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Introduction

Let α be a non-zero algebraic number of degree d. We let as usual M (α) the Mahler measure of α. Thus

M (α) = |lc(f )| d j=1 max(|α j ), 1)
where lc(f ) is the leading coefficient of a minimal equation of α over Z and where α 1 , . . . , α d are the conjugates of α.

Assume that α is not a root of unity (otherwise M (α) = 1). By an old result of Kronecker M (α) > 1 and Lehmer [START_REF] Lehmer | Factorization of certain cyclotomic functions[END_REF] asked if we could replace 1 by a real number > 1 which does not depend on α. This problem is still open, the best known result is a theorem of Dobrowolski (see [START_REF] Dobrowolski | On a question of Lehmer and the number of irreducible factors of a polynomial[END_REF]) which proves the lower bound

M (α) ≥ 1 + c(ε)d -ε
for all ε > 0, with c(ε) > 0 depending only on ε.

Recently, a construction of Smyth gives a renewed interest in lower bounds for the Mahler measure of a generator of a Galois extension (a problem first considered in [START_REF] Amoroso | Le problème de Lehmer en dimension supérieure[END_REF]). In this special case we can considerably improve the above lower bound. Let α be a non-zero algebraic number of degree d, not a root unity, such that Q(α)/Q is Galois. Then (see [START_REF] Amoroso | Lower bounds for the height in Galois extensions[END_REF])

M (α) 1/d ≥ 1 + c(ε)d -ε
for all ε > 0, with c(ε) > 0 depending only on ε.

The result of [START_REF] Amoroso | Lower bounds for the height in Galois extensions[END_REF] was partially motivated by a problem posed by Smyth during a recent BIRS workshop (see [3, problem 21, p. 17]). Let n ≥ 2 and β = β 1 , . . . , β n be the roots of z n -z -1, known to be irreducible for all n, and to have Galois group the full symmetric group S n . Put

α = β 1 1 β 2 2 . . . β n-1 n-1 .
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Then (by an easy consequence of [START_REF] Smyth | Additive and Multiplicative Relations Connecting Conjugate Algebraic Numbers[END_REF] Lemma 1) the Galois closure of The quoted result of [START_REF] Amoroso | Lower bounds for the height in Galois extensions[END_REF] is related to the first question. One of the aim of this paper is to give an answer to the second question. More generally, in section 3 we show:

Q(β) is Q(α) of degree d = n! over Q. Smyth computed with Maple the first values of M (α) 1/d n d = n! M (α)
Theorem 1. 

= a j -1 n i a i . Then M (β) cn|y| 1 ≤ M (α) 1/n! ≤ M (β) |y| 1 with |y| 1 = 1 n n j=1 |y j | and where c n ∼ 2 πn . 3) If α is a generator of Q(β 1 , . . . , β n )/Q, M (α) 1/n! ≥ M (β) (1+o(1)) √ n 8π .
The Mahler measure of a root of x n -x -1 is ≥ θ = 1.32..., the smallest Pisot's number (the root > 1 of x 3 -x -1). Thus Theorem 1.1 implies that Smyth's sequence tends to ∞.

A more classical way to construct a generator for the Galois closure of Q(β) is given by the proof of the Primitive Element Theorem, thus taking a general linear combination of the conjugates of β. In section 4 we give a proof, based on a simple discriminant argument, of the following partial analogous of Theorem 1.1.

Theorem 1.2. Let β be an algebraic integer of degree n, with algebraic conjugates

β 1 , . . . , β n . Assume that Q(β 1 , . . . , β n )/Q has Galois group S n . Let a 1 , . . . , a n ∈ Z and put α = a 1 β 1 + a 2 β 2 + • • • + a n β n . Then: 1) α is a generator of Q(β 1 , . . . , β n )/Q if and only if a 1 , . . . , a n are pairwise distinct. 2) Let V (a) be the Vandermonde 1≤i<j≤n (a j -a i ). Then, if n ≥ 5, 2 -1 24 |V (a)| • |disc(β)| 1/2 1 12n(n-1) ≤ M (α) 1/n! ≤ |a| 1 • M (β).
3

) If α is a generator of Q(β 1 , . . . , β n )/Q, M (α) 1/n! ≥ (n/4) 1/48 .
Theorems 1.1 and 1.2 may suggest some speculations on the behavior of M (α) for α a generator of a Galois extension.

