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Abstract 

The most recent revolution in industry (Industrial Revolution 4.0) requires increased flexibility, agility 
and efficiency in the use of production equipment. The Dynamic Cellular Manufacturing System 
(DCMS) is one of the best production systems to meet such requirements. In addition, the increasing 
importance of environmental and social issues, along with recent laws, is forcing manufacturers and 
managers to take account of sustainability when designing and configuring manufacturing systems. This 
paper proposes a new bi-objective mathematical model of the Dynamic Cell Formation Problem 
(DCFP), in which both the worker’s assignment and environmental and social criteria are considered. 
The first objective in this model is to minimize both production and labor costs, and total waste (e.g., 
energy, chemical material, raw material, CO2 emissions, etc.). Social criteria are represented as 
constraints. Due to the NP-hardness of this problem, we propose a new resolution approach called 
NSGA II-MOSA, that merges an efficient hybrid meta-heuristic based on the Non-dominated Sorting 
Genetic Algorithm (NSGA-II), with Multi-Objective Simulated Annealing (MOSA). Randomly-
generated test problems demonstrate the performance of our algorithm. 

Keywords: Dynamic Cell formation; Sustainability; Bi-objective optimization; Non-dominated Sorting 
Genetic Algorithm, Multi-Objective Simulated Annealing. 
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1 Introduction 

In order to remain competitive, manufacturers and producers have been forced to increase the 
productivity and flexibility of their manufacturing systems. Depending on the specification of 
production in an Industrial Revolution 4.0 environment [1], a production system must have a high 
degree of flexibility and agility to deal with product changes. The Dynamic Cellular Manufacturing 
System (DCMS) is one of the well-known production systems that meets this requirement. The Cellular 
Manufacturing System (CMS) based on Group Technology attempts to classify parts and machines in 
order to create cells and part-families; this is called a Cell Formation Problem (CFP). This classification 
is done according to the similarities in the geometry and operation process of each part, as well as a 
reduction of Work-In-Process (WIP) inventory, flow time and space utilization, while improving 
production planning and control. Most of the existing cell formation methods (static cell formation) 
have been developed for only one extended time period. But, under dynamic conditions, the components 
of product mixes change, the variety of products increases and the duration of product life cycles 
decreases. As a consequence, the configuration of the cells in CMS needs to be reorganized in order to 
maintain a high level of performance. Optimal cells in one period may therefore not be optimal in other 
periods because their configuration of part families and machine grouping may need either substitution 
of machines between cells or a change of the number of cells. These reasons motivate research on the 
configuration of Dynamic CMS (DCMS). 

In previous investigations the economic aspect has traditionally been considered. Additionally, the 
pressures of communities, government and non-governmental organizations force managers and 
manufacturers to consider environmental and social criteria as well. In 1987 the United Nations World 
Commission on Environment and Development (WCED) [2] coined the now famous definition of 
sustainable development as a “development that meets the needs of the present without compromising 
the ability of future generations to meet their own needs”. In this definition, the trade-off between 
present and future depends on how we choose to balance economic, social and environmental criteria. 
For these reasons, sustainability has recently attracted research. Despite the potential impact of 
sustainability on most decision-making, only few areas on tactical and operational decision levels have 
been addressed, such as aggregate production planning, and allocation and routing problems in supply 
chains. To the best of our knowledge there have been no studies on layout and cell formation. 

In order to fill this gap, this research proposes a bi-objective mathematical model of DCFP, in which 
the environmental aspect is represented as the objective, and the social issues are represented as the 
constraints. A trade-off is thus made between some related costs as economic criteria, and production 
waste as environmental criteria, without compromising social needs. A restriction on the maximum 
daily noise exposure level is also considered for worker assignment as a social issue. As a resolution 
approach, a new efficient algorithm called NSGA II-MOSA that is a hybrid of the Non-dominated 
Sorting Genetic Algorithm (NSGA II) and Multi-Objective Simulated Annealing (MOSA) is designed.  

The paper is organized as follows. The next section reviews the literature related to DCFP. Section 3 
motivates this research. Section 4 describes the assumptions and problem formulation, and Section 5 
the hybrid NSGA II-MOSA algorithm. The experimental result and a comparison between the proposed 
hybrid NSGA II-MOSA hybrid and a traditional application of NSGA II and MOSA are shown in 
Section 6. Finally, Section 7 ends on conclusions and future research directions.    
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2 Literature review 

