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Abstract 

This paper examines a new multi-objective mathematical model in a Dynamic Cell Formation 
Problem (DCFP), where social criteria and uncertainty conditions are considered. Although corporate 
social responsibility is one of the important issues that are increasingly considered by researchers and 
practitioners, it is largely overlooked in the literature on DCFP. In this paper the first objective function 
minimizes costs related to a machine (machine fixed and variable costs, machine procurement and 
relocation costs, intra-cell and inter-cell movement costs) and wages, while social issues are maximized 
(e.g. potential machine hazards are minimized, while job opportunities are maximized). A robust 
counterpart of the proposed model is then developed by applying the recent robust optimization theory. 
Afterwards, due to the NP-hardness of DCFP, a non-dominated sorting genetic algorithm (NSGA-II) as 
a meta-heuristic method is designed. Finally, two deterministic and robust mathematical formulations 
are compared by a number of nominal realizations under randomly generated test problems. This serves 
to assess the robustness of the solution achieved by the proposed robust optimization model. The result 
obtained demonstrates the ability of the robust model to reach appropriate solutions at all levels of 
uncertainty, specifically when a feasible solution cannot be found with the deterministic model. 

Keywords: dynamic cell formation; robust optimization; corporate social responsibility; multi-
objective optimization; non-dominated sorting genetic algorithm     

1 Introduction 

To remain competitive, manufacturers and producers have been forced to increase the productivity 
and flexibility of manufacturing systems. The Cellular Manufacturing System (CMS), one of the well-
known production systems, is applied to this end. CMS based on Group Technology (GT) attempts to 
classify parts and machines in order to create cells and part families. This is called a Cell Formation 
Problem (CFP). This classification is based on the similarities in the geometry and process requirements 
of each part, so as to take advantage of the main benefits such as reduction of Work-In-Process (WIP), 
flow time and space utilization, while also improving production planning and control. But from another 
point of view, most of the existing cell formation methods have been developed just for one period of 
the planning horizon, and some parameters like the decrease of product life cycles and product mix 
changes under dynamic condition require cells of the cellular manufacturing system to be reconfigured 
(Fig. 1). This is necessary to maintain a high level of performance. Therefore, optimal cells formed in 
one period might not be optimal in another period, because this reconfiguration of part families and 
machine grouping may include either substitution of machines between cells or a change in the number 
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of cells. These reasons provide sufficient motivation to pursue the research in multi-period or Dynamic 
Cellular Manufacturing System (DCMS) approaches. 

 

{Please insert Fig. 1 here.} 

 

At the same time, pressure from NGOs, social communities and the media is currently prompting 
researchers and firms to take Corporate Social Responsibility (CSR) into account. For example, some 
well-known corporations such as Shell, Nike and Wal-Mart have suffered extensive damage due to 
media reports and public awareness of their CSR activities [1],[2]. CSR concerns the effect of corporate 
activities on different social entities such as environment preservation, human rights, occupational 
safety, etc. [3]. As CSR attempts to incorporate social factors into economic models to provide more 
benefits for society as a whole, it has an important role in the sustainable improvement of countries. 
Despite the importance of CSR, one of the neglected issues involved in CMS is CSR, to the extent that 
there has been no relevant work on the subject. 

The research presented in this paper contributes to the existent literature in two ways. First, a multi-
objective mathematical model is formulated to integrate the relative costs of DCFP and social issues. 
In other words, we try to make a trade-off between economic and social criteria while designing CMS 
in each period. Job opportunities and potential machine hazards are social issues that we have extracted 
according to the social accountability standards (SAI 8000 [4], ISO 26000 [5]) and ergonomic guideline 
(GRI [6], NIOSH [7]), and applied as a second objective. The robust counterpart of the presented model 
is then also developed to cope with the uncertainty in demand, machine availability and relevant costs 
of machines. In order to handle uncertainty in parameters and obtain robust optimal solutions, several 
numerical examples are solved by the NSGA-II algorithm presented here. 

The remainder of this paper is organized as follows. In Section 2, we review the relevant literature 
and define the research motivation.  The mathematical model and main assumptions are then presented 
in Section 3. Section 4 elaborates the robust counterpart mathematical model, while the proposed 
NSGA-II algorithm is described in Section 5. Computational results and numerical analysis are 
presented in Section 6. Finally, Section 8 ends with conclusions and some future research directions. 

2 Literature review 

First, we present a brief review of the related literature on dynamic cellular manufacturing systems 
(DCMS). Due to the large number of researches in this area, we have concentrated only on recent 
studies. In order to make the research gap clear, we have investigated previous studies with regard to 
several aspects such as objectives, problem-solving approaches, parts movement (inter/intra cell), and 
the nature of applied parameters (deterministic, stochastic, etc.). 

Rheault et al. [8] were the first to introduce the concept of dynamic environment in the cell formation 
problem. Schaller et al. [9] integrated the cell formation problem with inventory aspects. They proved 
their presentation model by a multiple heuristics procedure and evaluated several alternative lower 
bounding methods. Chen and Cao [10] proposed a mathematical model for a multi-period cellular 
manufacturing system (CMS) to minimize the total cost, including: inter-cell material handling, 
inventory costs, and setting up of manufacturing cells. These authors also developed a Tabu Search 
method to obtain a sound solution and show the efficiency of their model. 

Tavakkoli-Moghaddam et al. [11] presented a nonlinear integer model in DCMS with consideration 
of machine capacity limitation, machine replication, and inter-cell movements that perform in batches. 



