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Abstract: This paper presents the CBNB (Causal Bayesian Networks Building) algorithm for the causal 

Bayesian Network construction. This algorithm is designed for diagnosis models in the industrial domain. 

It uses expert knowledge and operates process and product traceability data. The first phase of this 

algorithm consists of exploiting expert knowledge and properties of the application domain for allocating 

the variables at different levels of causality. This phase results in a cascade arrangement of the system’s 

variables starting with the root causes and ending with the ultimate effects passing through one or more 

intermediate levels. In the second phase based on the unitary traceability data, the CBNB algorithm then 

allows to determine the causal relationships existing between variables. We provide the necessary 

assumptions and the theoretical justifications for the proposed algorithm. We have conducted empirical 

studies assessing the ability of the algorithm to provide the true network from synthetic data on three 

benchmarks whose nodes are arranged in cascade. The results of comparative analysis have shown that the 

CBNB algorithm outperforms GS and MMHC, two state-of-the art structural learning algorithms in terms 

of ability to rebuild the true network.  

Keywords: Bayesian Network, Structural Learning Algorithm, Industrial Diagnosis, Big Data. 



1. INTRODUCTION 

With the continuing growth of the industrial processes 

instrumentation and the development of automatic data 

collection tools and technologies (RFID, Data Matrix, etc.), 

companies collect more and more data. The potential of this 

data for industrial performances improvement is now obvious. 

We consider in our work traceability data, especially unitary 

traceability data (including process and product data). 

Generally, the traceability unit is an aggregation of several 

items (e.g. a lot or a pallet). This level of detail is enough to 

have an accurate picture of the conditions of production for 

batch production but not for job production and flow 

production. The unitary traceability enables a serialized unique 

identification at the item level and allows to know accurately 

the process parameters values of each item. The process 

parameters to trace are raw materials and ingredients making 

up the product, the transformation processes and distribution 

historical and location of the product after delivery. In addition 

to these process data, the product features are recorded. By 

observing industrial practices, we found that traceability 

performed internally by different departments (manufacturing, 

maintenance, etc.) are managed separately and reconciliation 

are not made between them. Another observation we made is 

that there is no general rule on what data to collect especially 

for internal traceability. External traceability is less 

challenging to manage and the EPC Global standards provide 

a data model for traceability along a supply chain. In previous 

work (Diallo et al., 2014), we have developed a data model for 

internal unitary traceability. The data is aggregated by 

production order. The production processes are divided into 

segments and for each segment, the data related to process and 

product are collected. This proposed data model allows to 

know for each item, the process parameters of its manufacture 

from historical time series data sets. This data can be used for 

diagnosis function development, supply chain optimization, 

life cycle management, etc. However, the development of 

methods and models to process this data is a new challenge for 

academia and industry nowadays. Bayesian Networks (BN) 

are one of the various analytical tools that have been used to 

derive knowledge from data. The main advantage of BN over 

other artificial intelligence tools is that they allow to combine, 

on the one hand, certain and uncertain knowledge and on the 

other hand, they allow to exploit both data and expertise. To 

set up a Bayesian model, two elements have to be defined: the 

structure of the network (nodes and arcs) and the network 

parameters (conditional probabilities tables). The 

determination of the structure is by far the most challenging 

(Cheng et al., 2002) (Ramirez and Piqueras, 2006). In general, 

there are three approaches for learning BN from data: 

constraint-based approach, search-and-score approach and 

hybrid approach. The constraint-based approach uses the 

conditional dependence or independence relationships 

between variables derived from the data to guide the network 

construction. The second approach consists of, among all 

possible networks, identifying the one that maximizes a score 

measuring the adequacy of the network to the data. The hybrid 

approach combines the principles of the two previous. In our 

literature review, we found that the Bayesian network building 

still remains a lock. Indeed, existing construction algorithms 

Proceedigs of the 15th IFAC Symposium on
Information Control Problems in Manufacturing
May 11-13, 2015. Ottawa, Canada 

Copyright © 2015 IFAC 2485     

Bayesian Network Building for Diagnosis in Industrial Domain based on Expert 

Knowledge and Unitary Traceability Data 

 

Thierno M.L. DIALLO*. Sébastien HENRY* Yacine OUZROUT** 

 

 

*DISP laboratory, University of Lyon, University Lyon 1, France  

{Thierno.Diallo, Sebastien.Henry}@univ-lyon1.fr  

**DISP laboratory, University of Lyon, University Lyon 2, France  

Yacine.Ouzrout@univ-lyon2.fr 

 

Abstract: This paper presents the CBNB (Causal Bayesian Networks Building) algorithm for the causal 

Bayesian Network construction. This algorithm is designed for diagnosis models in the industrial domain. 

It uses expert knowledge and operates process and product traceability data. The first phase of this 

algorithm consists of exploiting expert knowledge and properties of the application domain for allocating 

the variables at different levels of causality. This phase results in a cascade arrangement of the system’s 

variables starting with the root causes and ending with the ultimate effects passing through one or more 

intermediate levels. In the second phase based on the unitary traceability data, the CBNB algorithm then 

allows to determine the causal relationships existing between variables. We provide the necessary 

assumptions and the theoretical justifications for the proposed algorithm. We have conducted empirical 

studies assessing the ability of the algorithm to provide the true network from synthetic data on three 

benchmarks whose nodes are arranged in cascade. The results of comparative analysis have shown that the 

CBNB algorithm outperforms GS and MMHC, two state-of-the art structural learning algorithms in terms 

of ability to rebuild the true network.  

Keywords: Bayesian Network, Structural Learning Algorithm, Industrial Diagnosis, Big Data. 



1. INTRODUCTION 

With the continuing growth of the industrial processes 

instrumentation and the development of automatic data 

collection tools and technologies (RFID, Data Matrix, etc.), 

companies collect more and more data. The potential of this 

data for industrial performances improvement is now obvious. 

We consider in our work traceability data, especially unitary 

traceability data (including process and product data). 