Conjecture 1.3. Let α ∈ Q be a generator of of a Galois extension of degree d = n! with Galois group the full symmetric group S n . Then,

M (α) 1/d ≥ C(d) with C(d) → +∞ for d → +∞. Equivalently, in terms of the Weil height h(α) = 1 d log M (α), h(α) ≥ c(d)
with c(d) growing to infinity with d. This would be the first result of the kind "h → +∞".

Remark that the assumption on the Galois group is necessary, as a couple of exemples of [START_REF] Amoroso | Lower bounds for the height in Galois extensions[END_REF] show: take ζ e a e-root of unity and put α = 1 + ζ e or α = 2 1/e + ζ e , both of uniformly bounded height.
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Auxiliary results

Let H

n := {x ∈ R n | x 1 + • • • + x n = 0} and, for x ∈ H n , |x| 1 = 1 n n j=1 |x j | .
We remark that S n acts on H n (by σ(x) = (x σ(1) , . . . , x σ(n) )).

For x, y ∈ H n we set

s n (x, y) = 1 n! σ∈Sn 1 n n j=1
x σ(j) y j .

Thus s n is symmetric,

s n (x, y) = s n (y, x).
Moreover, for each y ∈ H n , the function x → s n (x, y) is a seminorm 1 , stable by the action on S n .

For h = 1, . . . , n -1 we define a vector z (n,h) ∈ H n by

z (n,h) j = n 2h if j = 1, . . . , h -n 2(n-h) if j = h + 1, . . . , n (thus |z (n,h) | 1 = 1). Let also c n = min 0<h,k<n s n (z (n,h) , z (n,k) ).
The aim of this section is to prove the following proposition.

Proposition 2.1. For x, y ∈ H n \{0} we have

(2.1) c n ≤ s n (x, y) |x| 1 • |y| 1 ≤ 1 . Moreover (2.2) c n ∼ 2 πn .
The above lower bound is clearly sharp, and the upper bound is almost sharp, since s n (z (n,1) , z (n,k) ) = n 2(n -1) (see Lemma 2.3 below).

Proposition 2.1 easily implies the lower bound for M (α) in assertion 2) of Theorem 1.1, as we shall see in the next session. In the rest of this section we present the proof of the proposition, which follows from the three lemmas below. Lemma 2.2. Let x, y ∈ H n \{0}. Let h = h(x) be the cardinality of the set of j ∈ {1, . . . , n} such that x j ≥ 0 and similarly for k = k(y). Then

s n (x, y) |x| 1 • |y| 1 ≥ s n (z (n,h) , y) |y| 1 ≥ s n (z (n,h) , z (n,k) ).
Proof. Let us prove the first inequality. Since x → s n (x, y) is homogeneous, we can assume |x| 1 = 1. Let A be the set of j ∈ {1, . . . , n} such that x j ≥ 0. Since x → s n (x, y) is invariant by the action of S n , we can assume A = {1, . . . , h}. We now use a convexity argument suggested by E. Ricard. Let G be the subgroup of σ ∈ S n such that σ(A) = A. Then

|G| -1 σ∈G σ(x) = z (n,h)
and, by the convexity of x → s n (x, y),

s n (z (n,h) , y) ≤ s n (x, y).
1 and indeed a norm if y = 0, for instance as a consequence of Proposition 2.1 below.