They used constant and variable costs as well as reconfiguration and inter-cell movement costs to 
formulate their objective function. These authors solved their models by several traditional meta-
heuristics comprising Genetic Algorithm (GA), Tabu Search (TS) and Simulated Annealing (SA), and 
then compared solutions obtained by means of each method to define the best algorithm. Tavakkoli-
Moghaddam et al. [12] applied a new Memetic Algorithm (MA) to solve their DCMS model. Defersha 
and Chen [13] formulated a new comprehensive model containing dynamic cell configuration, 
alternative routings, lot splitting, sequence of operations and workload balancing. They also considered 
machine adjacency and cell-size capacity as constraints in their proposed model. Safaei et al. [14],[15] 
presented a DCMS mathematical model with uncertain circumstances, assuming fuzzy demand and 
fuzzy machine availability. They solved their mixed-integer programming model by developing fuzzy 
programming to determine optimal cell configuration with maximum satisfaction of the fuzzy objective 
and constraint. Safaei et al. [16] proposed a mixed-integer programming model in DCMS with 
consideration batch inter/intra-cell material handling, sequence of operations, alternative process plans 
and machine replication. In this study, the authors minimized machine variable/constant costs, 
inter/intra-cell movements and reconfiguration costs as an objective function. They used a hybrid meta-
heuristic called MFA-SA (Mean Field Annealing-Simulated Annealing) to solve the proposed model 
and showed the efficiency of their solving method by comparing it with classical SA. 

Defesha and Chen [17] integrated DCMS with production lot sizing and formulated a mathematical 
model to minimize both production and quality-related costs, such as operation costs, setup costs and 
inventory costs. They solved by a linear programming embedded GA. Aryanezhad et al. [18] proposed 
a model to transact with a Simultaneous Dynamic Cell Formation and Worker assignment Problem 
(SDCWP). The objective function of their model has two components: production costs, such as inter-
cell material handling costs and machine costs in the planning horizon; and human issues consisting of 
hiring costs, firing costs, training costs and salaries. Safaei and Tavakkoli-Moghaddam [19] developed 
a mathematical model to integrate multi-period cell formation and subcontracted production planning 
in DCMS. In this study the authors made a trade-off between production and outsourcing costs in the 
reconfiguration of system. Bajestani et al. [20] formulated a multi-objective mathematical model in 
DCMS and minimized the sum of various costs and the total cell load variation simultaneously. They 
obtained a locally Pareto-optimal frontier by using a new Multi-Objective Scatter Search (MOSS) 
method. Wang et al. [21] presented a non-linear mixed integer program to model a DCSM with three 
conflicting objectives (machine relocation cost, the utilization rate of machine capacity, and the total 
number of inter-cell moves over the entire planning horizon). Deljoo et al. [22] improved previous 
models presented in the literature by correcting some essential errors which weakened the efficiency of 
the model. 

Mahdavi et al. [23] proposed an integer non-linear programming in DCMS with consideration of 
labor aspects such as worker assignment, alternative workers, available time of workers, hiring and 
firing costs and wages. They utilized holding and backordering costs in their model as an inventory 
aspect to make it more realistic. Javadian et al. [24] presented a multi-objective problem of cellular 
manufacturing systems in dynamic and deterministic production environments to minimize total cell 
load variation and the sum of the miscellaneous costs (machine costs, inter/intra-cellular material 
handling, back orders, inventory holding and subcontracting) simultaneously. A Non-Dominated 
Sorting Genetic Algorithm (NSGA-II) method was developed to obtain optimal Pareto-frontier. Rafiee 
et al. [25] integrated DCMS and inventory lot sizing problems by formulating a comprehensive 
mathematical model. The proposed model was considered with several design factors, such as machine 
procurement, cell reconfiguration, preventive and corrective maintenance, intra/inter-cell material 
handling, subcontracting, inventory cost, and defective parts replacement costs. Saxena and Jain [26] 
developed a mixed-integer nonlinear programming model to merge machine breakdown effects and 



DCMS by incorporating reliability modeling. The proposed model seeks to minimize the following: 
intra/inter-cell movement costs and machine procurement costs; machine variable/constant costs, 
production costs, part holding costs, subcontracting and reconfiguration costs, and machine breakdown 
repair costs such as production time loss cost due to machine breakdown. Kia et al. [27] proposed a new 
mixed-integer non-linear programming model for DCMS by integrating three major decisions in the 
design of a CMS (cell formation, group layout and group scheduling) and developed an efficient SA 
method to solve their model. The objective function of this model is minimizing total costs of intra/inter-
cell movement, machine relocation, machine procurement, machine overhead and machine processing. 

