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MAHLER MEASURE ON GALOIS EXTENSIONS.

FRANCESCO AMOROSO

Laboratoire de mathématiques Nicolas Oresme, CNRS UMR 6139
Université de Caen, Campus II, BP 5186

14032 Caen Cedex, France

Abstract. We study the Mahler measure of generators of a Galois
extension with Galois group the full symmetric group. We prove that
two classical constructions of generators gives always algebraic numbers
of big height. These results answer a question of C. Smyth and provide
some evidence to a conjecture which asserts that the height of such a
generator growth to infinity with the degree of the extension.

1. Introduction

Let α be a non-zero algebraic number of degree d. We let as usual M(α) the
Mahler measure of α. Thus

M(α) = |lc(f)|
d∏
j=1

max(|αj), 1)

where lc(f) is the leading coefficient of a minimal equation of α over Z and where
α1, . . . , αd are the conjugates of α.

Assume that α is not a root of unity (otherwise M(α) = 1). By an old result of
Kronecker M(α) > 1 and Lehmer [5] asked if we could replace 1 by a real number
> 1 which does not depend on α. This problem is still open, the best known result
is a theorem of Dobrowolski (see [4]) which proves the lower bound

M(α) ≥ 1 + c(ε)d−ε

for all ε > 0, with c(ε) > 0 depending only on ε.
Recently, a construction of Smyth gives a renewed interest in lower bounds for

the Mahler measure of a generator of a Galois extension (a problem first considered
in [1]). In this special case we can considerably improve the above lower bound.
Let α be a non-zero algebraic number of degree d, not a root unity, such that
Q(α)/Q is Galois. Then (see [2])

M(α)1/d ≥ 1 + c(ε)d−ε

for all ε > 0, with c(ε) > 0 depending only on ε.

The result of [2] was partially motivated by a problem posed by Smyth during a
recent BIRS workshop (see [3, problem 21, p. 17]). Let n ≥ 2 and β = β1, . . . , βn
be the roots of zn − z − 1, known to be irreducible for all n, and to have Galois
group the full symmetric group Sn. Put

α = β1
1β

2
2 . . . β

n−1
n−1 .

Date: 20 august 2017.
1
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Then (by an easy consequence of [6] Lemma 1) the Galois closure of Q(β) is Q(α)

of degree d = n! over Q. Smyth computed with Maple the first values of M(α)1/d

n d = n! M(α)1/d

2 2 1.2720196495
3 6 1.1509639252
4 24 1.2428334720
5 120 1.2292495215
6 720 1.2846087150
7 5040 1.2833028970
8 40320 1.3243452986
9 362880 1.3307248410

and asked the following questions:

(1) Does anyone know of any smaller values of M(α)1/d > 1 for α of
degree d with Q(α) Galois?

(2) Does the above sequence of values M(α)1/d tend to a limit as n→∞
and, if so, what is it?

The quoted result of [2] is related to the first question. One of the aim of this
paper is to give an answer to the second question. More generally, in section 3 we
show:

Theorem 1.1. Let β be an algebraic unit of degree n, with algebraic conjugates
β1, . . . , βn. Assume that Q(β1, . . . , βn)/Q has Galois group Sn. Let a1, . . . , an ∈ Z
and put

α = βa1
1 βa2

2 · · ·β
an
n .

Then:

1) α is a generator of Q(β1, . . . , βn)/Q if and only if a1, . . . , an are
pairwise distinct.

2) Put yj = aj − 1
n

∑
i ai. Then

M(β)cn|y|1 ≤M(α)1/n! ≤M(β)|y|1

with |y|1 = 1
n

∑n
j=1 |yj | and where cn ∼

√
2
πn .

3) If α is a generator of Q(β1, . . . , βn)/Q,

M(α)1/n! ≥M(β)(1+o(1))
√

n
8π .

The Mahler measure of a root of xn−x− 1 is ≥ θ = 1.32..., the smallest Pisot’s
number (the root > 1 of x3 − x − 1). Thus Theorem 1.1 implies that Smyth’s
sequence tends to ∞.