Generally, the traceability unit is an aggregation of several 

items (e.g. a lot or a pallet). This level of detail is enough to 

have an accurate picture of the conditions of production for 

batch production but not for job production and flow 

production. The unitary traceability enables a serialized unique 

identification at the item level and allows to know accurately 

the process parameters values of each item. The process 

parameters to trace are raw materials and ingredients making 

up the product, the transformation processes and distribution 

historical and location of the product after delivery. In addition 

to these process data, the product features are recorded. By 

observing industrial practices, we found that traceability 

performed internally by different departments (manufacturing, 

maintenance, etc.) are managed separately and reconciliation 

are not made between them. Another observation we made is 

that there is no general rule on what data to collect especially 

for internal traceability. External traceability is less 

challenging to manage and the EPC Global standards provide 

a data model for traceability along a supply chain. In previous 

work (Diallo et al., 2014), we have developed a data model for 

internal unitary traceability. The data is aggregated by 

production order. The production processes are divided into 

segments and for each segment, the data related to process and 

product are collected. This proposed data model allows to 

know for each item, the process parameters of its manufacture 

from historical time series data sets. This data can be used for 

diagnosis function development, supply chain optimization, 

life cycle management, etc. However, the development of 

methods and models to process this data is a new challenge for 

academia and industry nowadays. Bayesian Networks (BN) 

are one of the various analytical tools that have been used to 

derive knowledge from data. The main advantage of BN over 

other artificial intelligence tools is that they allow to combine, 

on the one hand, certain and uncertain knowledge and on the 

other hand, they allow to exploit both data and expertise. To 

set up a Bayesian model, two elements have to be defined: the 

structure of the network (nodes and arcs) and the network 

parameters (conditional probabilities tables). The 

determination of the structure is by far the most challenging 

(Cheng et al., 2002) (Ramirez and Piqueras, 2006). In general, 

there are three approaches for learning BN from data: 

constraint-based approach, search-and-score approach and 

hybrid approach. The constraint-based approach uses the 

conditional dependence or independence relationships 

between variables derived from the data to guide the network 

construction. The second approach consists of, among all 

possible networks, identifying the one that maximizes a score 

measuring the adequacy of the network to the data. The hybrid 

approach combines the principles of the two previous. In our 

literature review, we found that the Bayesian network building 

still remains a lock. Indeed, existing construction algorithms 

Proceedigs of the 15th IFAC Symposium on
Information Control Problems in Manufacturing
May 11-13, 2015. Ottawa, Canada 

Copyright © 2015 IFAC 2485
     

Bayesian Network Building for Diagnosis in Industrial Domain based on Expert 

Knowledge and Unitary Traceability Data 

 

Thierno M.L. DIALLO*. Sébastien HENRY* Yacine OUZROUT** 

 

 

*DISP laboratory, University of Lyon, University Lyon 1, France  

{Thierno.Diallo, Sebastien.Henry}@univ-lyon1.fr  

**DISP laboratory, University of Lyon, University Lyon 2, France  

Yacine.Ouzrout@univ-lyon2.fr 

 

Abstract: This paper presents the CBNB (Causal Bayesian Networks Building) algorithm for the causal 

Bayesian Network construction. This algorithm is designed for diagnosis models in the industrial domain. 

It uses expert knowledge and operates process and product traceability data. The first phase of this 

algorithm consists of exploiting expert knowledge and properties of the application domain for allocating 

the variables at different levels of causality. This phase results in a cascade arrangement of the system’s 

variables starting with the root causes and ending with the ultimate effects passing through one or more 

intermediate levels. In the second phase based on the unitary traceability data, the CBNB algorithm then 

allows to determine the causal relationships existing between variables. We provide the necessary 

assumptions and the theoretical justifications for the proposed algorithm. We have conducted empirical 

studies assessing the ability of the algorithm to provide the true network from synthetic data on three 

benchmarks whose nodes are arranged in cascade. The results of comparative analysis have shown that the 

CBNB algorithm outperforms GS and MMHC, two state-of-the art structural learning algorithms in terms 

of ability to rebuild the true network.  

Keywords: Bayesian Network, Structural Learning Algorithm, Industrial Diagnosis, Big Data. 



1. INTRODUCTION 

With the continuing growth of the industrial processes 

instrumentation and the development of automatic data 

collection tools and technologies (RFID, Data Matrix, etc.), 

companies collect more and more data. The potential of this 

data for industrial performances improvement is now obvious. 

We consider in our work traceability data, especially unitary 

traceability data (including process and product data). 

Generally, the traceability unit is an aggregation of several 

items (e.g. a lot or a pallet). This level of detail is enough to 

have an accurate picture of the conditions of production for 

batch production but not for job production and flow 

production. The unitary traceability enables a serialized unique 

identification at the item level and allows to know accurately 

the process parameters values of each item. The process 

parameters to trace are raw materials and ingredients making 

up the product, the transformation processes and distribution 

historical and location of the product after delivery. In addition 

to these process data, the product features are recorded. By 

observing industrial practices, we found that traceability 

performed internally by different departments (manufacturing, 

maintenance, etc.) are managed separately and reconciliation 

are not made between them. Another observation we made is 

that there is no general rule on what data to collect especially 

for internal traceability. External traceability is less 

challenging to manage and the EPC Global standards provide 

a data model for traceability along a supply chain. In previous 

work (Diallo et al., 2014), we have developed a data model for 

internal unitary traceability. The data is aggregated by 

production order. The production processes are divided into 

segments and for each segment, the data related to process and 

product are collected. This proposed data model allows to 

know for each item, the process parameters of its manufacture 

from historical time series data sets. This data can be used for 

diagnosis function development, supply chain optimization, 

life cycle management, etc. However, the development of 

methods and models to process this data is a new challenge for 

academia and industry nowadays. Bayesian Networks (BN) 