Rafiei and Ghodsi [28] presented a bi-objective CMS problem, in which they considered human-
related issues. The proposed model sought to minimize various costs, including machine procurement, 
relocation costs, machine variable costs, inter/intra-cell movement costs, overtime costs, and labor 
shifting costs, as a first objective function, and to maximize labor utilization, as a second objective 
function. They furthermore suggested a hybridization of the ant colony optimization (ACO) algorithm 
with GA to solve their models. Majazi-Dalfard [29] developed a new nonlinear integer programming 
model, into which he incorporated effects of distance in material flow as an important factor of decision 
making. In this study he applied a new simulated annealing embedded in branch-and-cut to solve the 
proposed problem. Javadi et al. [30] developed a mathematical model to minimize the total costs of 
rearrangement and inter/intra-cell movements. They also proposed a hybrid of an electro-magnetism-
like (EM-like) algorithm and GA as a solution approach. Aghajani et al. [31] presented a multi-objective 
model for dynamic cell formation where the demand is probabilistic. The proposed model consisted of 
three conflict objectives; reconfiguration cost, penalty cost of machine underutilization, and system 
failure rate. The authors also solved the model by developing a NSGA-II algorithm and comparing the 
result with the ɛ-constraint method to show its efficiency. Bootaki et al. [32] presented a bi-objective 
model in robust design of DCMS, with a fuzzy, random demand. The objective function of models is 
the minimization of inter-cell movements while the machine and worker utilization are maximized. A 
new goal programming method named ‘Percentage Multi-Choice Goal Programming’ (PMCGP) is also 
proposed to verify the model. Paydar and Saidi-Mehrabad [33] formulated a bi-objective model to 
integrate cell formation and supply chain (procurement, production and distribution planning) which 
decreases distribution and procurement costs and  increases the customer response rate. They applied 
revised multi-choice goal programming to solve the case study example and to find a compromise 
solution. Renna and Ambrico [34] developed a model for reconfiguration and scheduling in DCMS. 
They assumed demands to be probabilistic in discrete probability scenarios. The authors also applied a 
simulation environment to test the proposed method compared to the manufacturing system without 
reconfiguration. Table 1 shows the classification of previous study about DCMS. 

{Please insert Table 1 here.} 

Most of the criteria studied in these papers are economic rather than social. There are no studies that 
focus specifically on social criteria, although some research in supply chain configuration does take 
social issues into account. Carter and Jennings [3] were the first to incorporate the concept of the CSR 
into the supply chain. Cruz and Wakolbinger [1] and Cruz and Liu [39] studied the role of social 
responsibility on the supply chain and some of its components such as suppliers, retailers and customers. 

  The difficulty with measuring social responsibility is generally due to its complexity and scope. It 
can thus be said that it is in a sense inconceivable to measure all aspects of social responsibility. 
However, for preparation and allocating corporate social responsibility (CSR) in companies, several 
standards and guidelines have been developed, such as ISO 26000 [5], SAI 8000 [4], GRI [6] and 
NIOSH [7] . Based on these documents, we have identified two social criteria that are very important 
in DCMS. 



2.1 Motivation  

As noted in the previous section, based on the above literature review we have found no research 
that considers social responsibility issues in the design of DCMS. This aspect was moreover generally 
neglected in previous research as well. The first contribution of the research presented here is to develop 
a new multi-objective mathematical model for DCMS configuration with social aspects. In other words, 
we try to make a trade-off between economic and social criteria while designing CMS in each period. 
Due to high levels of interaction between human and manufacturing environments, social issues are 
particularly important. Among of these issues, stress due to job loss [40] and occupational injuries [41] 
caused by ergonomic problems are the most common. In our mathematical model we therefore consider 
job opportunities and potential machine hazards as social objective functions. 

The second contribution of this work is that it develops a robust counterpart of the proposed model 
to deal with the uncertainty of demand, machine availability and machine costs. It may seem easier to 
use the deterministic parameter in a DCMS configuration, but in the real world many parameters must 
be considered as uncertain. Moreover, a feasible solution cannot be found for the deterministic 
approach. These considerations may slightly affect the economic performance of a system, but they 
allow us to approach reality and above all to have a feasible solution under different kinds and levels of 
uncertainty. 

Due to the complexity of the model (NP Hard) and in order to deal with the uncertainty of parameters 
and to obtain robust optimal solutions, one of the most common meta-heuristic methods, the NSGA-II 
algorithm, has been selected. The biggest challenge is to design this meta-heuristic method for DCMS 
problems. Finally, several numeric experiments allow us to validate the performance of a robust 
counterpart of the proposed model by sensitivity analysis of uncertainty levels.  

3 Problem description and formulation 

In this section the new multi-objective mathematical model is proposed to trade-off between two 
important objectives in DCMS problems. The first objective function of the model is to minimize some 
of the costs, including machine fixed and variable costs, inter-cell movement costs, intra-cell movement 
costs, machine procurement costs, machine relocation costs and workers’ wages. The second objective 
function is to optimize the social issues of the problem by maximizing job opportunities and minimizing 
potential machine hazards for labor during the planning phase. 

In this study an attempt has been made to choose social measures in such a way that they are closely 
related to the DCMS decisions, have an important role in the DCMS problem, and can be computed 
and formulated simply in the mathematical model. To this end, two social issues are considered in the 
model: (1) the number of job opportunities created and (2) the number of potential hazards of machines. 
The first measure represents the variation of job opportunities created due to the hiring and firing of 
labor [4],[5] resulting from the buying and selling of machines. The second measure, which reflects the 
average fraction of potential hazards of each machine [6],[7] shows how much injury, illness and 
damage each machine causes workers. The latter measure is taken into account through a parameter 
called “average fraction of potential machine hazard”. This average fraction is a continuous number 
between 0 (the most safe) and 1(the most dangerous) and is defined by the Decision Maker (DM) using 
a safety checklist, talking to workers, reviewing the manufacturer’s information, and checking the injury 
and incident reports of each machine. Because of differences in the units of two considered social 
measures, we have aggregated social measures to the one objective function by normalized weighting 
method. This aggregation with weighting factors not only represents the importance of each measure 



but also decreases the computational complexity of evaluating each solution with social aspects 
[42],[43]. Other assumptions used for formulating the mathematical model are presented as follows: 

3.1  Problem assumptions 

1. Each part has an operation sequence and must be processed according to the sequence which is 
extracted from the route sheet parts. 

2. The demand of each part type in each period is an uncertain parameter. 

3. The capability of each machine for processing parts is known. The time capacity of each 
machine is also an uncertain parameter. 