A more classical way to construct a generator for the Galois closure of Q(β) is
given by the proof of the Primitive Element Theorem, thus taking a general linear
combination of the conjugates of β. In section 4 we give a proof, based on a simple
discriminant argument, of the following partial analogous of Theorem 1.1.

Theorem 1.2. Let β be an algebraic integer of degree n, with algebraic conjugates
β1, . . . , βn. Assume that Q(β1, . . . , βn)/Q has Galois group Sn. Let a1, . . . , an ∈ Z
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and put
α = a1β1 + a2β2 + · · ·+ anβn.

Then:

1) α is a generator of Q(β1, . . . , βn)/Q if and only if a1, . . . , an are
pairwise distinct.

2) Let V (a) be the Vandermonde
∏

1≤i<j≤n(aj − ai). Then, if n ≥ 5,

2−
1
24

(
|V (a)| · |disc(β)|1/2

) 1
12n(n−1) ≤M(α)1/n! ≤ |a|1 ·M(β).

3) If α is a generator of Q(β1, . . . , βn)/Q,

M(α)1/n! ≥ (n/4)1/48.

Theorems 1.1 and 1.2 may suggest some speculations on the behavior of M(α)
for α a generator of a Galois extension.

Conjecture 1.3. Let α ∈ Q be a generator of of a Galois extension of degree
d = n! with Galois group the full symmetric group Sn. Then,

M(α)1/d ≥ C(d)

with C(d)→ +∞ for d→ +∞.

Equivalently, in terms of the Weil height h(α) = 1
d logM(α),

h(α) ≥ c(d)

with c(d) growing to infinity with d. This would be the first result of the kind
“h→ +∞”.

Remark that the assumption on the Galois group is necessary, as a couple of
exemples of [2] show: take ζe a e-root of unity and put α = 1 + ζe or α = 21/e+ ζe,
both of uniformly bounded height.

Aknowledgements. We are indebted to Eric Ricard for a convexity argument
which is the key of the proof of Lemma 2.2. We warmly thank Tanguy Rivoal for
equality (2.3).

2. Auxiliary results

Let Hn := {x ∈ Rn | x1 + · · ·+ xn = 0} and, for x ∈ Hn,

|x|1 =
1

n

n∑
j=1

|xj | .

We remark that Sn acts on Hn (by σ(x) = (xσ(1), . . . , xσ(n))).

For x, y ∈ Hn we set

sn(x,y) =
1

n!

∑
σ∈Sn

∣∣∣∣∣∣ 1n
n∑
j=1

xσ(j)yj

∣∣∣∣∣∣ .
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Thus sn is symmetric,

sn(x,y) = sn(y,x).

Moreover, for each y ∈ Hn, the function x 7→ sn(x,y) is a seminorm1, stable by
the action on Sn.

For h = 1, . . . , n− 1 we define a vector z(n,h) ∈ Hn by

z
(n,h)
j =

{
n
2h if j = 1, . . . , h

− n
2(n−h) if j = h+ 1, . . . , n

(thus |z(n,h)|1 = 1). Let also

cn = min
0<h,k<n

sn(z(n,h), z(n,k)).

The aim of this section is to prove the following proposition.

Proposition 2.1. For x, y ∈ Hn\{0} we have

(2.1) cn ≤
sn(x,y)

|x|1 · |y|1
≤ 1 .

Moreover

(2.2) cn ∼
√

2

πn
.

The above lower bound is clearly sharp, and the upper bound is almost sharp,
since

sn(z(n,1), z(n,k)) =
n

2(n− 1)

(see Lemma 2.3 below).
Proposition 2.1 easily implies the lower bound for M(α) in assertion 2) of The-

orem 1.1, as we shall see in the next session. In the rest of this section we present
the proof of the proposition, which follows from the three lemmas below.