This section gives an overview of the most prominent research on DCMS. Due to the large number 
of investigations in this area, we focus mainly on recent studies. First, Rheault et al. [3] introduced the 
concept of a dynamic environment in CFP. Schaller et al. [4] integrated CFP with inventory aspects, 
then showed the performance of their model on multiple heuristics and evaluated several alternative 
lower bounding methods. Chen and Cao [5] proposed a mathematical model for multi-period Cellular 
Manufacturing Systems (Dynamic CMS) minimizing the total cost, which includes: inter-cell material 
handling, inventory holding and the setting up of cells. They also developed a Tabu Search (TS) method 
to obtain good solutions and show the efficiency of their model. Next, these authors [6] generated a 
robust system configuration by integrating cell formation and part allocation. They also proposed a two-
stage TS to find the optimal or near optimal solutions. Tavakkoli-Moghaddam et al. [7] presented a 
nonlinear integer model of DCMS with machine capacity limitation, machine replication, inter-cell 
movements and production in batches. They used constant and variable costs as well as reconfiguration 
and inter-cell movement costs to formulate their objective function. Some of these authors [8] applied 
a Memetic Algorithm (MA) to solve their DCMS model. Defersha and Chen [9] formulated a 
comprehensive model containing dynamic cell configuration, alternative routings, lot splitting, 
sequence of operations and workload balancing. They also considered machine adjacency and cell size 
capacity as constraints. Moreover, Defersha and Chen [10] also proposed a two-phase GA-based 
heuristic to solve DCFP with alternative routings. Safaei et al. [11],[12] presented a DCMS 
mathematical model with uncertain circumstances, assuming fuzzy demand and fuzzy machine 
availability. They solved their mixed-integer programming model by developing fuzzy programming-
based aspects to determine optimal cell configuration with maximum satisfaction of the fuzzy objective 
and constraints. Safaei et al. [13] proposed a mixed-integer programming model in DCMS with batch 
inter/intra-cell material handling, sequence of operations, alternative process plans and machine 
replication. In this study, the authors minimized machine variable/constant costs, inter/intra-cell 
movements and reconfiguration costs as objective function. Defesha and Chen [14] integrated DCMS 
with production lot sizing in their minimization model with both production and quality-related 
(operation, set up, inventory, etc.) costs. They solved this model with a linear programming-embedded 
GA. Defersha and Chen [15] developed a parallel GA approach for DCFP. Ahkioon et al. [16] 
formulated a mixed integer mathematical model in DCMS by considering routing flexibility. In other 
words, they made a trade-off between increased flexibility and the imposed additional cost of part 
routings.  Aryanezhad et al. [17] proposed a model to combine Simultaneous Dynamic Cell formation 
with a Worker assignment Problem (SDCWP). The objective function in their model has two 
components: (i) production costs such as inter-cell material handling and machine costs in the planning 
horizon, and (ii) human issues consisting of hiring, training, salary and firing costs. Egilmez et al. [18] 
addressed three stochastic skill-based manpower allocation models which allocate each worker to a 
manufacturing cell according to their performance. They also proposed a four-phased hierarchical 
robust optimization method to optimize manpower assignment and system production rates. Saidi-
Mehrabad et al. [19] proposed a mathematical model to integrate production planning and worker 
assignment. This model minimizes the costs of maintenance and overheads, system reconfiguration, 
backorder and inventory holding, training, and salaries. Safaei and Tavakkoli-Moghaddam [20] 
developed a mathematical model to integrate multi-period cell formation and subcontracting of 
production planning in DCMS. Their study makes a trade-off between production and outsourcing costs 
on the re-configuration of CMS. Bajestani et al. [21] formulated a multi-objective mathematical 
modeling in DCMS and minimized the sum of various costs and total cell load variation simultaneously. 
They obtained the Pareto-optimal frontier with a new multi-objective scatter search method. Wang et 
al. [22] presented a non-linear mixed integer problem in DCMS with three conflicting objectives 
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(machine relocation cost, utilization rate of machine capacity, and total number of inter-cell movements 
over the entire planning horizon). Deljoo et al. [23] improved their previous model by correcting some 
essential errors which had reduced the model’s efficiency.  

Mahdavi et al. [24] proposed an integer non-linear program of DCMS, considering worker aspects 
such as worker assignment, alternative workers, available time of workers, hiring and firing costs, and 
workers’ salaries. Furthermore, they utilized holding and backordering costs in their model as an 
inventory aspect to make it more realistic. Javadian et al. [25] presented a multi-objective problem of 
cellular manufacturing systems in a dynamic and deterministic production environment to 
simultaneously minimize total cell load variation and the sum of miscellaneous costs (machine costs, 
inter/intra-cellular material handling, backorder, inventory holding and subcontracting). NSGA-II was 
applied to obtain optimal the Pareto-frontier. Rafiee et al. [26] integrated DCMS and an inventory lot 
sizing problem into a comprehensive mathematical model that includes several design factors: machine 
procurement, cell reconfiguration, preventive and corrective maintenance, intra/inter-cell material 
handling, subcontracting, inventory and defective parts replacement costs, etc. Saxena and Jain [27] 
provided a mixed-integer nonlinear programming model to merge machine breakdown effects and 
DCMS by incorporating reliability modeling. Kia et al. [28] proposed a mixed-integer non-linear 
programming model for DCMS by integrating three major decisions into the design of a CMS (cell 
formation, group layout) and developed an efficient SA method to solve their model. The objective 
function minimizes the total costs of intra/inter-cell movement, machine relocation, machine 
procurement, machine overheads and machine processing. Moreover, Kia et al. [29] addressed a mixed 
integer model for multi-floor layout design in DCMS. They developed a GA to solve their model. Rafiei 
and Ghodsi [30] presented a bi-objective model in DCMS and focused on human-related aspects. Their 
proposed model seeks (i) to minimize various costs including machine procurement relocation, machine 
variables, inter/intra-cell movement, and overtime and worker shifting as a first objective; and (ii) to 
maximize worker utilization as second objective. They proposed a hybridization of the ant-colony 
optimization algorithm with GA to solve their model. Kia et al [31] proposed a mixed integer 
mathematical model to integrate some new features such as: (i) manufacturing cells with variable 
numbers and shapes, (ii) machine depot keeping idle machines, (iii) machines of unequal areas, and (iv) 
manufacturing cells with regular rectangular shapes set on the continuous shop floor and in the design 
and configuration of the DCMS. Majazi-Dalfard [32] developed a new nonlinear integer programming 
model and considered the effect of distance on material flow. He also developed a new method including 
SA embedded in branch-and-cut to solve his model. Shiyas and Madhusudanan Pillai [33] formulated 
a model making a trade-off between the heterogeneity of cells and the inter-cell moves as two 
conflicting objectives in CMS. They also developed a heuristic to assign parts, and integrated it into a 
GA. Deep and Singh [34] proposed a comprehensive mathematical model in the design of a DCMS, 
considering multiple process plans for parts, and alternative process routes for each plan. These authors 
proposed a genetic algorithm based on heuristics to cope with the complexity of a problem. Finally, 
Niakan et al. [35] developed a bi-objective mathematical model of this problem in order to  capture  the  
trade-off  between the minimization  of  the  total  costs  and  the maximization  of  social issues. They 
also designed a Non-dominated Sorting Genetic Algorithm (NSGA-II) to solve it. The classification of 
the previous studies is demonstrated in Table 1. 