are one of the various analytical tools that have been used to 

derive knowledge from data. The main advantage of BN over 

other artificial intelligence tools is that they allow to combine, 

on the one hand, certain and uncertain knowledge and on the 

other hand, they allow to exploit both data and expertise. To 

set up a Bayesian model, two elements have to be defined: the 

structure of the network (nodes and arcs) and the network 

parameters (conditional probabilities tables). The 

determination of the structure is by far the most challenging 

(Cheng et al., 2002) (Ramirez and Piqueras, 2006). In general, 

there are three approaches for learning BN from data: 

constraint-based approach, search-and-score approach and 

hybrid approach. The constraint-based approach uses the 

conditional dependence or independence relationships 

between variables derived from the data to guide the network 

construction. The second approach consists of, among all 

possible networks, identifying the one that maximizes a score 

measuring the adequacy of the network to the data. The hybrid 

approach combines the principles of the two previous. In our 

literature review, we found that the Bayesian network building 

still remains a lock. Indeed, existing construction algorithms 

Proceedigs of the 15th IFAC Symposium on
Information Control Problems in Manufacturing
May 11-13, 2015. Ottawa, Canada 

Copyright © 2015 IFAC 2485

     

Bayesian Network Building for Diagnosis in Industrial Domain based on Expert 

Knowledge and Unitary Traceability Data 

 

Thierno M.L. DIALLO*. Sébastien HENRY* Yacine OUZROUT** 

 

 

*DISP laboratory, University of Lyon, University Lyon 1, France  

{Thierno.Diallo, Sebastien.Henry}@univ-lyon1.fr  

**DISP laboratory, University of Lyon, University Lyon 2, France  

Yacine.Ouzrout@univ-lyon2.fr 

 

Abstract: This paper presents the CBNB (Causal Bayesian Networks Building) algorithm for the causal 

Bayesian Network construction. This algorithm is designed for diagnosis models in the industrial domain. 

It uses expert knowledge and operates process and product traceability data. The first phase of this 

algorithm consists of exploiting expert knowledge and properties of the application domain for allocating 

the variables at different levels of causality. This phase results in a cascade arrangement of the system’s 

variables starting with the root causes and ending with the ultimate effects passing through one or more 

intermediate levels. In the second phase based on the unitary traceability data, the CBNB algorithm then 

allows to determine the causal relationships existing between variables. We provide the necessary 

assumptions and the theoretical justifications for the proposed algorithm. We have conducted empirical 

studies assessing the ability of the algorithm to provide the true network from synthetic data on three 

benchmarks whose nodes are arranged in cascade. The results of comparative analysis have shown that the 

CBNB algorithm outperforms GS and MMHC, two state-of-the art structural learning algorithms in terms 

of ability to rebuild the true network.  

Keywords: Bayesian Network, Structural Learning Algorithm, Industrial Diagnosis, Big Data. 



1. INTRODUCTION 

With the continuing growth of the industrial processes 

instrumentation and the development of automatic data 

collection tools and technologies (RFID, Data Matrix, etc.), 

companies collect more and more data. The potential of this 

data for industrial performances improvement is now obvious. 

We consider in our work traceability data, especially unitary 

traceability data (including process and product data). 

Generally, the traceability unit is an aggregation of several 

items (e.g. a lot or a pallet). This level of detail is enough to 

have an accurate picture of the conditions of production for 

batch production but not for job production and flow 

production. The unitary traceability enables a serialized unique 

identification at the item level and allows to know accurately 

the process parameters values of each item. The process 

parameters to trace are raw materials and ingredients making 

up the product, the transformation processes and distribution 

historical and location of the product after delivery. In addition 

to these process data, the product features are recorded. By 

observing industrial practices, we found that traceability 

performed internally by different departments (manufacturing, 

maintenance, etc.) are managed separately and reconciliation 

are not made between them. Another observation we made is 

that there is no general rule on what data to collect especially 

for internal traceability. External traceability is less 

challenging to manage and the EPC Global standards provide 

a data model for traceability along a supply chain. In previous 

work (Diallo et al., 2014), we have developed a data model for 
internal unitary traceability. The data is aggregated by 

production order. The production processes are divided into 

segments and for each segment, the data related to process and 

product are collected. This proposed data model allows to 

know for each item, the process parameters of its manufacture 

from historical time series data sets. This data can be used for 

diagnosis function development, supply chain optimization, 

life cycle management, etc. However, the development of 

methods and models to process this data is a new challenge for 

academia and industry nowadays. Bayesian Networks (BN) 

are one of the various analytical tools that have been used to 

derive knowledge from data. The main advantage of BN over 

other artificial intelligence tools is that they allow to combine, 

on the one hand, certain and uncertain knowledge and on the 

other hand, they allow to exploit both data and expertise. To 

set up a Bayesian model, two elements have to be defined: the 

structure of the network (nodes and arcs) and the network 

parameters (conditional probabilities tables). The 

determination of the structure is by far the most challenging 

(Cheng et al., 2002) (Ramirez and Piqueras, 2006). In general, 

there are three approaches for learning BN from data: 

constraint-based approach, search-and-score approach and 

hybrid approach. The constraint-based approach uses the 

conditional dependence or independence relationships 

between variables derived from the data to guide the network 

construction. The second approach consists of, among all 

possible networks, identifying the one that maximizes a score 

measuring the adequacy of the network to the data. The hybrid 

approach combines the principles of the two previous. In our 

literature review, we found that the Bayesian network building 

still remains a lock. Indeed, existing construction algorithms 

Proceedigs of the 15th IFAC Symposium on
Information Control Problems in Manufacturing
May 11-13, 2015. Ottawa, Canada 

Copyright © 2015 IFAC 2485



2412	 Thierno M.L. DIALLO et al. / IFAC-PapersOnLine 48-3 (2015) 2411–2416 

 

     

 

come up against the explosion in the number of variables. 