Lemma 2.2. Let x, y ∈ Hn\{0}. Let h = h(x) be the cardinality of the set of
j ∈ {1, . . . , n} such that xj ≥ 0 and similarly for k = k(y). Then

sn(x,y)

|x|1 · |y|1
≥ sn(z(n,h),y)

|y|1
≥ sn(z(n,h), z(n,k)).

Proof. Let us prove the first inequality. Since x 7→ sn(x,y) is homogeneous, we
can assume |x|1 = 1. Let A be the set of j ∈ {1, . . . , n} such that xj ≥ 0. Since
x 7→ sn(x,y) is invariant by the action of Sn, we can assume A = {1, . . . , h}. We
now use a convexity argument suggested by E. Ricard. Let G be the subgroup of
σ ∈ Sn such that σ(A) = A. Then

|G|−1
∑
σ∈G

σ(x) = z(n,h)

and, by the convexity of x 7→ sn(x,y),

sn(z(n,h),y) ≤ sn(x,y).

1and indeed a norm if y 6= 0, for instance as a consequence of Proposition 2.1 below.
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The second inequality follows from the first one and from the symmetry of sn:

sn(z(n,h),y)

|y|1
=
sn(y, z(n,h))

|y|1
≥ sn(z(n,k), z(n,h)) = sn(z(n,h), z(n,k)).

�

Lemma 2.3. Let y ∈ Hn and h, k ∈ {1, . . . , n}. Then

sn(z(n,h),y) =
n

2h(n− h)

(
n

h

)−1 ∑
S⊆{1,...,n}
Card(S)=h

∣∣∣∑
j∈S

yj

∣∣∣
and

sn(z(n,h), z(n,k)) =
n2(h− [hk/n])(k − [hk/n])

2hk(n− h)(n− k)

(
n

h

)−1( k

[hk/n]

)(
n− k

h− [hk/n]

)
.

Proof. We have

sn(z(n,h),y) =
1

n!

∑
σ∈Sn

∣∣∣∣∣∣ 1n
n∑
j=1

z
(n,h)
j yσ(j)

∣∣∣∣∣∣
=

1

n!

∑
σ∈Sn

∣∣∣∣∣∣ 1

2h

h∑
j=1

yσ(j) −
1

2(n− h)

n∑
j=h+1

yσ(j)

∣∣∣∣∣∣
=

1

n!

∑
σ∈Sn

∣∣∣∣∣∣
(

1

2h
+

1

2(n− h)

) h∑
j=1

yσ(j)

∣∣∣∣∣∣
=

n

2h(n− h)

1

n!

∑
σ∈Sn

∣∣∣∣∣∣
h∑
j=1

yσ(j)

∣∣∣∣∣∣
=

n

2h(n− h)

(
n

h

)−1 ∑
S⊆{1,...,n}
Card(S)=h

∣∣∣∑
j∈S

yj

∣∣∣.
We now prove the second equality. From the first,

sn(z(n,h), z(n,k)) =
n

2h(n− h)

(
n

h

)−1 ∑
S⊆{1,...,n}
Card(S)=h

∣∣∣∑
j∈S

z
(n,k)
j

∣∣∣.
For S ⊆ {1, . . . , n} of cardinality h we have∑

j∈S
z

(n,k)
j =

n

2k
|S ∩ {1, . . . , k}| − n

2(n− k)
|S ∩ {k + 1, . . . , n}|

=

(
n

2k
+

n

2(n− k)

)
|S ∩ {1, . . . , k}| − n

2(n− k)
|S|

=
n2

2k(n− k)

(
|S ∩ {1, . . . , k}| − hk

n

)
.

This gives

sn(z(n,h), z(n,k)) =
n3

4h(n− h)k(n− k)

(
n

h

)−1

Σn,h,k
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with

Σn,h,k =
∑

S⊆{1,...,n}
Card(S)=h

∣∣∣|S ∩ {1, . . . , k}| − hk

n

∣∣∣
=

min(h,k)∑
j=max(h+k−n,0)

( ∑
S1⊆{1,...,k}
Card(S1)=j

1
)( ∑

S2⊆{k+1,...,n}
Card(S2)=h−j

1
)∣∣∣j − hk

n

∣∣∣
=

min(h,k)∑
j=max(h+k−n,0)

(
k

j

)(
n− k
h− j

)∣∣∣j − hk

n

∣∣∣.
We now quote an equality suggested by T. Rivoal. Let q ∈ Z with

max(h+ k − n, 0) ≤ q ≤ min(h, k).