{Please insert Table 1 here.} 

As this literature review shows, the design of CMS has received considerable attention, but that of 
DCMS, especially with regard to social and environmental aspects, has been investigated far less. In 
this study, a new bi-objective mathematical model is developed in order to integrate classical DCMS 
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configuration aspects (economic) with social and environmental factors (sustainability) in an attempt to 
fill this gap in the literature and to provide new directions for future research. 

 

3 Motivation  

The most classical models in CFP focus only on economic criteria and over one single period, 
without any modification in demand or new products in the following periods. These assumptions are 
not realistic, especially with regard to the last decade, because reconfiguration of cells from one period 
to another increasingly becomes a necessity. The proposed model allows these evolutions to be taken 
into account. Furthermore, considering economic criteria is no longer enough to satisfy industries’ 
demands, and finding a trade-off between economic, social and environmental criteria is increasingly 
necessary. 

The first objective is associated with economic criteria such as machine fixed and variable costs, 
inter/intra-cell movement costs, machine procurement, installation and relocation costs, and salaries, 
and hiring/firing and training costs.  

In order to be closer to reality, we assume that several costs (hiring, firing, and training for each skill) 
can vary from one period to another. The model therefore determines the best period for training 
workers, which allows for more flexibility. It also provides for the measurement of job opportunities 
and skill upgrading by training, etc. This kind of measurement can be very important in cost 
optimization and in workers’ motivation. 

In view of the importance of environmental criteria, the second objective focuses on waste minimization 
in order to take into account several kinds of waste (CO2 emissions, energy loss, raw material scrap, 
water pollution, etc.). We include all waste in an aggregated way into this model, thus enabling the 
addition of other kinds of waste. Regarding the complexity of the model, social aspects such as Daily 
Noise Dosage (DND) have been introduced as constraints and our model is able to add other social 
constraints. 

Finally, this paper also provides a contribution regarding the resolution approach. First, because of the 
complexity of our model, it has to be linearized. Second, due to the NP-hardness of design and 
configuration problems in DCMS, we develop a new hybrid meta-heuristic composed of two well-
known methods, viz., NSGA II and MOSA. Several demonstrations show the efficiency and 
performance of this hybrid meta-heuristic in comparison with the application of each of the two meta-
heuristics, separately. 

4 Problem description and formulation 

This section introduces our new bi-objective mathematical model of sustainable DCMS. As 
developed in the previous section, the first objective function minimizes various costs (Eq. 6) while the 
second one optimizes environmental aspects (Eq. 7). 

4.1 Environmental issue 

The industrial sector is considered to be one of the major sources of pollution in the world, and a large 
part of this pollution is produced in various ways such as material waste, water pollution, heat and 
Greenhouse Gas (GHG) emissions. Global warming, world pollution and ozone layer depletion force 
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managers and manufacturers to improve the efficiency of their production systems, in order to decrease 
these forms of waste. This efficiency depends on the characteristics and age of the manufacturing 
equipment. The selection, configuration or reconfiguration of equipment are therefore one of the most 
important decision problems in reducing production waste. It is consequently necessary to consider 
environmental and social criteria in addition to traditional economic issues. Accordingly, several types 
of waste have been involved as a second objective function of our model in order to reflect the waste of 
each machine while processing every operation. This measurement can include various features, such 
as energy waste, chemical waste, raw material waste, GHG emissions, etc. Since the units of the 
considered features are different, several aggregation methods (e.g., normalized weighting method [36], 
AHP method [37], etc.) can be applied to transform these features into a single parameter called as 
machine waste for each operation. The waste for each operation of each machine can then be calculated 
as follows: 

, 1 2 3 4( ) ( ) ( ) ( )j m energy chemical raw material GHG emissionw w w w wα α α α= + + +  (1) 

where iα are the normalized weights of each kind of waste. In the model that we propose, other 
environmental issues can be considered important in manufacturing systems. For example, the wasted 
energy (energy loss transformed into heat) for each operation on each machine may be estimated from 
the energy label (i.e., efficiency ranked A+, A, C, etc.) and power (i.e., energy consumption) provided 
by the manufacturer of this machine. This calculation is as follows: 

Epower
t

=   (2) 

Where E  is the amount of energy consumed to do the work and t is the time taken, since we have:  

E usefulenergy energy loss= +   (3) 

usefulenergyEfficiency
E

=   (4) 

According to the above explanation, in this research an attempt has been made to choose some social 
and environmental aspects that are closely related to the DCMS configuration and have a valuable role 
in this problem. However, the proposed model can include new criteria and constraints, if necessary. 