4. The fixed cost of each machine is independent of the assigned workload. This cost is considered 
for each machine whether or not it is used in the planning horizon, and includes the costs of 
total maintenance and overhead services. This cost is considered as an uncertain parameter.  

5. The variable cost of each machine includes the operation cost and depends on the workload 
assigned to each machine. This parameter of the problem is also uncertain. 

6. The machine purchasing and selling costs in each period are considered as an uncertain value 
and include machine prices and freight charges, which means that removal costs between the 
place of storage and that of installation are not considered.    

7. The relocation cost (installation, un-installation, shifting) of each machine type between two 
periods is an uncertain parameter.   

8. Each machine type can process several operations, in other words, each processing of parts can 
be performed on different machine types with various processing times. 

9. The upper and lower bound of the cell size is known and is fixed in all periods. 

10. The inter-intra movements of parts are performed in batches with different sizes and the related 
cost of this movement is dependent on the distance traveled. For decreasing the complexity of 
the problem we assumed that the distance between two cells (inter) is the same, and that for 
each cell, the distance between two machines (intra) is the same. Furthermore, the dimensions 
of all machine types are equal.  

11. The labor leveling rule (hiring – firing) in each period allows the DM to change the labor level 
to at most a certain percentage ( hλ ) of the labor level in the previous period. 

3.2 Notations 

 

Indices 

p  index for part types ( 1,...,p P= ) 

c  index for manufacturing cells ( 1,...,c C= ) 

m  index for machine types ( 1,...,m M= ) 

j  index for operation of parts p ( 1,..., pj O= ) 

h  index for number of periods ( 1,...,h H= ) 

 

Parameters 



P  number of parts 
H  number of periods 

pO  number of operations for part type p  

C  maximum number of cells 
M  number of machine types 

phD   demand for part p in period h   
inter
pB   batch size for inter-cell movement of part p    
int ra
pB  batch size for intra-cell movement of part p    

inter
pγ   inter-cell movement cost per batch 
int ra
pγ  intra-cell movement cost per batch. It is assumed that int int int int( / ) ( / )ra ra er er

p p p pp B Bγ γ∀     

mhα   fixed cost of machine type m  in period h  

mhβ   variable cost of machine type m in period h  per unit of time 

mhδ   relocation cost of  machine type m in period h  

mhT   time-capacity of machine type m in period h   

UB   maximum cell size 
LB   minimum cell size 

mL   amount of labor that is required for machine type m    

mhϕ   Purchase cost of machine type m in period h  

mhω   marginal revenue from selling machine type m in period h   

mS   average fraction of potential hazard of machine type m  

hdθ   normalized weighting factor of total number of potential hazard of machine type m  

joθ   normalized weighting factor of total number of job opportunities created  

hλ   maximum percentage of labor leveling variation in period h  
L
mhsa   salary of labor machine type m in period h  

jpmt   time required to process operation j of part p on machine type m    

jpma   1, if operation j of part p can be done on machine type m ; 0 otherwise  

 

Variables 

mchN  number of machine type m  assigned to cell c at the beginning of period h    

mchK +

  number of machine type m added to cell c at the beginning of period h    

mchK −

 number of machine type m removed to cell c at the beginning of period h    

mhI +

 number of machine type m purchased at the beginning of period h    

mhI −

 number of machine type m sold at the beginning of period h    

hhi   number of labor hired in period h  

hfi  number of labor fired in period h  

jpmchx   
1, if operation j of part p is performed in cell c in period h by machine type m ; 0 
otherwise 



 

3.3 Mathematical formulation 
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Objective function (1) represents the minimizing of total costs, that includes eight terms: the first 
term relates to the machine fixed costs; the second term represents variable machine costs; the third 
term relates to the part’s inter-cell movement costs; the fourth term represents the part’s intra-cell 
movement costs; the fifth term includes wages or salaries; the sixth term represents machine relocation 
costs; the seventh term includes machine procurement costs; and the eighth term relates to revenue from 



selling the machine. Objective function (2) maximizes the social issues of DCMS during the planning 
horizon that includes maximizing job opportunities and minimizing potential machines hazards. 
Constraint (3) ensures that each operation of a part is assigned to just one machine and one cell. 
Constraint (4) guarantees that the process of each part is assigned to the appropriate machines Constraint 
(5) ensures that the time capacity of each machine is not exceeded. Constraints (6) and (7) ensure that 
in each planning period the number of machines is balanced. Constraints (8) and (9) determine the 
maximum and minimum cell sizes according to the defined upper and lower bound. Constraints (10) 
and (11) calculate the number of workers that are respectively hired and fired. Constraint (12) 
guarantees maximum labor leveling variation in each period. Constraint (13) defines non-negativity, 
binary and integer necessities of decision variables. 

3.4 Linearization 

The third and fourth terms of equation (1) in the proposed model make it a nonlinear equation. In 
order to transform it to a linear equation for the third term, two non-negative variables, 1

jpchZ and 2
jpchZ

are added and then the third term is rewritten as follow:  
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Then following constraint must be added to the proposed model. 
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Similarity, to linearize the forth term of equation (1), 1
jpmchy  and 2

jpmchy  are introduced as 
two non-negative variables, the forth term of the objective function is therefore rewritable 

as follows:
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And the following constraint must be added to the proposed model.   

