i) adding an
edge between individuals when the source is able, in average,
to be recognized as the target and (ii) by using a non linear
mapping function on the coordinates ensuring the 25% best
and worst individuals take only 25% of the screen space each.

Only the Zooplot and the Zoograph provide individual
information instead of only giving a global information. The
Zoograph goes further by showing the relations between
individuals and improving the use of the screen space. However,
none of them provide hints on the problematic samples. The
power-graph visualisation presented in the remaining sections
allows to tackle this issue.

III. MODELING OF PARTITIONED POWER-GRAPHS

The proposed method (i) models the biometric database of
scores with a partitioned power-graph for a specific operational
point of threshold 7, and (ii) visualises it through different
encoding schemes related to the biometric information.
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Figure 2. Description of the recursive edge bundling method for power-graphs
on a simple partitioned power-graph.

Let’s say we have a database of N scores D = UN ¢,
with ¢t; = {id? robe 'dga”ery ,rank;,s;} the information for
the ith score; idY robe € I is the individual who have pro-
vided the query, zdg“””y € T is the individual who have
provided the blometrlc reference, rank; the probe sample
number for individual id”"** (thus, a sample is identified
by the tuple {id?"**°,rank;} € S), and s; is the score
value of the ith score (i.e., the score obtained by compar-



ing the sample to the biometric reference). If id? " =
idf“””y, s; represents an intrascore (otherwise it is an
interscore). {ID, 7} can be modeled by a power-graph PG, =
(S.1.0,0, Un,en{{id" " rank;}, id!*"™¥}|s; > 7)
the nodes represent the samples S, the power-nodes represent
the individuals I, there is no link between nodes, there is no
link between power-nodes, and each node can be linked to
power-nodes when the comparison score is higher or equal to
T.

where

Although PG, models relations between samples and
individuals, it does not model similarities between individuals.
To overcome this issue, its power-nodes are partitioned
based on a biometric information computed as follows.
Three attributes are computed for each individual v € L:
FNMR,(u) its FNMR, FMR™(u) its FMR when
comparing other individuals samples to its own biometric
reference, and F'M R%“!(u) its FMR when comparing all
its samples to the biometric reference of all the other
individuals. Their average value (among the individuals of the

database) are then computed: FNMR, = Y el %ﬁf(“),
T Din FMR™(u T Dout FMR2“ (u
FMRir = 3, o 205 FRowt = 3 P (0

Two thresholds W and B which respectively represent the
percentage of errors considered as worst and best performance
limits, are used to rank these attributes in 4 categories finally
used to compute a partition number for each individual:

partition(u) = score (me FNMR.(u), B, W)
+score F@ut,FNMR:’Mt(u),B,W) %22

tscore (FMRin, FNMR™(u), B,W ) % 2*
where score function result is encoded with 2 bits and defined
3,1if val <= low
2,else if val <= avg
1, else if val <= high
0, otherwise

as score(val, avg, low, high) =

IV. PARTITIONED POWER-GRAPH VISUALISATION

PG, associated to its partitioning information has to be
visualised by the biometric authentication researcher to let
him understand the behavior of the database amongst his
authentication algorithm.

The node-link diagram representation is chosen: its nodes
are drawn as discs and its power-nodes as rounded squares; by
definition, each node is drawn on top of a power-node. Several
information need to be shown in evidence in order to ease the
comprehension of the displayed structure.

Individuals proximity: individuals of a same partition have
to be drawn close together. We first build the quotient-graph
[8] Qindividuais Of the graph of samples which represents the
individuals of the database: one meta-node per individual, one
meta-edge between two individuals if one of them have samples
impersonating the other one. We then build the quotient graph
Qgroups based on the individuals partitions: one meta-node
per partition of individuals, one meta-edge between two meta-
nodes if one individual of the source partition is linked to
one individual of the target partition. Thanks to this 3 levels

hierarchy, a bottom-up multilevel drawing method is used
to compute the embedding of the nodes and power-nodes
of PG,. (1) The samples subgraph of each individual is
drawn with a packing algorithm and its size is reported to
the corresponding node in Q;pdividuals- (2) The individuals
subgraph of each partition of individual is drawn by using
an algorithm which ensures no node-node overlap and its
size is reported to the corresponding node in Qpgrtition- (3)
Qpartition 1S drawn by using an algorithm ensuring no node-
node overlap. (4) The absolute position of each node of PG,
is trivially computed by recursively centering partitions to
the coordinate of is meta-node representative from the top
of the hierarchy to the bottom. Figure 2a summarizes the
structures involved in the drawing with a simple partitioned
power-graph (Figure2b). Individual node color corresponds to
HSV(FNMR_score, FM R_score™, FM R_score®*t) at a
scale factor precision.

Intraclass performance: if a sample is detected to be genuine,
its is drawn in blue, otherwise in red. It allows to quickly
identify samples rejected as well as individuals having more
rejected samples than the others. The border color of an individ-
ual corresponds to RGB(FNMR,(u),0,1 — FNMR.(u)).

Interclass performance: the size of each sample depends on
its ability to impersonate other individuals (bigger means more
errors). By construction it impacts the size of the drawing of
power-nodes.

Edge-bundling algorithms can reduce the clutter due to edges
drawn over the nodes and power nodes. However, standard
edge bundling methods allow edges to route between nodes
belonging to partitions different than the source and destination
ones. To overcome this issue, we have thus designed a new
recursive edge-bundling method able to avoid partitions. The
first step computes the edge bundling of @ 4roups While ensuring
the first (respectively last) bend of each meta-edge is on the
perimeter of the source (respectively target) meta-node and
adds an artificial node in the subgraph represented by each
meta-node at the intersection position (Figure 2d). An artificial
edge is added between the source (respectively artificial) node
and the artificial (respectively target) node in the subgraph
represented by the source (respectively target) meta-node for
each edge represented by a meta-edge. The next step applies the
same procedure to the subgraph represented by each meta-node
of Qgroups (Figure 2e). In the next step, edge bundling is then
computed on the induced subgraph represented by each each
meta-node of Q;ndividuals (Figure 2f). Finally, the bends of
each edge of the power-graph correspond to the concatenation
of the bends computed in the previous steps (Figure 2g).