The second inequality follows from the first one and from the symmetry of s n :

s n (z (n,h) , y) |y| 1 = s n (y, z (n,h) ) |y| 1 ≥ s n (z (n,k) , z (n,h) ) = s n (z (n,h) , z (n,k) ).
Lemma 2.3. Let y ∈ H n and h, k ∈ {1, . . . , n}. Then

s n (z (n,h) , y) = n 2h(n -h) n h -1 S⊆{1,...,n} Card(S)=h j∈S y j and s n (z (n,h) , z (n,k) ) = n 2 (h -[hk/n])(k -[hk/n]) 2hk(n -h)(n -k) n h -1 k [hk/n] n -k h -[hk/n] .
Proof. We have

s n (z (n,h) , y) = 1 n! σ∈Sn 1 n n j=1 z (n,h) j y σ(j) = 1 n! σ∈Sn 1 2h h j=1 y σ(j) - 1 2(n -h) n j=h+1 y σ(j) = 1 n! σ∈Sn 1 2h + 1 2(n -h) h j=1 y σ(j) = n 2h(n -h) 1 n! σ∈Sn h j=1 y σ(j) = n 2h(n -h) n h -1 S⊆{1,...,n} Card(S)=h j∈S y j .
We now prove the second equality. From the first,

s n (z (n,h) , z (n,k) ) = n 2h(n -h) n h -1 S⊆{1,...,n} Card(S)=h j∈S z (n,k) j . For S ⊆ {1, . . . , n} of cardinality h we have j∈S z (n,k) j = n 2k |S ∩ {1, . . . , k}| - n 2(n -k) |S ∩ {k + 1, . . . , n}| = n 2k + n 2(n -k) |S ∩ {1, . . . , k}| - n 2(n -k) |S| = n 2 2k(n -k) |S ∩ {1, . . . , k}| - hk n .
This gives

s n (z (n,h) , z (n,k) ) = n 3 4h(n -h)k(n -k) n h -1 Σ n,h,k with Σ n,h,k = S⊆{1,...,n} Card(S)=h |S ∩ {1, . . . , k}| - hk n = min(h,k) j=max(h+k-n,0) S 1 ⊆{1,...,k} Card(S 1 )=j 1 S 2 ⊆{k+1,...,n} Card(S 2 )=h-j 1 j - hk n = min(h,k) j=max(h+k-n,0) k j n -k h -j j - hk n .
We now quote an equality suggested by T. Rivoal. Let q ∈ Z with max(h + k -n, 0) ≤ q ≤ min(h, k).

Then (2.3) q j=max(h+k-n,0) k j n -k h -j hk n -j = 1 n (h-q)(k-q) k q n -k h -q .
This formula can be easily verified by induction on the parameter q. It shows that

min(h,k) j=max(h+k-n,0) k j n -k h -j hk n -j = 0 and that Σ n,h,k = 2 [hk/n] j=max(h+k-n,0) k j n -k h -j hk n -j = 2 n (h -[hk/n])(k -[hk/n]) k [hk/n] n -k h -[hk/n] . Thus s n (z (n,h) , z (n,k) ) = n 3 4h(n -h)k(n -k) n h -1 × 2 n (h -[hk/n])(k -[hk/n]) k [hk/n] n -k h -[hk/n] = n 2 (h -[hk/n])(k -[hk/n]) 2hk(n -h)(n -k) n h -1 k [hk/n] n -k h -[hk/n] .
In the next lemma we give an asymptotic estimate for

s n (z (n,h) , z (n,k) ) = n 2 (h -[hk/n])(k -[hk/n]) 2hk(n -h)(n -k) n h -1 k [hk/n] n -k h -[hk/n] . Lemma 2.4. Let (n m ) n∈N , (h m ) m∈N , (k m ) m∈N with 0 < h m , k m < n m . Assume lim m→+∞ n m = +∞, lim m→+∞ h m n m = u, lim m→+∞ k m n m = v for some u, v ∈ [0, 1]. Then lim m→+∞ 2 2πuv(1 -u)(1 -v)n m • s nm (z (nm,hm) , z (nm,km) ) = 1.
Proof. By a continuity argument, we can assume u, v ∈ (0, 1). Since