Then

(2.3)

q∑
j=max(h+k−n,0)

(
k

j

)(
n− k
h− j

)(hk
n
−j
)

=
1

n
(h−q)(k−q)

(
k

q

)(
n− k
h− q

)
.

This formula can be easily verified by induction on the parameter q. It shows that

min(h,k)∑
j=max(h+k−n,0)

(
k

j

)(
n− k
h− j

)(hk
n
− j
)

= 0

and that

Σn,h,k = 2

[hk/n]∑
j=max(h+k−n,0)

(
k

j

)(
n− k
h− j

)(hk
n
− j
)

=
2

n
(h− [hk/n])(k − [hk/n])

(
k

[hk/n]

)(
n− k

h− [hk/n]

)
.

Thus

sn(z(n,h), z(n,k)) =
n3

4h(n− h)k(n− k)

(
n

h

)−1

× 2

n
(h− [hk/n])(k − [hk/n])

(
k

[hk/n]

)(
n− k

h− [hk/n]

)

=
n2(h− [hk/n])(k − [hk/n])

2hk(n− h)(n− k)

(
n

h

)−1( k

[hk/n]

)(
n− k

h− [hk/n]

)
.

�

In the next lemma we give an asymptotic estimate for

sn(z(n,h), z(n,k)) =
n2(h− [hk/n])(k − [hk/n])

2hk(n− h)(n− k)

(
n

h

)−1( k

[hk/n]

)(
n− k

h− [hk/n]

)
.

Lemma 2.4. Let (nm)n∈N, (hm)m∈N, (km)m∈N with 0 < hm, km < nm. Assume

lim
m→+∞

nm = +∞, lim
m→+∞

hm
nm

= u, lim
m→+∞

km
nm

= v
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for some u, v ∈ [0, 1]. Then

lim
m→+∞

2
√

2πuv(1− u)(1− v)nm · snm(z(nm,hm), z(nm,km)) = 1.

Proof. By a continuity argument, we can assume u, v ∈ (0, 1). Since

lim
m→+∞

[hmkm/nm]

nm
= uv,

we have

n2
m(hm − [hmkm/nm])(km − [hmkm/nm])

2hmkm(nm − hm)(nm − km)
∼ (u− uv)(v − uv)

2uv(1− u)(1− v)
=

1

2
.

For the other factors in snm(z(nm,hm), z(nm,km)) we use Stirling’s formula, in the
following version. Let (nm)m∈N, (Am)m∈N, (Bm)m∈N with 0 ≤ Bm ≤ Am. Assume
nm → +∞, Am/nm → a, Bm/nm → b as m→ +∞ with 0 < b < a . Then

(
Am
Bm

)
∼ 1√

2πnm
×
√

a

b(a− b)
×
(

aa

bb(a− b)a−b

)nm
.

Thus, (
nm
hm

)−1

∼
√

2πnm ×
√
u(1− u)×

(
uu(1− u)1−u)nm

and (
km

[hmkm/nm]

)
∼ 1√

2πnm
×
√

v

uv(v − uv)
×
(

vv

(uv)uv(v − uv)v−uv

)nm
=

1√
2πnm

×

√
1

uv(1− u)
×
(

1

uuv(1− u)v−uv

)nm
;

(
nm − km

hm − [hmkm/nm]

)
∼ 1√

2πnm
×

√
1− v

(u− uv)(1− v − u+ uv)

×
(

(1− v)1−v

(u− uv)u−uv(1− v − u+ uv)1−v−u+uv

)nm

=
1√

2πnm
×

√
1

u(1− u)(1− v)

×
(

1

uu−uv(1− u)1−v−u+uv

)nm
.