Learning BN from data is an NP-hard problem (Tsamardinos 

et al., 2006). The most current heuristics are not efficient on 

high dimensional data with a limited sample size. Application 

examples of BN published in the literature generally focus on 

a dozen variables. The issue related to the construction of the 

network for industrial applications in the case of a high number 

of variables is rarely addressed. However, industrial 

applications involve, in some cases, hundreds of parameters 

with millions of possible records. Algorithms whose 

complexity is exponential relative to the number of variable 

are therefore not applicable to such problems. In this paper, we 

propose a structural building algorithm applied to industrial 

processes. We prefer the word “building” to the word 

“learning” in the name of our algorithm because it strongly 

incorporates expert knowledge. The learning phase of the 

algorithm receives as input the variables divided into different 

levels of causality defined by domain experts. Based on 

unitary traceability data, the algorithm then determines the 

causal relationships existing between variables.  

The remainder of this paper is organized as follows: concepts 

and theoretical results necessary for the understanding of this 

paper are presented in Section 2. Our algorithm is described in 

Section 3 followed by the presentation of settings and results 

of the experimental studies in Section 4. Finally, Section 5 

summarizes our contributions and announces perspectives of 

this work. 

2. PRELIMINARIES 

A Bayesian Network (BN) is a DAG (Directed Acyclic Graph) 

G represented by the couple (V, E), where V is a set of vertices 

encoding joint probability distribution and E is a set of oriented 

edges or arcs linking the vertices. The vertices correspond to 

“random” variables (discrete or continuous) and the edges 

represent the relationship (possibly causal) amount the 

variables. A marginal or conditional probability distribution 

table is associated to each vertex. The set of probabilities of 

the network is denoted by P.  

Terminology. If two nodes are connected by an arc, the node 

at the origin of the arc is said parent of the node at the 

extremity of the arc. Conversely, the node at the end of the arc 

is said child of the node at the origin. If the two nodes are 

connected by more than one arc (a chain), the node at the origin 

of the chain is said ancestor of the node at the end of the chain. 

The latter is said descendant of the node at the origin of the 

chain. A node without a parent is called a root node and a node 

without son is said leaf node. Any node which is neither root 

nor leaf is called intermediate node (Korb and Nicholson, 

2003). 

The couple (G, P), with G = (V, E) a DAG, is a Bayesian 

network if it satisfies the Markov condition. 

The Markov condition. A directed acyclic graph G over V 

and a probability distribution P(V) satisfy the Markov 

condition if and only if for every W in V, W is independent of 

V\(Descendants(W) ∪ Parents(W)) given Parents(W) (Spirtes 

et al., 2000). 

The Markov condition establishes a set of independence 

relations on the DAG G. Indeed, the Markov condition ensures 

that all direct dependencies in the system being modelled are 

explicitly shown via arcs (Korb and Nicholson, 2003). 

Whether two nodes are not connected by an arc, then they are 

conditionally independent. 

D-separation. Given a DAG G and X, Y, two vertices of G 

with 𝑋𝑋 ≠ 𝑌𝑌. Let W be a set of vertices of G not containing X 

and Y. We say that X and Y are d-separated given W if and 

only if there are not undirected path U between X and Y such 

that (i) each collider on U has a descendant in W and (ii) no 

other vertex of U is in W. 

We say that X and Y are d-connected given W if and only if 

they are not d-separated with respect to W (Spirtes et al., 

2000). 

3. THE CAUSAL BAYESIAN NETWORKS BUILDING 

(CBNB) ALGORITHM 

CBNB is a mixed algorithm combining knowledge and data.  

It is applicable to causal models construction such as industrial 

diagnosis systems. The CBNB algorithm has two phases: the 

allocation phase and the causal relationships learning phase. 

Expert knowledge is first used to allocate the system’s 

variables to the predefined levels of causality and finally the 

data is employed to determine causal relationships between the 

system variables.  

3.1 CBNB algorithm: the allocation of the system’s variables 

The existing algorithms in the literature incorporate little or no 

expert knowledge. However in some domains, these 

knowledge are very valuable to be ignored. This is especially 

the case of domains with huge number of variables, knowing 

that most of these algorithms are exponential relative to 

number of variables. Examples of information that we can 

obtain from domain experts are (Cheng et al., 2002) (Riascos 

et al., 2007): identification of root nodes, identification of leaf 

nodes, existence (or absence) of a relationship between two 

nodes and definition of an (partial or complete) order on the 

variables.  

In the CBNB algorithm, the variables are assigned to different 

levels of causality. These levels should then be ordered from 

the root level (consisting of root nodes) to leaf level (composed 

of leaf nodes). There can be one or more intermediate levels 

between these two extreme levels. A variable belonging to a 

given level is likely to directly influence one or more variables 

belonging to the consecutive lower level. Direct dependency 

relationships are not possible between nodes of non-

consecutive levels. Levels must be homogeneous in terms of 

causality such that a variable cannot influence a variable with 

which it shares the same level of causality. We designate this 

particular network configuration by the cascade arrangement 

(c.f. Figure 1) 
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Figure 1. The cascade arrangement 

For industrial diagnosis models, the allocation of variables to 

homogeneous causal levels and the arrangement of these levels 

can be realized in an intuitive way. For these models, the 

following distribution could be considered: the root level 

might consists of machine and process parameters, then the 

functioning modes and defects types could form the 

intermediate levels and finally the symptoms could be 

considered as leaf nodes. 

Causal Bayesian networks applied to industrial diagnosis that 

we have consulted in the literature have for the most this 

cascade arrangement. Examples of these networks can be 

found in (Ramirez and Piqueras, 2006), (Chen et al., 2012), 

(Weidl et al., 2005), (Dey and Stori, 2005) and (Przytula and 

Thompson, 2000). These examples and other examples of 

applications of Bayesian networks that can be found in the 

literature are generally limited to a few tens nodes. These 

diagnosis models address most of the time a single piece of 

equipment. The diagnosis approach we are interested in is to 

analyse all industrial processes to identify causes of product 

defects or performances degradation. In such cases (especially 

for large-scale and complex processes), the number of 

parameters to be taken into account is in the hundreds. Hence 

the need for an adapted algorithm since the existing algorithms 

are not efficient on high dimensional data with a limited 

sample size. We propose an algorithm more effective by 

incorporating expert knowledge which have led to the cascade 

arrangement. 