lim m→+∞ [h m k m /n m ] n m = uv,
we have

n 2 m (h m -[h m k m /n m ])(k m -[h m k m /n m ]) 2h m k m (n m -h m )(n m -k m ) ∼ (u -uv)(v -uv) 2uv(1 -u)(1 -v) = 1 2 .
For the other factors in s nm (z (nm,hm) , z (nm,km) ) we use Stirling's formula, in the following version.

Let (n m ) m∈N , (A m ) m∈N , (B m ) m∈N with 0 ≤ B m ≤ A m . Assume n m → +∞, A m /n m → a, B m /n m → b as m → +∞ with 0 < b < a . Then A m B m ∼ 1 √ 2πn m × a b(a -b) × a a b b (a -b) a-b nm .

Thus,

n m h m -1 ∼ √ 2πn m × u(1 -u) × u u (1 -u) 1-u nm and k m [h m k m /n m ] ∼ 1 √ 2πn m × v uv(v -uv) × v v (uv) uv (v -uv) v-uv nm = 1 √ 2πn m × 1 uv(1 -u) × 1 u uv (1 -u) v-uv nm ; n m -k m h m -[h m k m /n m ] ∼ 1 √ 2πn m × 1 -v (u -uv)(1 -v -u + uv) × (1 -v) 1-v (u -uv) u-uv (1 -v -u + uv) 1-v-u+uv nm = 1 √ 2πn m × 1 u(1 -u)(1 -v) × 1 u u-uv (1 -u) 1-v-u+uv nm . Hence s nm (z (nm,hm) , z (nm,km) ) = n 2 m (h m -[h m k m /n m ])(k m -[h m k m /n m ]) 2h m k m (n m -h m )(n m -k m ) × n m h m -1 k m [h m k m /n m ] n m -k m h m -[h m k m /n m ] ∼ 1 2 √ 2πn m × u(1 -u) × 1 uv(1 -u) × 1 u(1 -u)(1 -v) × u u (1 -u) 1-u × 1 u uv (1 -u) v-uv × 1 u u-uv (1 -u) 1-v-u+uv nm = 1 2 2πuv(1 -u)(1 -v)n m .
Proof of Proposition 2.1. The upper bound in (2.1) is easily proved:

1 n! σ∈Sn 1 n n j=1 x σ(j) y j ≤ 1 n! σ∈Sn 1 n n j=1 |x σ(j) | • |y j | = 1 n n j=1 1 n! σ∈Sn |x σ(j) | |y j | = 1 n n j=1 |x| 1 • y j = |x| 1 • |y| 1 .
The lower bound follows from Lemma 2.2 and from the definition of c n . The asymptotic estimate (2.2) for c n is an easy consequence of Lemma 2.4, since max 0≤u,v≤1

uv(1 -u)(1 -v) = 1 16 .

Proof of Theorem 1.1

Let us prove the first assertion of the theorem. If a i = a j for some i = j, then α is not a generator of Q(β 1 , . . . , β n )/Q, since τ α = α for τ = (i, j). Assume now a 1 , . . . , a n pairwise distinct. Let σ be a permutation of S n such that σα = α. Then β

a 1 -a σ(1) 1 • • • β an-a σ(n) n = 1,
which implies, by [6, Lemma 1], that j → a j -a σ(j) is constant, say = κ. For l = o(σ) we have a 1 = a σ l (1) = • • • = a 1 + lκ, thus κ = 0 and ∀j, a σ(j) = a j . Since a 1 , . . . , a n are pairwise distinct, σ is the identity.

To prove 2), let x j = log |β j | ∈ R and remark that j x j = 0 and j |x j | = 2 log M (β). Moreover

2 n! log M (α) = 1 n! σ∈Sn n j=1 a j x σ(j) = 1 n! σ∈Sn n j=1
x σ(j) y j .