4.2 Social issue 

Workers are continuously exposed to noise hazards in manufacturing environments in which many 
machines work simultaneously, generating a significant level of noise overall. According to Leigh and 
Miller [38], in their review of job-related illness data from the Bureau of Labor Statistics, hearing-loss 
accounts for more lost days than any other occupational illness and concerns more than 300 occupations. 
Danial et al. [39] found that workers’ compensation claims in Washington State regarding annual 
disability settlements for hearing-related problems was close to $22.8 million. From the point of view 
of human costs, occupational noise exposure not only causes social and psychological disorders for 
workers, but also these workers suffer from increased fatigue during shift work. Niebel and Freivalds 
[40] indicate that intermittent broadband noise can result in productivity decrease and greater employee 
fatigue, due to annoyance and distraction. 
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Considerable effort has been devoted to controlling noise levels in workshops. Generally, there are 
various means to control industrial noise, such as proper design, maintenance, lubrication and alignment 
of machines, moving machines away from other workers, using barriers or shields in order to reflect 
high frequency noise, wearing hearing protection devices such as ear plugs or ear muffs, etc. Moreover, 
job reassignment and reduction of daily exposure times to high noise levels based on corresponding 
standards through dynamic cell formation, production planning and work force assignment can be 
applied in addition to the above-mentioned protective and preventive actions [41],[42]. 
Tharmmaphornphilsa et al. [43] provided a single-objective optimization model to minimize the 
maximum daily noise exposure among workers. They then ran a computer simulation model and 
compared the resulting schedules to those used in a sawmill. Aryanezhad et al. [44] proposed a multi-
objective integer programming model to reduce the costs, noise exposure index and lower-back pain 
index for a single-period job-rotation schedule problem. They considered different skill levels as well 
as different job categories. 

Therefore, regarding the noise problem, the worker assignment in the presented model is based on the 
maximum exposure to noise per day, which we call Daily Noise Dosage (DND). With regard to hearing 
loss, the National Institute of Occupational Safety and Health (NIOSH) [45] claimed that job rotation 
scheduling could be used as an effective means to control and reduce daily noise exposure. The 
Occupational Safety and Health Administration (OSHA) [46] as well as NIOSH [47] have provided 
threshold limit values for daily combined noise exposure levels, which represent conditions for 
permissible noise levels workers can be exposed to constantly. 

4.3 Problem assumptions 

The other assumptions of the model are explained in detail as follows: 

1. Each part has an operation sequence and must be processed according to the sequence extracted 
from its route sheet. 

2. The demand of each type of part in each period is known and constant. 

3. The time capacity of each machine for processing parts is known and constant. 

4. The worker assignment is done according to the worker’s skill level and the machine’s skill 
level category. As each machine type is categorized with a level, each machine level needs the 
worker to have the corresponding skill level. For example, the worker assigned to a level-2 
machine must him- or herself have a skill level 2 at least (a worker with skill level 2 can work 
with a level-2 or a level-1 machine, but a worker with skill level 1  can work only with a level-
1 machine). 

5. The workers at each skill level can be upgraded to the higher level by a training process which 
is modeled as a training cost. 

6. The fixed cost of each machine is independent of the assigned workload. This cost is considered 
for each machine and includes the costs of total maintenance and overhead services.  

7. The variable cost of each machine includes the operation cost and depends on the workload 
assigned to each machine.  

8. The machine purchasing and selling costs are known and constant in each period. These costs 
include machine prices and freight charges, which means that removal costs between the place 
of storage and that of installation are not considered.    

9. The relocation cost (un-installation, shifting and reinstallation) of each machine type between 
two periods is known and remains constant.   
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10. Each machine type can process several operations, in other words, each processing of parts can 
be performed on different machine types with various operation times and costs. 

11. The upper and lower bound of the cell size is known and remains fixed over the planning 
horizon. 

12. Each period can be divided to several days and shifts. 

13. The inter-intra movements of parts are performed in batches with different sizes and the related 
cost of this movement is dependent on the distance travelled. To decrease the complexity of the 
problem we assume that the distance between two cells (inter) is the same, and that for each 
cell the distance between two machines (intra) is the same. Furthermore, the dimensions of all 
machine types are equal. However, this assumption can be omitted if real inter- and intra-cell 
distances are known (for example by a table). 

4.4 Notations 

4.4.1 Sets 
p  index for part types ( 1, 2,..., )p P=  
c  index for manufacturing cells ( 1, 2,..., )c C=  
m  index for machine types ( 1, 2,..., )m M=  
j  index for operation of parts ( 1, 2,..., )pj O=  
h  index for number of periods ( 1, 2,..., )h H=  
s  index for number of shifts per period ( 1, 2,..., )s S=  
d  index for number of days per period ( 1, 2, , )d D=   
l  index for number of workers ( 1, 2, , )l NL=   

,k k ′  index for machine skill level (1, 2,..., )ML  
,α β  index for worker level (1, 2,..., )ψ  

 

4.4.2 Parameters 
C  maximum number of cells 
D   number of days per period 
H  number of periods 
M  number of machine types 
ML   number of machine skill levels 
NL   number of workers 
P  number of parts 

pO  number of operations for part type p  

S   number of shifts per period 
ψ   number of worker levels 

phD   demand for part p in period h   
inter
pB   batch size for inter-cell movement of part p    
int ra
pB  batch size for intra-cell movement of part p    

inter
pγ   inter-cell movement cost per batch 

int ra
pγ  

intra-cell movement cost per batch. It is assumed that  
p∀  int int int int( / ) ( / )ra ra er er

p p p pB Bγ γ   
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mλ   fixed cost of machine type m per period 