3.2 CBNB algorithm: the causal relationships learning 

3.2.1. The theoretical foundations 

Assumptions: 

A1: The causal model to construct is a Bayesian network 

A2: This causal Bayesian network is arranged in cascade as 

described in section 3.1  

The first assumption implies that the graph G (V, E) to be 

achieved is a DAG and the couple (G, P), where P is the set of 

the probabilities of the network, fulfils the Markov condition. 

The Markov condition ensures that any conditional 

independence entailed by the graph G is also present in the 

probability distribution P. In other words, if there is no 

relationship between two nodes (linked by arc or chain), then 

these two nodes are conditionally independent. But the reverse 

is not always true. That is to say, when two nodes are 

conditionally independent, it does not always means an 

absence of an oriented path towards one another (see example 

in (Spirtes et al., 2000). An arc or chain may exists between 

two nodes without the two nodes being dependant. 

Minimality (or faithfulness) Condition (Spirtes et al., 2000). 

Let G be a DAG over V and P be a probability distribution 

over V.  (G, P) satisfies the Minimality condition if and only 

if for every proper subgraph H of G with vertex set V, (H, P) 

does not satisfy the Markov condition. 

For any Bayesian network (G, P) satisfying the Markov and 

Minimality conditions, if variables A and B are statistically 

dependent, then either: 

1. There is a directed path in G from A to B; or 

2. There is a directed path in G from B to A; or 

3. There is a variable C and directed paths in G from C to 

B and from C to A. 

By taking into account assumption A2 and focusing on 2 

consecutive levels, only one of the cases 1) and 2) may be 

considered. In addition, knowing the order of the 2 levels, we 

are able to say if it is the case 1 or the case 2. 

Two nodes belonging to the same level of the cascade 

arrangement can be statistically dependent in two cases: when 

the two nodes have a common child by conditioning on this 

child or when they share a parent. The following theorem 

allows to deal with these two cases. 

Theorem 1. In the cascade arrangement, the nodes belonging 

to the same level are independent by conditioning on the upper 

nodes. 

Proof. Let us consider two nodes A  Lx and B Ly, Lx and 

Ly being two consecutive levels with Lx >Ly (the upper level 

is the “parent level” relative to the lower level). If a causal 

relationships exists between A and B, then A is a parent of B. 

Let C Lx be another parent of B. B is then a collider of the 

path A – B – C.  If Lx is the root level, then A and C are 

independent.  Or else, as C is not a descendant of A, then A 

and C are independent according to the Markov condition.  

Let us consider DLy as another child of A. A is a common 

parent of B and D. Conditioning on A, B and D are 

independent. 

Theorem 2. Let G be a faithful Bayesian Network arranged in 

cascade and A  Lx and B Ly two of its nodes. Lx and Ly 

being two consecutive levels. If A and B are statistically 

dependent, then there is an edge between A and B. This node 

is oriented from the node belonging to upper level towards the 

node belonging to the lower level. 

Proof. If A is a parent of B, as the graph is a causal graph, then 

A and B are dependent. According to the Markov condition, 

this direct dependency is represented by an arc in the graph. 

The faithfulness condition insures that if there is an arc 

between A and B, then A and B are dependent. According to 

the cascade arrangement, and assuming that A belong to the 

higher level, it is necessary a parent of B.  

3.2.2. The causal relationship learning phase 

In addition to the two first assumptions, we consider another 

assumption:   
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come up against the explosion in the number of variables. 

Learning BN from data is an NP-hard problem (Tsamardinos 

et al., 2006). The most current heuristics are not efficient on 

high dimensional data with a limited sample size. Application 

examples of BN published in the literature generally focus on 

a dozen variables. The issue related to the construction of the 

network for industrial applications in the case of a high number 

of variables is rarely addressed. However, industrial 

applications involve, in some cases, hundreds of parameters 

with millions of possible records. Algorithms whose 

complexity is exponential relative to the number of variable 

are therefore not applicable to such problems. In this paper, we 

propose a structural building algorithm applied to industrial 

processes. We prefer the word “building” to the word 

“learning” in the name of our algorithm because it strongly 

incorporates expert knowledge. The learning phase of the 

algorithm receives as input the variables divided into different 

levels of causality defined by domain experts. Based on 

unitary traceability data, the algorithm then determines the 

causal relationships existing between variables.  

The remainder of this paper is organized as follows: concepts 

and theoretical results necessary for the understanding of this 

paper are presented in Section 2. Our algorithm is described in 

Section 3 followed by the presentation of settings and results 

of the experimental studies in Section 4. Finally, Section 5 

summarizes our contributions and announces perspectives of 

this work. 

2. PRELIMINARIES 

A Bayesian Network (BN) is a DAG (Directed Acyclic Graph) 

G represented by the couple (V, E), where V is a set of vertices 

encoding joint probability distribution and E is a set of oriented 

edges or arcs linking the vertices. The vertices correspond to 

“random” variables (discrete or continuous) and the edges 

represent the relationship (possibly causal) amount the 

variables. A marginal or conditional probability distribution 

table is associated to each vertex. The set of probabilities of 

the network is denoted by P.  

Terminology. If two nodes are connected by an arc, the node 

at the origin of the arc is said parent of the node at the 

extremity of the arc. Conversely, the node at the end of the arc 

is said child of the node at the origin. If the two nodes are 

connected by more than one arc (a chain), the node at the origin 

of the chain is said ancestor of the node at the end of the chain. 

The latter is said descendant of the node at the origin of the 

chain. A node without a parent is called a root node and a node 

without son is said leaf node. Any node which is neither root 

nor leaf is called intermediate node (Korb and Nicholson, 

2003). 

The couple (G, P), with G = (V, E) a DAG, is a Bayesian 

network if it satisfies the Markov condition. 

The Markov condition. A directed acyclic graph G over V 

and a probability distribution P(V) satisfy the Markov 

condition if and only if for every W in V, W is independent of 

V\(Descendants(W) ∪ Parents(W)) given Parents(W) (Spirtes 

et al., 2000). 