Inequality (2.1) of Proposition 2.1 then gives

c n 2 log M (β) n |y| 1 ≤ 1 n • 2 n! log M (α) ≤ 2 log M (β) n |y| 1 with c n ∼ 2 πn . Assertion 2) follows.
To prove the last assertion, we need the following elementary lemma:

Lemma. Let y ∈ H n with y j+1 -y j ≥ 1 for j = 1, . . . , n -1. Then

|y| 1 ≥ n -2 4 .
Proof. Let k be such that y k ≤ 0 < y k+1 . Then, for j = 1, . . . , k We can now prove 3). The integers y 1 , . . . , y n are pairwise distinct, since α is a generator of Q(β 1 , . . . , β n )/Q. Thus we may assume y j+1 -y j ≥ 1 for j = 1, . . . , n -1. From the lower bound for M (α) in 2) and from the lemma above we get:

y j ≤ y k -(k -j) ≤ -(k -j) while y j ≥ y k+1 + (j -k -1) ≥ j -k -1 for j = k +
c n |y| 1 ∼ 2 πn |y| 1 ≥ 2 πn n -2 4 ∼ n 8π .

Proof of Theorem 1.2

The proof of the first assertion of Theorem 1.2 is similar to the proof of the corresponding assertion of Theorem 1.1. which shows the upper bound for M (α) in 2). We now prove the lower bound. Let T n be the set of transposition of S n and, for τ = (i, j) ∈ T n , let A τ be the set of permutation of S n with support {1, . . . , n}\{i, j} and with no orbits of length 2.

A computation shows that n h=1 h! ≥ n n(n-1)/4 . Thus, by 2) and since |disc(β)| ≥ 1, 

M (α) 1/n! ≥ 2

  1, . . . , n. Thus n|y| 1 = -

For

  any σ ∈ Gal(Q(α)/Q) we have |σα| ≤ |a| 1 max{|β 1 |, . . . , |β n |} ≤ |a| 1 M (β)

- 1 24 1 12n(n- 1 )

 111 |V (a)| • |disc(β)| 1/2 ≥ (n/4) 1/48 .

  1. Let β be an algebraic unit of degree n, with algebraic conjugates β 1 , . . . , β n . Assume that Q(β 1 , . . . , β n )/Q has Galois group S n . Let a 1 , . . . , a n ∈ Z

	and put
	α = β a 1 1 β a 2 2 • • • β an n .
	Then:
	1) α is a generator of Q(β 1 , . . . , β n )/Q if and only if a 1 , . . . , a n are
	pairwise distinct.
	2) Put y j

Lemma. For n ≥ 3, let Λ n be the set of permutation of S n with no orbits of length 1 or 2. Then |Λ n | ≥ n!/12.

Proof. The inclusion-exclusion principle shows that the set of permutation of S n without fixed points has cardinality

Notice that 1/3 ≤ κ(n)/n! ≤ 1/2 for n ≥ 3. Again by the inclusion-exclusion principle

By the lemma above (recall that n ≥ 5) the sets

Let τ , τ ∈ T n and let σ ∈ A τ , σ ∈ A τ . Then τ σ = σ (since the supports of τ σ σ are not the same). If τ = τ and σ = σ then τ σ = τ σ and σ = σ . Moreover, if τ = τ then again τ σ = τ σ (since σ has no orbits of length 2) and σ = σ (since the supports of σ and σ are not the same). Thus

From the two last displayed equations and from the inequality 1) .

We finally prove 3). Notice that the result is trivial if n ≤ 4, thus we assume n ≥ 5. The integers a 1 , . . . , a n are pairwise distinct, since α is a generator of Q(β 1 , . . . , β n )/Q. Thus we may assume a j+1 -a j ≥ 1 for j = 1, . . .