,j mη   variable cost of machine type m to process operation j   

mδ   relocation cost of machine type m  

,m hT   time-capacity of  machine type m in period h   
UB   maximum cell size 
LB   minimum cell size 

mϕ   cost of purchase of machine type m  

mω   marginal revenue from selling machine type m   

KL  the combined noise level (dBA) measured at machine skill level k   

, ,j p mt   time required to process operation j of part p on machine type m    

, ,j p ma   1, if operation j of part p can be done on machine type m ; 0 otherwise  

,j mw   total amount of waste of machine type m  to process operation j  

,UGα β   1, if training from skill level α  to skill level β  is possible, 0 otherwise 

,m kMTL   1, if machine of type m belongs to machine skill level, 0 otherwise 

,kWPα   1, if a worker with skill level α  can work on a machine with skill level k ; 0 otherwise 

,hhα   cost of hiring a worker with skill level α  in period h  

, ,hCα β   training cost of each α-level worker for skill level β  in period h  

,hSα   salary of each α-level worker in period h  

kNL  number of workers needed for machine with skill level k  

,hFα   firing cost of each α-level worker in period h  
ALT  available working time per worker in a working day 

st   time duration for each shift 
BN   an arbitrary big number 

4.4.3 Variables 

, ,m c hN  number of type-m machine assigned to cell c at the beginning of period h    

, ,m c hK +   number of type-m machine added to cell c at the beginning of period h    

, ,m c hK −  number of type-m machine removed to cell c at the beginning of period h    

,m hI +  number of type-m machine purchased at the beginning of period h    

,m hI −  number of machine type m sold at the beginning of period h    

, , , ,j p m c hx   1, if operation j of part p is performed in cell c in period h by machine type m ; 0 
otherwise 

, , , ,l k h sx α′   1, if worker l  with skill level α  is assigned to a skill-level k  machine in period h
and shift s ; 0 otherwise 

, ,k hELα   number of existing workers with skill level α  who are assigned to machine skill-level 
k in period h   

, ,k hHLα   number of hired workers with skill level α  who are assigned to machine skill-level 
k in period h  
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, ,k hFLα   number of fired workers in period h  with skill level α  who were assigned to machine 
skill-level k  

, , , ,k k hTLα β ′  number of α-level workers who were working with a skill-level k  in period 1h − ,  
and are upgraded by training to higher skill levelβ and are assigned to machine skill 
level k ′ in period h    

, ,k hy α ′  1, if worker trains for levelα  skills and is assigned to machine skill-level k ′  ; 0 
otherwise 

 

Note: 

, , , , , ,
1 1

, ,
L S

k h l k h s
l s

EL x k hα α α
= =

′= ∀∑∑  (5) 

4.5 Mathematical formulation 

Once the sets, parameters and variables have been defined, the dynamic cell formation model with 
cost minimization, waste minimization and Daily Noise Dosage (DND) consideration is formulated as 
follows: 

1

1 , , , , , , , , ,
1 1 1 1 1 1 1 1
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1 1 1 1 1 1
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m m c h j m ph j p m j p m c h
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inter
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p intra
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In this mathematical model, an effort has been put into capturing trade-offs between economic and 
environmental factors, while the social aspects are considered as constraints. The first objective (Eq. 6) 

https://dx.doi.org/10.1016/j.jmsy.2015.11.001


10.1016/j.jmsy.2015.11.001 
 

includes machine fixed cost, machine variable costs, inter-cell movement costs, intra-cell movement 
costs, machine relocation costs, purchasing and selling of machines, as well as hiring, training, salary 
and firing costs. The second objective function (Eq. 7) considers minimization of the total production 
waste amount resulting from machines. As noted in the preceding section, this amount is an aggregate 
value of several kinds of waste. Based on the precision level defined by decision-makers, several 
aggregation methods such as the normalized weighting method [36], the AHP method [37], etc. can be 
applied. To decrease the complexity of the model, social issues are considered as constraints (Eq. 28), 
and we focus on restriction of the maximum daily noise exposure level in workers’ assignment to 
machines. The daily noise dose D for the machine with exposure level L (dBA) during period t is 
calculated as follows 

90
512.5 2

L

D t
− 

= × ×  
 

  (29) 

 According to the standard released by NIOSH [47] and OSHA [46], the combination of exposure level 

( kL ) in duration of st  for each person should be less than 100 dBA.   

Eqs. (8, 9) ensure that parts are processed according to plan and to required processes. The time capacity 
of planning periods is controlled by constraints in Eq. (10). Eqs (11,12) mainly consider the dynamic 
balance between consecutive periods in terms of, respectively, number of machines assigned to each 
cell, and number of machines purchased or sold (procurement cost) for each machine type. Eqs (13,14) 
define the maximum number of machines per cell. Eq. (15) indicates that each worker has only one skill 
level and should be assigned to only one machine skill level. Constraint (16) ensures that enough 
workers are available for each skill level of machine at each period and shift. Constraint (17) applies 
the rules regarding the skill levels of workers who can work with machines with certain skill levels. 
Constraint (18) is the dynamic worker balance equation according to the hiring, firing and training of 
workers at each skill level and in each period. Constraint (18) guarantees that total demand in each 
period is satisfied by using hiring, firing or training. Constraint (19) ensures that sufficient numbers of 
workers are available to operate machines for each cell and machine type. Eqs. (20-24) ensure that 
firing, hiring and training are allowed when they are logically possible according to predefined rules 
(described in assumptions). The constraint in Eq. (25) ensures that the process of the firing the worker 
with skill-level k and training of workers from level k to a higher level in each period must be less than 
existed worker with the same level (k) in previous period. Finally, Eqs. (26,27) stipulate that firing 
newly-trained workers for skill level α is not allowed. 