The Markov condition establishes a set of independence 

relations on the DAG G. Indeed, the Markov condition ensures 

that all direct dependencies in the system being modelled are 

explicitly shown via arcs (Korb and Nicholson, 2003). 

Whether two nodes are not connected by an arc, then they are 

conditionally independent. 

D-separation. Given a DAG G and X, Y, two vertices of G 

with 𝑋𝑋 ≠ 𝑌𝑌. Let W be a set of vertices of G not containing X 

and Y. We say that X and Y are d-separated given W if and 

only if there are not undirected path U between X and Y such 

that (i) each collider on U has a descendant in W and (ii) no 

other vertex of U is in W. 

We say that X and Y are d-connected given W if and only if 

they are not d-separated with respect to W (Spirtes et al., 

2000). 

3. THE CAUSAL BAYESIAN NETWORKS BUILDING 

(CBNB) ALGORITHM 

CBNB is a mixed algorithm combining knowledge and data.  

It is applicable to causal models construction such as industrial 

diagnosis systems. The CBNB algorithm has two phases: the 

allocation phase and the causal relationships learning phase. 

Expert knowledge is first used to allocate the system’s 

variables to the predefined levels of causality and finally the 

data is employed to determine causal relationships between the 

system variables.  

3.1 CBNB algorithm: the allocation of the system’s variables 

The existing algorithms in the literature incorporate little or no 

expert knowledge. However in some domains, these 

knowledge are very valuable to be ignored. This is especially 

the case of domains with huge number of variables, knowing 

that most of these algorithms are exponential relative to 

number of variables. Examples of information that we can 

obtain from domain experts are (Cheng et al., 2002) (Riascos 

et al., 2007): identification of root nodes, identification of leaf 

nodes, existence (or absence) of a relationship between two 

nodes and definition of an (partial or complete) order on the 

variables.  

In the CBNB algorithm, the variables are assigned to different 

levels of causality. These levels should then be ordered from 

the root level (consisting of root nodes) to leaf level (composed 

of leaf nodes). There can be one or more intermediate levels 

between these two extreme levels. A variable belonging to a 

given level is likely to directly influence one or more variables 

belonging to the consecutive lower level. Direct dependency 

relationships are not possible between nodes of non-

consecutive levels. Levels must be homogeneous in terms of 

causality such that a variable cannot influence a variable with 

which it shares the same level of causality. We designate this 

particular network configuration by the cascade arrangement 

(c.f. Figure 1) 
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A3: The data set D from which the causal relationship is 

learned is faithful to the sought network. 

Considering these three assumptions and based the two 

previous theorems, we have developed the causal relationship 

learning phase of the CBNB algorithm (see Figure 2). 

Inputs: 

 A Data set D 

 The Number of Level L 

 The Number of Nodes of each level {n1, n2,…, nL} 

 Threshold   

Output: A Causal Bayesian Network (CBN) 

0: Initialize CBN without any arc 

1: for k =1 to L-1 

2:       for i =1 to nk 

3:              for j=1 to nk+1 

4:                     Calculate Association (𝑿𝑿𝒊𝒊
𝒌𝒌; 𝑿𝑿𝒋𝒋

𝒌𝒌+𝟏𝟏) 

5:                     if Association (𝑿𝑿𝒊𝒊
𝒌𝒌; 𝑿𝑿𝒋𝒋

𝒌𝒌+𝟏𝟏) >   then 

6:                     put an arc from 𝑿𝑿𝒊𝒊
𝒌𝒌 to 𝑿𝑿𝒋𝒋

𝒌𝒌+𝟏𝟏 

7:                     end if 

8:              end for 

9:       end for 

10: end for 

11: return CBN 

Figure 2. The CBNB algorithm’s causal learning phase 

The Association (X, Y) function (line 4). This function 

calculate the strength of dependency between two variables X 

and Y. If their dependency is deemed significant (Line 5), an 

arc is put between them (Line 6). Conditional independence 

tests such as log-likelihood ratio G2 (equivalent to Mutual 

information test) or Pearson’s chi-square test (X2) can be used 

to measure the strength of dependency. The significance of the 

dependency is assessed against a threshold for the p-value. The 

advantage of our algorithm is that it does not measure the 

dependence of each node with respect to all the remaining 

variables (as almost all the existing algorithms do). It does so 

only for a limited number of variables (nodes belonging to the 

level just below that of the considered node). 

Time complexity. The complexity depends on the number of 

three elementary operations executed by the algorithm: 

association computation, threshold test and arc adding, if 

necessary. For two levels k and k +1, |nk|*| nk+1 | associations 

computations are performed. The same number of threshold 

tests are made. Finally, at most the same number of arc adding 

are realized. The association computation operation is as far 

the most resource-intensive.  The complexity evaluation will 

focus only on this operation. Let us consider 𝑛𝑛 = max  (𝑛𝑛𝑘𝑘,

𝑘𝑘 = 1, … , 𝐿𝐿 − 1). For each level, the algorithm performs 0 (n2) 

association computations. For the whole graph, we will have 0 

((L-1)*n2) association computations, with L-1 a constant. This 

corresponds to an order of magnitude of 0 (n2), where n<<N, 

with N the total number of variables. By way of comparison, 

the complexity of the IAMB (Tsamardinos et al., 2003) 

algorithm is  0 (N2). As there exists linear algorithm for the 

strength of dependency calculation, the following theorem can 

be stated: 

Theorem 3. The CBNB algorithm is a polynomial time 

learning algorithm 0 (n2), where n << N (N = total number of 

variables). 