1 2
( 1) , , , ,jpmch jpmch j pmch jpmchy y x x j p m c h+− = − ∀  (17) 

Equation (12) is the other case in which the proposed mathematical model is nonlinear. Hence, for 
linearization, instead of equation (12), equation (18) and (19) are added to the original model as follows: 
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4 Robust counterpart mathematical model 

In this section, we provide a quick description of the principles of robust optimization. For further 
details, readers are referred to [44] and references therein. Consider the following linear program (LP): 

 



. .
min cx

s t
Ax b≥  

(20) 

Where nx ∈ℜ is the vector of decision variables, mb ∈ℜ  is the right-hand side parameter vector, 
nc ∈ℜ  is the vector of objective function coefficients, and m nA ×∈ℜ , with elements i ja , is the 

constraint coefficient matrix. 

In a typical problem like (LP), c , A and b  are assumed to be deterministic and optimal solution is 
obtained according deterministic circumstances. Some of the data parameters are considered as 
uncertain in the Robust Optimization (RO) approach, yet they lie within a set that expresses limits on 
the uncertainty. The foregoing uncertainty set subsequently defines the limits on uncertainty that a 
solution will be immunized against. That is, solution x deals with any possible uncertainty lying within 
the set. In the robust optimization approach the (LP) is transformed into a robust counterpart by 
replacing each constraint that has uncertain coefficients with a constraint that reflects the incorporation 

of the uncertainty set. Let jc , i ja and ib denote, as an uncertain entry in the objective function 

coefficients, constraint coefficient and right-hand side parameters, respectively. In the proposed model, 
each of the uncertain parameters is assumed to vary in a specified closed, bounded box [45],[46],[47]  

The general form of this box can be defined as follows: 

{ }: , 1, 2,...,n
Box t t tu t nϑ ϑ ϑ ρζ= ∈ℜ − ≤ =

 
(21) 

Where tϑ is the normal value of tϑ as the t th parameter of vectorϑ , and where the positive number 

tζ  represents the “uncertainty scale” and 0ρ   is the “uncertainty level”. A particular case of interest 

is t tζ ϑ=  , which corresponds to a simple case where the box contains tϑ , whose relative deviation 
from the nominal data is up to ρ . 

According to the above description, the robust counterpart of the LP model (22) can be stated as 
equations (23-26): 

Mathematical model:  
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(22) 

Robust counterpart mathematical model:  
min z  (23) 

. .s t   
c

j jj Boxc x dy z c u+ ≤ ∀ ∈   (24) 
  a

i j i jj j Boxa x b a u≥ ∀ ∈  (25) 
f

i i i Boxe y f f u≥ ∀ ∈   (26) 



 { }, 0,1x y ∈   

Ben-Tal et al. [46]  demonstrate that in a closed bounded box, the robust counterpart problem can 
be converted to a tractable equivalent model where Boxu is replaced by a finite set extu  consisting of the 

extreme points of Boxu . To represent the tractable form of the robust mathematical model, equations 
(23-26) should be converted to their tractable equivalents. For equation (24) we have: 

{ }, | : , 1, 2,...,cnc c c
j j j j jBox Box c j cc x z dy c u u c c c j nρ ζ≤ − ∀ ∈ = ∈ℜ − ≤ =   

 
(27) 

The left-hand side of equation (27) contains the vector of uncertain parameters, while all parameters 
of the right-hand side are certain. Thus, the tractable form of the above semi-infinite inequality could 
be written as follows: 
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For a constraint , 
1

n

i j j i
j

a x b
=

≥∑ , we only need to augment the left-hand side of the equation to 

reflect the uncertainty set in the formulation. Formally, in the augmented constraint we require, for a 
given solution 𝑥𝑥, that [44],[48]: 
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or 
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Given the structure of Boxu , the optimal solution of the optimization on the left-hand side is 

1 1

n n
a

i j j a i j j i
j j

a x x bρ ζ
= =

− ≥∑ ∑
 

(31) 

Which can be reformulated as: 

1 1

n n
a

i j j a i j j i
j j

a x bρ ζ ι
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(32) 

(1, 2,..., )j j jx j nι ι− ≤ ≤ ∀  (33) 

Similarly, for inequality (26) we have: 

{ } { }, 1, 2,.., , | : , 1, 2,...,fnf f f
ii i i Box Box i i f i fe y f i n f u u f f f i nρ ζ≥ ∀ ∈ ∀ ∈ = ∈ℜ − ≤ =   

 
(34) 

Thus, it can be rewritten as follows: 

{ }, 1, 2,...,f
ii f i fe y f i nρ ζ≥ + ∀ ∈  (35) 

i



According to the above explanation, for developing the robust counterpart of the proposed model, 
the related machine costs include fixed costs ( )mhα , variable costs ( )mhβ , relocation costs ( )mhδ , 

purchasing costs ( )mhϕ , and sales revenue ( )mhω , which are assumed to be uncertain. The other 

parameters, such as demand of each part ( )phD and time capacity of machines, ( )mhT are also of an 

uncertain nature. Hence, the robust counterpart of the presented DCMS model with uncertain 
parameters given by box sets is equivalent to the following: 
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5 NSGA-II algorithm 

Numerous methods have been developed to deal with multi-objective problems. Some of the 
proposed methods define an integrated objective function based on all objective functions (e.g. weighted 
sum method) and reach an optimal or near-optimal result. Other methods aim to find a set of solutions 



named Pareto solutions. The Optimal Pareto set involves a number of solutions, none of which can 
completely dominate other Pareto solutions. Non-Dominated Sorting Genetic Algorithm II (NSGA-II) 
is a meta-heuristic which belongs to evolutionary algorithms and is a commonly used method when 
there is a problem with more than one goal. This method, first proposed by Deb et al. [49], to find a 
near-optimal Pareto set. In fact, an initial population is randomly generated and then, for a given number 
of iterations, new solutions are obtained from existing solutions, per iteration, through crossover and 
mutation. Employing a crossover operator, two parents are chosen and they produce two new children 
by combining their characteristics. It should be mentioned that parents’ selection is done by a binary 
tournament selection process. In this process two members are randomly selected and the winner can 
stay as a parent in our parent set. This is done 2N times to choose N parents. In a mutation operation, a 
member is selected randomly and is changed in some respects. 