4.6 Linearization 
The absolute part in the third and fourth terms of Eq. (6) make it nonlinear. Therefore, to transform it 
to the linear one for the third term, two non-negative variables 1

jpchZ and 2
jpchZ are introduced and the 

third term is rewritable as follows: 

 
1

int 1 2
int

1 1 1 1

1 ( )
2

pOH P C
pher

jpch jpcher
h p j cp

D
z z

B
γ

−

= = = =

 
× × × + 

  
∑∑ ∑∑   (30) 

The following constraint must be added to the proposed model. 

1 2
( 1)
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Similarly, to linearize the fourth term of the Eq. (6), 1
jpmchy  and 2

jpmchy , two non-negative variables, 

are introduced. The fourth term of the objective function can therefore be rewritten as follows: 
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And the following constraint must be added to the proposed model.   

1 2
( 1) , , , ,jpmch jpmch j pmch jpmchy y x x j p m c h+− = − ∀  (33) 

Finally, the multiple integer and binary variables equation (8) made them nonlinear. It can be linearized 
as follows: 
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5 Hybrid NSGA II-MOSA algorithm 

According to the previous studies, CFP has been mentioned as an NP-hard optimization problem 
[48], [30]. In order to cope with the complexity of the proposed mathematical model, a new hybrid of 
a non-dominated sorting genetic algorithm and a multi-objective simulated annealing (NSGA II-
MOSA) is now proposed. 

Non-dominated sorting genetic algorithm II (NSGA II) is an evolutionary algorithm commonly used in 
problems with more than one objective. With this method proposed by Deb et al. [49] we obtain a near-
optimal Pareto frontier. The mechanism of generation and changing of the population in NSGA II are 
the same as in GA. In fact, primary solutions are generated randomly and in each iteration new solutions 
are selected from the primary solutions (solution of previous iteration) and from solutions that are 
produced by crossover and mutation operations. In crossover operations, new solutions are produced 
by a combination of two parents that are selected by a binary tournament selection process. When in 
mutation, new solutions are generated by changing the characteristics of a member that is selected 
randomly. After theses operations, each solution is compared with others by two indicators: rank and 
crowding distance. The members of the population are sorted according to their rank: solutions in rank 
1 are not dominated, and solutions in rank R+1 are only dominated by solutions in rank R. Since 
solutions with a same rank cannot dominate each other, they are compared by calculating their crowding 
distance, and a high value of crowding distance is preferred. Eq. (36) shows how to calculate the 
crowding distance di of solution i where R

if   represents the Rth objective function value of the ith 

solution, and min
Rf   and max

Rf   the minimum and maximum value of the Rth objective function, 
respectively. Furthermore, the crowding distance of the first and last points, the points which have 
optimum value in at least one objective, is assumed to be infinite.  

max

1 1

min

R R

R
i i

i R R

f fd
f f

+ −−
=

−∑  (36) 

Next, the Pareto frontier (N solutions) obtained from NSGA-II is used as input for MOSA [50], which 
includes the concept of archives to trade off the solutions. Thus, in the proposed algorithm, we have 
two sets of solutions: representative solutions (RP) and archive of Pareto solutions (AP). These solutions 
are changed in each iteration and belong to representative solutions. Of course, in the first iteration of 
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this algorithm, RP solutions are included in the Pareto solutions that are transmitted from NSGA-II, and 
the archive of Pareto solutions are sets of optimal Pareto solutions at the beginning of the algorithm. 
They are the same as RP. 

In each iteration of MOSA, by applying a change operator, each RP solution will be changed due to the 
creation of neighboring solutions. Afterwards, this algorithm compares the new solution with the current 
one, and if the former is dominated by the latter, it will be added to the other solutions in AP as first 
rank. Otherwise, AP remains the same as in the previous iteration and also with α  probability, the new 
solution is reported as RP or with probability1 α− , and the current solution is reported as RP. This 
procedure is repeated until the stopping criteria are satisfied (it=MaxIt). In each iteration of the proposed 
algorithm, an annealing schedule is selected to systematically decrease the temperature as the algorithm 
proceeds. As the temperature decreases, the algorithm reduces the extent of its search to converge to a 
minimum (see Fig 1). The mechanisms of decreasing temperature, α and MaxIt, are computed 
according to the following functions: 

1it itT Tβ −= ×   (37) 

0 1 2
RP RPT C C= +   (38) 

0 10fT T γ−= ×   (39) 

1 2 1 2[( ) ( )]/Tnew new RP RP
itC C C Ceα − + − +=   (40) 

0[(log(T / T ) / log )]fMaxit β=   (41) 

Where 1C and 2C  represent the values of first and second objective functions respectively, β  is the 

cooling rate, fT is the final temperature, 0T  is the initial temperature and itT  is the temperature in each 
iteration. 

{Please insert Fig. 1 here.} 

5.1 Solution coding 

The structure of the solutions (Fig. 2) comprises 10 matrices as follows: 

1. Matrix [ ]h

p r
X

×
consists of genes relating to the assignment of the part operations to the 

machines in period h while r is equal to { }max p
i iO . The elements of the matrix [X] are 

ascertained according to the , ,j p ma . 