4. EXPERIMENTAL STUDIES 

The CBNB algorithm was implemented using the bnlearn 

package for R. All the simulations and the experimental 

analysis was performed with this package.  These studies are 

divided into two parts. First, we study our algorithm 

performances according to the threshold ε. Second, we 

compare our algorithm against some of the best algorithms 

reported in the literature  

As benchmark, we consider three networks (EARTHQUAKE, 

CANCER and SURVEY) respecting the configuration defined 

in this work. We start by generating data from conditional 

probabilities of each network and then we seek to build the 

network from these data using the tested algorithm. For all 

experiments, ten sample sizes were considered (100; 200; 300; 

500; 800; 1000; 2000; 3000; 5000; 10000). For each sample 

size, the data generation and experimentation was repeated 5 

times and the average of the obtained metrics for the 5 data 

sets are reported as the result for the considered sample size. 

The tests were conducted on PC Intel (R) Core (TM) i5-3340 

M CPU @2.70GHz 2.7 GHz, 4Go RAM running Windows 7 

Professional. 

4.1 Performance metrics 

We evaluated performances in terms of the quality of the built 

network. This evaluation measures the ability of the 

considered algorithm to provide the real network. Two 

categories of metric can be distinguished. The first is the 

posterior probability of the obtained network (BDeu, BIC, etc.) 

relative to the learning data. The resulting scores measure how 

the obtained network fit the data. This category is especially 

useful when the true network is unknown. This is the case for 

real applications. The second category assesses the 

equivalency between the obtained network and the true 

network. As the true network is known in our case (benchmark 

networks), we used this second category. The performance 

metrics used are: True Positive (TP) and False Positive (FP).  

TP is the number of arcs in the obtained (current) network also 

present in the true (target) network (higher is better). FP is the 

number of arcs present in the obtained network but not present 

in the true network (lower is better). For ease of reading, 

figures have been normalized with respect to the total number 

of arcs in the true network. 

4.2 The CBNB performances assessment 

In the implementation of the CBNB algorithm, the association 

between two nodes is evaluated by performing an 

independence test by mean of the ci.test function from bnlearn. 

The mutual information test statistic for categorical variables 

was used. We examined the CBNBs’ performances (TP, FN) 

in accordance with the p-value (the target nominal type I error 

rate) of the test. Large p-value indicates that the dependence 

relationship is not significant. To decide whether an arc can be 

put from a node to another, i.e. whether the relationship is 

significant, a threshold for p-value is fixed. When p-value is 
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smaller than the threshold, then the relationship is supposed to 

be significant. Values =0.01 or 0.05 are often chosen as 

significance level for the rejection of the null hypothesis of 

conditional independence. = 0.05 is the default threshold in 

bnlearn. We decide to test different thresholds around this 

value. For each network, we generate different sample sizes 

from its true probability distribution. We try to reconstruct the 

network from the generated data using our algorithm. We 

compare the obtained network with true ones (known 

structure). We reported the performances of our algorithm on 

each sample size and for each value of the threshold. The 

obtained results are presented in Figure 3.  

We observed that for the three networks, by considering each 

threshold value individually, the TP rate increases as the 

sample size rise. The difference between the different 

thresholds lays in the sample size from which the CBNB 

achieves 100% TP rate. The smaller the threshold, the larger 

this sample size. But raising the threshold implies an increase 

of the probability of type I error. This implies an increase of 

the FP rate. A large p-value threshold, generally beyond 0.1, 

means no evidence against the null hypothesis (Wasserman, 

2004). Therefore, we would suggest to set the threshold to 0.01 

if the sample size is large. If the sample size is relatively low, 

then 0.05 might be set as threshold. 

Furthermore, the CBNB produced no FP for the tested 

threshold values on these three benchmark networks. 

4.3 Comparative studies 

In this empirical evaluation, we compare the CBNB’s 

performances against those of GS and MMHC in terms of TP 

and FP. GS (Margaritis, 2003) is an example of constraint-

based learning algorithm and MMHC (Tsamardinos et al., 

2006) is a hybrid learning algorithm which is able to scale up 

to thousands of variables. 

Figure 4. TP and FP rates of GS, MMHC and CBNB algorithms on synthetic data 

Figure 3. Evolution of TP rate according to the threshold of p-value for the CBNB algorithm 
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A3: The data set D from which the causal relationship is 

learned is faithful to the sought network. 

Considering these three assumptions and based the two 

previous theorems, we have developed the causal relationship 

learning phase of the CBNB algorithm (see Figure 2). 

Inputs: 

 A Data set D 

 The Number of Level L 

 The Number of Nodes of each level {n1, n2,…, nL} 

 Threshold   

Output: A Causal Bayesian Network (CBN) 

0: Initialize CBN without any arc 

1: for k =1 to L-1 

2:       for i =1 to nk 

3:              for j=1 to nk+1 

4:                     Calculate Association (𝑿𝑿𝒊𝒊
𝒌𝒌; 𝑿𝑿𝒋𝒋

𝒌𝒌+𝟏𝟏) 

5:                     if Association (𝑿𝑿𝒊𝒊
𝒌𝒌; 𝑿𝑿𝒋𝒋

𝒌𝒌+𝟏𝟏) >   then 

6:                     put an arc from 𝑿𝑿𝒊𝒊
𝒌𝒌 to 𝑿𝑿𝒋𝒋

𝒌𝒌+𝟏𝟏 

7:                     end if 

8:              end for 

9:       end for 

10: end for 

11: return CBN 

Figure 2. The CBNB algorithm’s causal learning phase 

The Association (X, Y) function (line 4). This function 

calculate the strength of dependency between two variables X 

and Y. If their dependency is deemed significant (Line 5), an 

arc is put between them (Line 6). Conditional independence 

tests such as log-likelihood ratio G2 (equivalent to Mutual 

information test) or Pearson’s chi-square test (X2) can be used 

to measure the strength of dependency. The significance of the 

dependency is assessed against a threshold for the p-value. The 

advantage of our algorithm is that it does not measure the 

dependence of each node with respect to all the remaining 

variables (as almost all the existing algorithms do). It does so 

only for a limited number of variables (nodes belonging to the 

level just below that of the considered node). 