Here, members of a population are compared with each other in relation to two criteria: rank and 
crowding distance. Members are sorted and given their own rank. Remember that the solutions of a 
same rank cannot dominate each other; this means that if two members of the same rank are selected, 
neither of them is better in all objective functions. On the other hand, crowding distance is a criterion 
which investigates the diversity of solutions, and high crowding distance is preferred. Of course, 
crowding distance is a criterion measured for members of a specific rank. Equation (76) explains the 
way in which crowding distances are measured. In the equation, di is the crowding distance of solution 
i where r

if  represents the rth objective function value of the ith solution, and min
rf  and max

rf   are minimum 
and maximum values of the rth objective function, respectively. The crowding distance of the first and 
last points, the points which have optimum value in at least one objective, is moreover assumed to be 
infinitive. 

max

1 1
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r r
i i

i r rr

f fd
f f

+ −−
=
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(76) 

5.1 Parameter setting 

The NSGA-II algorithm has four vital parameters which should be appropriately tuned before using 
them to find best results: 

• Number of members in a population (NPop) 
• Number of iterations to find best results (MaxIt) 
• Crossover rate (CrR) 
• Mutation rate (MuR) 

As a result, a Taguchi design [50] is employed to set a suitable level for the parameters. Here, we 
assume three different levels for each parameter: 

• NPop: 40, 60 and 80 
• MaxIt: 20, 50 and 100 
• CrR: 0.2, 0.5 and 0.8 
• MuR: 0.1, 0.2 and 0.3 

A response should furthermore be defined for the Taguchi design. Spacing Metric (SM) is a metric 
used to evaluate Pareto results and is measured by equation (77) where Q

id  represents the Euclidian 

distance between two consecutive points (i.e. points i and i+1), d  is their average, and N is the number 
of members in final non-dominated solutions. An algorithm with more SM is preferred. 
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(77) 

 Distance to an ideal point (D2P) is another metric which calculates the average Euclidian distance 
of the Pareto results from an ideal point in the space (e.g. Fig 2). Of course, the ideal point is selected 
by decision makers. 

 

 

{Please insert Fig. 2 here.} 

 

Computational time is also an important criterion of a method. As a result, the table of the Taguchi 
design is done with Minitab software (version 16), and best levels of parameters are selected as 
represented in Tables 2 and 3 and Fig 3. Table 2 displays responses in the experiments. Regarding the 
same importance of three responses, normalization is used to convert all values to a number in the range 
[0 1]. Based on these experiments, Fig 3. serves as a graphic tool to choose the best levels for the 
considered parameters. In fact, level 1 of NPop, i.e. 40, level 2 of MaxIt, i.e. 50, level 3 of CrR, i.e. 0.8, 
and level 3 of MuR, i.e. 0.3, have been determined as best levels for the parameters. 

 

{Please insert Table 2 here.} 

 

{Please insert Table 3 here.} 

 

{Please insert Fig. 3 here.} 

 

6 Computational results 

Some numeric examples have to be generated in order to evaluate the performance of the proposed 
robust mathematical model. Three sets of examples are therefore generated, based on the pattern in 
Table 4, in different sizes named S1, S2 and S3, respectively, shown in Table 5. On the other hand, the 
uncertainty levels for all parameters are the same (i.e. Dα β δ ϕ ωρ ρ ρ ρ ρ ρ= = = = =  ) and take three 

different values: 0.25, 0.50 and 0.75. On each uncertainty level, five problems are derived from S1, S2 
and S3 with different amounts of uncertain data, subject to their range of deviation from nominal levels. 
This action is taken into account to simulate five different possible states of a case and to solve all of 
them, in order to assess the performance of the proposed models. This operation could actually be called 
realization. All deterministic and robust problems are solved by the NSGA-II algorithm, using Matlab 
software (version 2012a) on a Core 2 Duo Notebook, 2.67 GHz with 4 GB RAM. Some of these patterns 
are taken from Safaei et al. [16], while others are generated for our problem. 

 

{Please insert Table 4 here.} 

 



{Please insert Table 5 here.} 

 