2. Matrix [ ]h

p r
Y

×
consists of genes signifying the assignment of part operations to the 

machines. 
3. Matrix [ ]h

m c
N

×
consists of genes belonging to the number of available machines in each cell 

in period h which is calculated as follows: 

1 1
, ,

, , , , , , ,

, ,

pOP

p j
m c h

p h j p m j p m c h

m

D t x
N m c h

T
= =

 
× × 

 = ∀
 
 
 

∑∑
  (42) 

The value of  , ,m c hN  can be infeasible due to lower and upper bounds on the cell size. 
Therefore, an amendatory strategy is used to eliminate it.  
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4. Matrix [ ]h

m c
K

×
includes the gene related to the machines moving into or out of each cell. It 

is noteworthy that the value of the elements in this matrix can be negative.  
5. Matrix [ ]h

m c
I

×
consists of the gene signifying the number of machine procurement (selling 

and buying). The elements of this matrix can also be negative. 
6. Matrix [ ]h

l g
Z

×
 consists of genes relating to the assignment of the worker skill-level to the 

machine skill-level in period h, while g is equal to { }max i l iψ∈ . The elements of matrix 

[Z] are ascertained according to the ,kWPα . 

7. Matrix [ ]h

l g
B

×
consists of genes signifying the assignment of worker skill-level to the shifts. 

The element of matrix [B] is generated by uniform distribution U(1,s).  
8. Matrix [ ]h

k
E

α×
consists of genes which indicate the number of assigned workers with 

specific skill-levels to the specific machine skill-level in period h. 
9. Matrix [ ]h

k
H

α×
consists of genes which indicate the number of workers who are hired in 

period h. 
10. Matrix [ ]h

k
F

α×
consists of genes relating to the number of workers who are fired in period 

h. 

5.1.1 Crossover and Mutation Operator 

In this paper, the standard two-point crossover point is applied which are generated randomly. Each 
parent categorize to the three segment by crossover operator. The places of the middle segments are 
exchanged and produce the offspring. This procedure is demonstrated in Fig. 3. 

Three different mutation methods are implemented as mutation operators; single mutation, multi 
mutation, and inversion mutation. For example, for the single mutation a part operation is selected 
randomly and assigned to the different machines that can be processed. The selected operation or the 
skill-level of the worker is chosen and assigned to another machine skill-level which can be assigned. 
Similarly, for the multi-mutation operator, a part is randomly picked by single mutation on all the 
operations. Finally, the inversion mutation is performed as an inversion of the sequence of cells which 
carry out the part operations.     

{Please insert Fig. 2 here.} 

{Please insert Fig. 3 here.}   

5.2 Parameter setting 

In order to increase the performance of our NSGA II-MOSA hybrid algorithm and to find the best 
results, we consider six vital parameters of NSGA II-MOSA, which should be carefully tuned: 

• Number of members in a population (NPop) 
• Number of iterations to find best results (MaxIt) 
• Crossover rate (CrR) 
• Mutation rate (MuR) 
• Cooling rate (Beta) 

• The power value to calculate fT (Gamma)  
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As a result, a Taguchi method is used as a Design of Experiment (DOE) method to set the appropriate 
levels for the parameters of the algorithm. We thus define three levels for each parameter after an 
extensive analysis on proposed algorithm (Table 2). 

              {Please insert Table 2 here.} 

In order to apply the Taguchi method, we consider three factors: Spacing Metric (SM), Distance to an 
ideal Point (D2P), and time. SM is a metric to define the quality of Pareto distribution in the objective 
space (uniformity). This metric is calculated by Eq. (43) as follows: 

( )

1

1 
1

N Q
ii

d d
SM

N d

−

=
−

=
−

∑
 

(43) 

Where Q
id  represents the Euclidian distance between two consecutive points (i.e., points i and i+1), d  

is their average and N is number of members in final non-dominated solutions.     

Distance to an ideal point (D2P) is a metric that measures the average Euclidian distance between Pareto 
sets. An ideal point is defined by the decision maker. Finally, the computational time is another 
important metric to evaluate the performance of the algorithm. The Taguchi method arranges a matrix 
experiment with 27 trials (6 factors, 3 levels) according to the orthogonal array (Tables 3 and 4) and 
responses which are assigned to own trial. Regarding the same importance of three responses, 
normalization is used to convert all values to the same unit between 0 and 1. Finally, evaluation of the 
Taguchi method leads to a figure (Fig. 4) as a graphic tool to show the single to noise ratio of each 
factor, in order to compare and select the best level for each factor. Analysis of the single to noise ratio 
shows that level 2 of NPop, i.e. 60, level 2 of MaxIt, i.e. 60, level 3 of CrR, i.e. 0.8, level 1 of MuR, i.e. 
0.3, level 3 of Beta, i.e. 0.8 and level 3 of Gamma, i.e. 9  are better in comparison with other levels.   

{Please insert Table 3 here.} 

{Please insert Table 4 here.} 

                                                        {Please insert Fig. 4 here.} 

6 Computational results 

In order to evaluate the performance and applicability of the proposed model and resolution approach, 
ten sets of samples (Table 5) are randomly generated based on the pattern given in Table 7. The 
complexity of test problems with regard to the number of variables and constraints is demonstrated in 
Table 6. The ε-constraint method is coded in optimization software GAMS 23.5 and hybrid NSGA II-
MOSA, and MOSA and NSGA-II algorithms are developed using MATLAB R2012a software on a 
personal computer with Intel Core i5 CPU 2.27 GHz and 4 GB RAM. 

 

{Please insert Table 5 here.} 

{Please insert Table 6 here.} 

{Please insert Table 7 here.} 

6.1 Validation of correctness proposed approach and model  

To validate feasibility of proposed mathematical model and efficiency of the solution approach, a 
small numerical example (P1) is conducted and exact optimal Pareto frontier is illustrated in Table (8) 
using the well-known ε-constraint method.  
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{Please insert Table 8 here.} 

As Table (8) demonstrates, the Pareto frontier obtained by the proposed hybrid method is close to 
the ε-constraint, while the computational time (T) for the hybrid method is almost 4 times smaller than 
the ε-constraint. (TNSGA II-MOSA=428, T ε-constraint =1607). 