Time complexity. The complexity depends on the number of 

three elementary operations executed by the algorithm: 

association computation, threshold test and arc adding, if 

necessary. For two levels k and k +1, |nk|*| nk+1 | associations 

computations are performed. The same number of threshold 

tests are made. Finally, at most the same number of arc adding 

are realized. The association computation operation is as far 

the most resource-intensive.  The complexity evaluation will 

focus only on this operation. Let us consider 𝑛𝑛 = max  (𝑛𝑛𝑘𝑘,

𝑘𝑘 = 1, … , 𝐿𝐿 − 1). For each level, the algorithm performs 0 (n2) 

association computations. For the whole graph, we will have 0 

((L-1)*n2) association computations, with L-1 a constant. This 

corresponds to an order of magnitude of 0 (n2), where n<<N, 

with N the total number of variables. By way of comparison, 

the complexity of the IAMB (Tsamardinos et al., 2003) 

algorithm is  0 (N2). As there exists linear algorithm for the 

strength of dependency calculation, the following theorem can 

be stated: 

Theorem 3. The CBNB algorithm is a polynomial time 

learning algorithm 0 (n2), where n << N (N = total number of 

variables). 

4. EXPERIMENTAL STUDIES 

The CBNB algorithm was implemented using the bnlearn 

package for R. All the simulations and the experimental 

analysis was performed with this package.  These studies are 

divided into two parts. First, we study our algorithm 

performances according to the threshold ε. Second, we 

compare our algorithm against some of the best algorithms 

reported in the literature  

As benchmark, we consider three networks (EARTHQUAKE, 

CANCER and SURVEY) respecting the configuration defined 

in this work. We start by generating data from conditional 

probabilities of each network and then we seek to build the 

network from these data using the tested algorithm. For all 

experiments, ten sample sizes were considered (100; 200; 300; 

500; 800; 1000; 2000; 3000; 5000; 10000). For each sample 

size, the data generation and experimentation was repeated 5 

times and the average of the obtained metrics for the 5 data 

sets are reported as the result for the considered sample size. 

The tests were conducted on PC Intel (R) Core (TM) i5-3340 

M CPU @2.70GHz 2.7 GHz, 4Go RAM running Windows 7 

Professional. 

4.1 Performance metrics 

We evaluated performances in terms of the quality of the built 

network. This evaluation measures the ability of the 

considered algorithm to provide the real network. Two 

categories of metric can be distinguished. The first is the 

posterior probability of the obtained network (BDeu, BIC, etc.) 

relative to the learning data. The resulting scores measure how 

the obtained network fit the data. This category is especially 

useful when the true network is unknown. This is the case for 

real applications. The second category assesses the 

equivalency between the obtained network and the true 

network. As the true network is known in our case (benchmark 

networks), we used this second category. The performance 

metrics used are: True Positive (TP) and False Positive (FP).  

TP is the number of arcs in the obtained (current) network also 

present in the true (target) network (higher is better). FP is the 

number of arcs present in the obtained network but not present 

in the true network (lower is better). For ease of reading, 

figures have been normalized with respect to the total number 

of arcs in the true network. 

4.2 The CBNB performances assessment 

In the implementation of the CBNB algorithm, the association 

between two nodes is evaluated by performing an 

independence test by mean of the ci.test function from bnlearn. 

The mutual information test statistic for categorical variables 

was used. We examined the CBNBs’ performances (TP, FN) 

in accordance with the p-value (the target nominal type I error 

rate) of the test. Large p-value indicates that the dependence 

relationship is not significant. To decide whether an arc can be 

put from a node to another, i.e. whether the relationship is 

significant, a threshold for p-value is fixed. When p-value is 
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For this comparative studies, CBNB’s threshold for the mutual 

information p-values was set to 0.05. This is the default value 

for the target nominal type I error rate in bnlean. For GS and 

MMHC, their default settings in bnlearn were retained. The 

results indicate that TP rate obtained by these three algorithms 

converge to 1. The FP rate is null for CBNB and tends towards 

zero as the sample size growns for GS and MMHC. As 

expected, MMHC outperformed GS (see Figure 4). We also 

observe that the CBNB algorithm outperforms these two state-

of-the art algorithms in terms of TP rate and FP rate on these 

three benchmark networks. CBNB is more sample efficient 

compared to GS and MMHC as it achieves good results on low 

sample size. These performances of the CBNB algorithm are 

due to the incorporation of expert knowledge.  

In general, the performances of Bayesian network structural 

leaning algorithm increase as the sample size grows. As 

mentioned earlier, in real applications, the number of variables 

may be very large and of different types. The variables can be 

machine parameters, material parameters, other process 

parameters, defects and symptoms. To obtain complete data 

for the structural learning, each record must have a value for 

each variable. Furthermore, the data set must contains as least 

one value of all the levels of all variables. Obtaining such a 

data set is not easy in practice.  Providing a large sample size 

respecting these constraints is not guarantee. An algorithm 

allowing to obtain the true network based on a relatively low 

sample size is therefore very useful for real application.  

5. CONCLUSION 

Bayesian Networks have interesting characteristics for 

diagnosis functions development. However, the network 

structure learning is still a challenging task. Learning BN from 

data is an NP-hard problem and the performances of existing 

heuristics depend on the nature and the size of the learning 

data. The introduction of expert knowledge in the construction 

process helps to make the structural learning process more 

effective. 

In this paper, we have presented the CBNB algorithm for 

causal Bayesian network construction. The algorithm is 

applicable to a particular network with variables arranged in 

cascade. The algorithm has two phases. The first phase 

consists of dividing the variables in different levels of causality 

and defining a complete order among the obtained levels. 

Then, in the second phase based on unitary traceability data, 

the existence of dependency between nodes are evaluated. We 

have performed experimental studies on synthetic data 

generated from three benchmark networks. The results shown 

that the CBNB algorithm outperforms the tested two state of 

the art algorithms (GS and MMHC). It is important to note that 

CBNB algorithm used strong assumptions namely the 

possibility to allocate the variables to ordered levels. GS and 

MMHC do not incorporate this type of knowledge. Results 

obtained on synthetics data have to be confirmed on real world 

data provided by our industrial partners of the FUI Traçaverre 

Project.  
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