As the embedding of PG, can be huge, it has to be viewed
in an interactive (mainly zooming and panning) application
able to highlight interactions between samples and individuals.
This is achieved thanks to a neighbourhood interactor [17]: to
select an individual highlights the samples able to impersonate
him while to select a sample highlights individuals it is able
to impersonate. To reduce the visual noise, the part of an
edge inside a power-node is only drawn when this edge is
highlighted by the neighbourhood interactor.



Table 1
DESCRIPTION OF THE DATASETS USED TO EVALUATE THE PROPOSAL.

Dataset Type Modality Methodology # individuals # sample # scores EER
/individuals
AR [12] Score Face SIFT based matching 120 26 360000 10.19%
ENSIB [13] Score Face SIFT based matching 100 40 390000 10.88%
FC94 [14] Score Face SIFT based matching 152 20 438976 0.29%
FVC [15] Score Fingerprint SIFT based matching 100 8 70000 10.27%
veins [5] Score Vein SIFT based matching 24 30 16704 0.0%
OU-ISIR BSS3 [16] | Distance | Gait Distance between 2 sig- 736 variable 10175181 | 14.88%
(accelerometer) | nals
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Figure 3. Comparison of the visualisation produced by the proposed method against the baselines. (continues)

V. EXPERIMENTAL PROTOCOL range [0; 0,148 8]. The threshold 7 is configured to correspond

to the EER operational point. W and B are respectively set to

Table I presents the datasets of scores used to evaluate the 80% and 5%. Among the different evaluation methodologies of
proposal; the number of individuals (it also corresponds to the the literature, we want to compete with the Zoograph [7] which
number of power-nodes) is in the range [24;736], the number is used as the baseline for local evaluation method, while the
of scores (it also corresponds to the maximum number of edges) ROC curve is used as the baseline for global evaluation method.
is in the range [16 704;10175181], while the EER is in the The proof of concept is written with around 4000 lines of
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C++14 and intensively uses the graph display library Tulip
4.11 [18] and its associated plugins; each partition of samples
is drawn with GRIP [19], each partition of individual is drawn
with Fast Multipole Embedder [20] followed by Fast Node
Overlap Removal [21] then followed by a connected component
packing method to drastically reduce the drawing size of good
partitions; Qgroups is drawn with Bubble Tree [22]; finally, the
bundling algorithm used by the recursive bundling algorithm is
Winding Roads [23]. The edges are drawn with cubic B-splines
in black color with an alpha value of 100/255 in order to
emphasize the positions with a high edge density (which is
frequent due to the edge bundling).

VI. RESULTS

Figure 3 gives a still representation of the power-graph drawn
for each evaluated dataset and compares them to the ROC curve
and the Zoograph. It clearly provides more information than
the ROC curves; for example, on the system FC94 which is
almost perfect (0.29% of errors), we easily detect the few

AO40 0.2 04 0.6 08 1.0
FMR

(k) ROC curve on ENSIB.

(1) Zoograph on ENSIB.

continued

individuals at the origin of these false acceptances (upper-
right group) as well as the individuals having false rejections
(left group). This representation lies less than the Zoograph
as we see more individuals linked together (ENSIB, FC94)
because a sample is linked to an individual if there is a
match, whereas for the Zoograph two individuals are linked if
there is a match in average. In the Zoograph, individuals
have links only if they do errors in average which hides
more diffuse errors. The partitioning of individuals thanks
to a biometric information helps to see if there are different
categories of individuals. Although the number of categories
varies among the datasets, it is always lower than the theoretical
maximal number of partitions (43 = 64). Figure 4 presents the
drawing result of the AR database without bundling and with
standard edge bundling. It shows that: (i) using a bundling
method is mandatory as the number of edges is too much
important even for systems with average error rates (10%),
and (ii) the non-recursive edge bundling allows edges to
cross partitions which complicates the understanding of the



(m) Result on BSS3 (edges represented with polylines for memory reasons).
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drawing. The novel recursive edge-bundling is indisputably an
interesting contribution for such drawing. Figure 5 presents two
interactions implemented: (i) the highlight of the samples able
to impersonate the selected individual, and (ii) the highlights
of the individuals impersonated by the selected sample. These
two interactions are mandatory to explore the result graph.

VII. CONCLUSION

As biometric authentication systems are error prone, re-
searchers have to evaluate them with benchmark datasets.
The main evaluation methods of the literature provide global
evaluation metrics and visualisation without emphasising on the
samples or individuals sources of errors. This paper presented
a novel visualisation method which encodes the result of the
evaluation of a biometric authentication system as a power-
graph, computes its embedding after partitioning its power-
nodes and uses a novel recursive edge-bundling method to
reduce noise. Results are promising as this new visualisation
displays something novel: the samples sources of errors. The
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continued

recursive edge-bundling method developed for this purpose
is also a great addition to reduce the noise and can be
easily adapted to work on any hierarchically partitioned graph.
We have identified several improvements which are left for
future work. To display the biometric images of morphological
modalities instead of shapes would allow to better understand
the reasons of mistakes (for examples if the rejected samples
all corresponds to blurry images). Confluent drawings [24],
which does bundling based on a power-graph representation,
could also be an alternative to the recursive edge bundling after
adding constraints ensuring no partition traversal.
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