6.2 Experimental result 

The problems generated are then solved, first by using the NSGA-II and MOSA algorithms 
separately, and then with our hybrid NSGA II-MOSA. The Pareto optimal solutions obtained from the 
hybrid NSGA II-MOSA, NSGA II and MOSA for problems 3, 5, 7 and 10 are demonstrated in separate 
figures (Fig. 5, 6, 7 and 8). Through the optimal Pareto frontier obtained for problem 3, we also select 
three solutions (solution A: solution with best cost or first point of Pareto, solution B: a solution from 
middle of Pareto, solution C: solution with minimum waste or last point of Pareto). The cell 
configuration and workers pattern in the planning horizons of this example for selected solutions are 
depicted respectively in Figs 9, 10 and 11. Table 9 illustrates the part family assignment to 
manufacturing cells. To show the efficiency of NSGA II-MOSA as a hybrid method, the results (Pareto-
optimal frontiers) of each method are compared, using several metrics, as presented in the next section. 

                                                        {Please insert Fig. 5 here.} 

                                                        {Please insert Fig. 6 here.} 

                                                        {Please insert Fig. 7 here.} 

                                                        {Please insert Fig. 8 here.} 

                                                       {Please insert Fig. 9 here.} 

                                                       {Please insert Fig. 10 here.} 

                                                      {Please insert Fig. 11 here.} 

                                                     {Please insert Table 9 here.} 

 

Considering the cell configuration on different solutions of problem 3, Figs 9, 10 and 11 illustrate that 
a large number of type 5 and 6 machines are relocated in the configuration of solution C (solution with 
minimum waste), which are more expensive but more efficient in decreasing waste. By contrast, in the 
configuration of solution A (solution with minimum cost), only one machine 5 is employed and there 
is no machine 6 on the planning horizon.  

6.3 Comparison Metrics 

To validate, compare and measure the performance of the proposed NSGA II-MOSA hybrid, three 
comparison metrics are considered (Table 10): 

• Quality Metric (QM): This metric allows us to measure the ratio of non-dominated solutions 
obtained by each algorithm by putting together all their Pareto solutions. It reports the ratio of 
solutions related to each algorithm in final non-dominated solutions [21].  

• Spacing Metric (SM): As mentioned in the previous section, this metric measures the uniformity 
of the spread of Pareto solutions, which is calculated by Eq. (43). The algorithm with a lower 
value of SM is preferred [51].  

• Diversification Metric (DM): This metric measures the spread of a Pareto solution set. The 
algorithm with a higher value of DM is preferred [52]. Its function is defined as follows: 
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1 1 2 2
2 2

1, 1, 2, 2,
max min max min

max min max min( ) ( )i i i i
total total total total

f f f fDM
f f f f

− −
= +

− −
  (44) 

where ,
max
i totalf  and ,

min
i totalf are the maximum and minimum values of each fitness function among all 

the dominated solutions obtained by the algorithms, respectively. 

{Please insert Table 10 here.} 

                                                        {Please insert Fig. 12 here.} 

                                                       {Please insert Fig. 13 here.} 

                                                      {Please insert Fig. 14 here.} 

As shown in Table 7, Fig. 12, Fig. 13 and Fig. 14, the proposed hybrid NSGA II-MOSA has a better 
performance compared to NSGA II and MOSA taken separately. In other words, the hybrid NSGA II-
MOSA hybrid algorithm can achieve the largest number of Pareto optimal solutions with better quality 
than NSGA II. Moreover, the average values of diversification and spacing metrics (Fig. 13 and Fig. 
14) of our hybrid algorithm have greater and lower values, respectively, in comparison with NSGA II 
and MOSA taken separately (i.e., optimal Pareto solutions obtained by hybrid NSGA II-MOSA have 
more uniformity and diversity, respectively.)  

{Please insert Fig. 15 here.} 

Fig. 15 shows that the proposed hybrid of the NSGA II-MOSA algorithm takes only 50% more 
calculation time in average compared to NSGA II and MOSA. However, a part of this increase must be 
considered as warming up time (setup time), and this additional calculation time can be justified by a 
better quality solution. 

7 Conclusion and future research 

This paper addresses the issues of sustainable multi-period cell formation and worker assignment by 
considering economic, environmental and social aspects simultaneously – something that is largely 
overlooked in the literature on DCFP. A bi-objective mathematical model is developed, in which the 
first objective function minimizes the relevant costs of these issues, including machine and worker 
costs. The total production waste is minimized by the second objective function, and the maximum 
amount of Daily Noise Dosage (DND) for every worker is controlled by the constraint. In order to deal 
with the complexity of the problem and find a better solution, we develop a hybrid NSGA II-MOSA 
algorithm. We then compare its performance in terms of capability and reliability in several test 
problems with two conventional evolutionary algorithms (NSGA II and MOSA) on different metrics. 
The results demonstrate the supremacy of our hybrid algorithm over both NSGA II and MOSA. 

For the extension of current research, other social and environmental issues can be considered, such as 
local job opportunities, job severity, occupational diseases, worker days lost due to injury, etc. 
Additionally, in order to be more realistic, various uncertain parameters and stochastic and possibilistic 
approaches, as well as political considerations, can be included in future research. 
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