{Please insert Table 6 here.} 
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     A set of solutions, called Pareto results, is predictably obtained after running NSGA-II. A Pareto set, 
as mentioned above, involves a number of non-dominated solutions. This means that each result is better 
than at least one other result in the Pareto set, considering an objective function, and is worse than that, 
considering another objective function. In all Pareto sets of bi-objective problems, there are two 
important points: one with an optimum level for one objective, and one with an optimum level for 
another objective. Tables 6 and 7 report the best solutions obtained for Z1 and Z2, respectively. Fig. 4. 
and Fig. 5. illustrate the difference between the robust and deterministic models in the second size, S2. 
Each block presents the mean (horizontal line), the standard deviation (internal rectangle), and the max 
and min value of the objective function (external rectangle). The results demonstrate that the proposed 
robust model is worse than the deterministic model because in robust optimization all uncertain 
parameters are considered as worst cases in practice, in order to obtain lower risks and to limit loss as 
far as possible. While, the robust model is able to reach appropriate solutions in all sizes and at all 
considered levels of uncertainty, while the deterministic model is probably unfeasible when the level of 
uncertainty is increased. Moreover, the deterministic model could find better solutions than the robust 
one when, with the latter, the first objective function is more important and the second objective 
function is well maximized. However, based on Fig. 4 and Fig. 5, we find that the results of the robust 
model have higher values of the objective function but a lower standard deviation in comparison with 
the deterministic model in all  uncertainty levels. In other words, low standard deviation of robust results 
is another reason to demonstrate the efficiency of the proposed model. In fact, as Fig. 4. and Fig. 5. 
show, there are six comparisons between deterministic and robust results, by which it could be found 
that most comparisons represent the lower deviation of robust results. However, there are some 
comparisons which show that the deterministic model could obtain closer solutions. The preference of 
the deterministic model in some cases (e.g. for an uncertainty level of 0.75 in Fig. 4 and an uncertainty 
level of 0.25 in Fig. 5) with lower deviation is explained by the use of meta-heuristics, whereby near-
optimum solutions are reached rather than optimum ones. 

 

{Please insert Fig. 4 here.} 

 

{Please insert Fig. 5 here.} 
 

Table 8 shows the computational times of the solved problems. It is worth mentioning that the robust 
model contains more constraints, decision variables and parameters. It is therefore expected that 
computational times in a meta-heuristic algorithm will be longer in the robust model than in the 
deterministic model. 

 

{Please insert Table 8 here.} 



7 Conclusion and future research 

This paper addresses a new DCMS problem by considering social responsibility issues, and 
introduces a new robust optimization model for dealing with uncertain parameters that are neglected in 
the literature. First a multi-objective mathematical model is developed, in which the first objective 
function minimizes related costs of problems, including machine and labor costs. The social aspect, 
consisting of job opportunities and occupational safety, is maximized by the second objective function. 
In the proposed model, in order to reduce its complexity, we take into account only two social criteria, 
even though this model is able to integrate more criteria, such as job severity, occupational diseases, 
and labor days lost due to injury, in the second objective function. 

In order to increase the capability of the proposed model to deal with uncertain data such as machine 
costs, demand for parts, and machine time capacity, a robust optimization approach is presented. A 
number of examples are generated and solved by employing a Non-Dominated Sorting Genetic 
Algorithm (NSGA-II). In our study, three test problems were examined in different states of uncertainty, 
which meant that each of the based examples was used to generate various problems under uncertain 
parameters. The results illustrate the supremacy of the robust model in the handling of uncertain 
parameters and in the robustness of relevant solutions in comparison with the deterministic model. By 
way of explanation, in contrast to the deterministic model, the robust model could obtain suitable 
solutions for all levels of uncertainty. Moreover, the results demonstrate the low deviation of the robust 
model in comparison with the deterministic one.  

For the extension of current research, other social and environmental issues can be considered, such 
as job severity, occupational diseases, labor days lost due to injury, waste of energy, CO2 emissions, 
etc. Additionally, various uncertain parameters and possibilistic approaches can be applied in future 
research. 
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Fig. 2. Distance of Pareto solutions from an ideal point 

Fig. 1. A schematic view of dynamic cellular manufacturing 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Signal to noise ratio from Taguchi experiments 

Fig. 4. Best results of Z1 for S2 



 

Fig. 5. Best results of Z2 for S2 



Author Objective 
function 

Economic criteria * 
Labor 

 utilization Data Nature Solving Method Parts Movement Aspect Production 
cost 

Configuration 
cost 

Labor 
cost 

Rheault et al. [8] Single     Certain heuristic inter-cell 

Schaller et al. [9] Single     Certain Lagrangian 
relaxation inter-cell 

Chen & Cao [10] Single     Probabilistic  TS inter-cell 
Tavakkoli-Moghaddam et al. [11] Single     Certain  GA,TS,SA inter-cell 
Tavakkoli-Moghaddam et al. [12] Single     Certain  MA inter-cell 

Defersha & Chen [13] Single     Certain  Exact (LINGO) inter-cell 
Safaei et al. [14] [15] Single     Fuzzy B&B inter/intra-cell 

Safaei et al. [16]  Single     Certain MFA-SA inter/intra-cell 
Defersha & Chen [17] Single     Certain GA inter-cell 
Aryanezhad et al. [18] Single     Certain Exact (CPLEX) inter-cell 

Safaei & Tavakkoli- Moghaddam [19] Single     Certain B&B  inter /intra-cell 
Aramoon Bajestani et al. [20] Multi     Certain  MOSS inter-cell 

Wang et al. [21] Multi     Certain  SS inter-cell 
Deljoo et al. [22] Single     Certain  GA inter-cell 

Mahdavi et al. [23] Single     Certain Exact (LINGO) inter-cell 
Rafiee et al. [25] Single     Certain PSO Inter/intra-cell 

Saxena & Jain [26] Single     Certain  LINGO inter/intra-cell 
Kia et al. [27] Single     Certain GA inter/intra-cell 

Rafiei & Ghodsi [28] Multi     Certain Hybrid of ACO-GA inter/intra-cell 
Majazi Dalfard [29] Single     Certain SA embedded in B&C inter/intra-cell 

Javadi et al. [30] Single     Certain EM-like inter/intra-cell 
Aghajani et al. [31] Multi     Probabilistic NSGA-II inter/intra-cell 
Bootaki et al. [32] Multi     Fuzzy Goal programming inter-cell 