8 FRANCESCO AMOROSO

Hence

snm(z(nm,hm), z(nm,km))

=
n2
m(hm − [hmkm/nm])(km − [hmkm/nm])

2hmkm(nm − hm)(nm − km)

×
(
nm
hm

)−1( km
[hmkm/nm]

)(
nm − km

hm − [hmkm/nm]

)

∼ 1

2
√

2πnm
×

√
u(1− u)× 1

uv(1− u)
× 1

u(1− u)(1− v)

×
(
uu(1− u)1−u × 1

uuv(1− u)v−uv
× 1

uu−uv(1− u)1−v−u+uv

)nm
=

1

2
√

2πuv(1− u)(1− v)nm
.

�

Proof of Proposition 2.1. The upper bound in (2.1) is easily proved:

1

n!

∑
σ∈Sn

∣∣∣∣∣∣ 1n
n∑
j=1

xσ(j)yj

∣∣∣∣∣∣ ≤ 1

n!

∑
σ∈Sn

1

n

n∑
j=1

|xσ(j)| · |yj |

=
1

n

n∑
j=1

(
1

n!

∑
σ∈Sn

|xσ(j)|

)
|yj |

=
1

n

n∑
j=1

|x|1 · yj = |x|1 · |y|1.

The lower bound follows from Lemma 2.2 and from the definition of cn. The
asymptotic estimate (2.2) for cn is an easy consequence of Lemma 2.4, since

max
0≤u,v≤1

uv(1− u)(1− v) =
1

16
.

�

3. Proof of Theorem 1.1

Let us prove the first assertion of the theorem. If ai = aj for some i 6= j, then
α is not a generator of Q(β1, . . . , βn)/Q, since τα = α for τ = (i, j). Assume now
a1, . . . , an pairwise distinct. Let σ be a permutation of Sn such that σα = α.
Then

β
a1−aσ(1)

1 · · ·βan−aσ(n)
n = 1,

which implies, by [6, Lemma 1], that j 7→ aj − aσ(j) is constant, say = κ. For
l = o(σ) we have a1 = aσl(1) = · · · = a1 + lκ, thus κ = 0 and ∀j, aσ(j) = aj . Since
a1, . . . , an are pairwise distinct, σ is the identity.
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To prove 2), let xj = log |βj | ∈ R and remark that
∑

j xj = 0 and
∑

j |xj | =

2 logM(β). Moreover

2

n!
logM(α) =

1

n!

∑
σ∈Sn

∣∣∣∣∣∣
n∑
j=1

ajxσ(j)

∣∣∣∣∣∣ =
1

n!

∑
σ∈Sn

∣∣∣∣∣∣
n∑
j=1

xσ(j)yj

∣∣∣∣∣∣ .
Inequality (2.1) of Proposition 2.1 then gives

cn
2 logM(β)

n
|y|1 ≤

1

n
· 2

n!
logM(α) ≤ 2 logM(β)

n
|y|1

with cn ∼
√

2
πn . Assertion 2) follows.

To prove the last assertion, we need the following elementary lemma:

Lemma. Let y ∈ Hn with yj+1 − yj ≥ 1 for j = 1, . . . , n− 1. Then

|y|1 ≥
n− 2

4
.

Proof. Let k be such that yk ≤ 0 < yk+1. Then, for j = 1, . . . , k

yj ≤ yk − (k − j) ≤ −(k − j)
while

yj ≥ yk+1 + (j − k − 1) ≥ j − k − 1

for j = k + 1, . . . , n. Thus

n|y|1 = −
k∑
j=1

yj +
n∑

j=k+1

yj ≥
k−1∑
h=0

h+
n−k−1∑
h=0

h =
(k − 1)k

2
+

(n− k − 1)(n− k)

2

≥ n(n− 2)

4
.

�

We can now prove 3). The integers y1, . . . , yn are pairwise distinct, since α
is a generator of Q(β1, . . . , βn)/Q. Thus we may assume yj+1 − yj ≥ 1 for j =
1, . . . , n− 1. From the lower bound for M(α) in 2) and from the lemma above we
get:

cn|y|1 ∼
√

2

πn
|y|1 ≥

√
2

πn

n− 2

4
∼
√

n

8π
.

�

4. Proof of Theorem 1.2

The proof of the first assertion of Theorem 1.2 is similar to the proof of the
corresponding assertion of Theorem 1.1.

For any σ ∈ Gal(Q(α)/Q) we have

|σα| ≤ |a|1 max{|β1|, . . . , |βn|} ≤ |a|1M(β)

which shows the upper bound for M(α) in 2). We now prove the lower bound. Let
Tn be the set of transposition of Sn and, for τ = (i, j) ∈ Tn, let Aτ be the set of
permutation of Sn with support {1, . . . , n}\{i, j} and with no orbits of length 2.
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Lemma. For n ≥ 3, let Λn be the set of permutation of Sn with no orbits of
length 1 or 2. Then |Λn| ≥ n!/12.

Proof. The inclusion-exclusion principle shows that the set of permutation of
Sn without fixed points has cardinality

κ(n) := n!− n!

1!
+
n!

2!
− · · ·+ (−1)n

n!

n!
.

Notice that 1/3 ≤ κ(n)/n! ≤ 1/2 for n ≥ 3. Again by the inclusion-exclusion
principle

|Λn| ≥ κ(n)− n(n− 1)

2
κ(n− 2) ≥ n!

3
− n(n− 1)

2
· (n− 2)!

2
=
n!

12
.

�

By the lemma above (recall that n ≥ 5) the sets Aτ have all cardinality |Λn−2| ≥
(n−2)!

12 . Let

∆ =
∏
τ∈Tn

∏
σ∈Aτ

|τσα− σα|.

For τ = (i, j) ∈ Tn with 1 ≤ i < j ≤ n and σ ∈ Aτ we have

τσα− σα = (aj − ai)(βi − βj)

since the support of σ is disjoint from {i, j}. Thus

∆ =
(
|V (a)| · |disc(β)|1/2

)|Λn−2|
.

Let τ , τ ′ ∈ Tn and let σ ∈ Aτ , σ′ ∈ Aτ . Then τσ 6= σ′ (since the supports of τσ
σ′ are not the same). If τ = τ ′ and σ 6= σ′ then τσ 6= τ ′σ′ and σ 6= σ′. Moreover,
if τ 6= τ ′ then again τσ 6= τ ′σ′ (since σ has no orbits of length 2) and σ 6= σ′ (since
the supports of σ and σ′are not the same). Thus

∆ ≤
∏
τ∈Tn

∏
σ∈Aτ

2 max(|τσα|, 1) max(|σα|, 1) ≤ 2|Tn|·|Λn−2|M(α).

From the two last displayed equations and from the inequality |Λn−2| ≥ (n−2)!
12 we

get

M(α)1/n! ≥
(

2−|Tn||V (a)| · |disc(β)|1/2
) |Λn−2|

n!

= 2−
1
24

(
|V (a)| · |disc(β)|1/2

) 1
12n(n−1)

.

We finally prove 3). Notice that the result is trivial if n ≤ 4, thus we assume
n ≥ 5. The integers a1, . . . , an are pairwise distinct, since α is a generator of
Q(β1, . . . , βn)/Q. Thus we may assume aj+1 − aj ≥ 1 for j = 1, . . . , n − 1, which
implies

|V (a)| =
n∏
i=1

n∏
j=i+1

(aj − ai) ≥
n∏
i=1

n∏
j=i+1

(j − i) =

n∏
h=1

h!.
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A computation shows that
∏n
h=1 h! ≥ nn(n−1)/4. Thus, by 2) and since |disc(β)| ≥ 1,

M(α)1/n! ≥ 2−
1
24

(
|V (a)| · |disc(β)|1/2

) 1
12n(n−1) ≥ (n/4)1/48.

�
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