Paydar and Saidi-Mehrabad [33] Multi     Possibilistic Goal programming inter-cell 
Renna and Ambrico [34] Single     Probabilistic Exact (LINGO) inter-cell 

* (Production cost): fixed and variable cost of machine, inventory cost 
  (Configuration cost): machine relocation cost, machine procurement cost 

Table 1 Classification of literature about DCMS 
 



 

 

 

 

 

 

 Real values  Normalized values 

Experiments SM D2P Time (s)  SM D2P Time 
(s) 

1 0.921 10003360428 34.167  0.431 1 0 
2 0.897 9996648391 209.943  0.373 0.636 0.118 
3 1.069 9994073131 673.243  0.805 0.496 0.43 
4 1.058 9995545657 198.928  0.778 0.576 0.111 
5 0.777 9988679715 552.402  0.07 0.204 0.349 
6 0.785 9996204858 425.263  0.088 0.612 0.263 
7 0.757 9990439112 500.821  0.019 0.299 0.314 
8 1.146 9986893557 515.639  1 0.107 0.324 
9 0.75 9984924763 1520.5  0 0 1 

Table 3  Obtained responses of Taguchi experiments 

 

 

 

 Coded levels  Uncoded levels 
Experiment Npop MaxIt Cr Mu  Npop MaxIt Cr Mu 

1 1 1 1 1  40 20 0.2 0.1 
2 1 2 2 2  40 50 0.5 0.2 
3 1 3 3 3  40 100 0.8 0.3 
4 2 1 2 3  60 20 0.5 0.3 
5 2 2 3 1  60 50 0.8 0.1 
6 2 3 1 2  60 100 0.2 0.2 
7 3 1 3 2  80 20 0.8 0.2 
8 3 2 1 3  80 50 0.2 0.3 
9 3 3 2 1  80 100 0.5 0.1 

Table 2  Experiments of the Taguchi design 



Parameter  Generation pattern 
phD   ~ Uniform (100, 1000) 

inter
pB   ~ Uniform (10, 50) 
int ra
pB   int / 5er

pB  
inter
pγ   ~ Uniform (1, 30) 
int ra
pγ   ~ Uniform (1, 30) 

mhα   ~ Uniform (1000, 2000) 

mhβ   ~ Uniform (1, 10) 

mhδ   / 2mhα  

mhT   ~ Uniform (1, 5) 
UB   6 
LB   2 

mL   ~ Uniform (1, 8) 

mhϕ   ~ Uniform (1000, 5000) 

mhω   ~ Uniform (0, 1) mhϕ×  

mS   ~ Uniform (0, 1) 

hλ   ~ Uniform (0, 1) 
L
mhsa   ~ Uniform (50, 75) 

jpmt   ~ Uniform (1, 10) 

Table 4  Pattern of sample generation 

 

 

 

 

  S1  S2  S3 
|Op|×|P|×|M|×|C|×|H|  3×3×4×3×2  6×6×7×5×4  8×8×9×6×5 

Table 5  Different sizes of problems 

 

 



   Deterministic  Robust 
   Z1 Z2  Z1 Z2 

ρ 
= 

0.
25

 
S1 

1  2060152.047 2.298  3969828.543 5.576 
2  2817647.19 6.1729  3509775.811 8.472 
3  2210973.77 2.792  3858171.512 5.035 
4  3328183.943 2.568  4951873.559 9.731 
5  3227828.209 6.308  4079282.307 7.638 

S2 

1  52397144.58 11.112  51645075.02 12.444 
2  50929235.04 13.349  49585007.78 11.376 
3  43446369.88 10.725  51015775.08 13.964 
4  46511081.63 11.492  56762119.88 15.304 
5  51324191.58 14.484  52640809.24 12.878 

S3 

1  Infeasible Infeasible  130682131.9 26.795 
2  Infeasible Infeasible  127053558.4 26.109 
3  Infeasible Infeasible  139439766.5 29.318 
4  158126369.4 31.328  133304620.6 27.144 
5  145392597.4 25.644  129728057.2 24.946 

           

ρ 
= 

0.
50

 

S1 

1  1533608.95 2.009  3481689.56 2.068 
2  3384264.888 4.847  5025683.047 6.759 
3  2783557.22 3.302  5353712.626 5.087 
4  1824289.798 3.291  3231658.229 7.844 
5  1643472.424 1.439  5049564.677 10.615 

S2 

1  33447983.78 9.366  58145649.45 15.771 
2  41522784.35 10.483  57491016.65 14.984 
3  44879080.15 11.941  57229791.32 15.743 
4  42390396.25 9.517  55506872.72 14.359 
5  35466965.22 8.799  55233404.07 14.511 

S3 

1  Infeasible Infeasible  137158768.8 26.207 
2  158828320.2 28.383  136221613.4 26.245 
3  Infeasible Infeasible  160363246.6 30.289 
4  172310552.5 32.35  144875052.9 28.409 
5  152058111.5 27.463  140746973.3 27.12 

           

ρ 
= 

0.
75

 

S1 

1  3103390.005 2.488  5309200.308 9.064 
2  2256637.887 3.214  4692328.174 2.415 
3  2299605.933 3.949  4387337.881 8.488 
4  2944939.769 4.776  6721649.424 13.588 
5  1842341.824 2.982  3445643.678 2.267 

S2 

1  54402305.04 11.289  68658803.71 19.284 
2  Infeasible Infeasible  63567388.11 16.685 
3  54493461.49 13.346  66275690.62 17.785 
4  36131036.71 7.866  51240167.22 13.064 
5  46308241.75 10.08  74419317.06 17.68 

S3 

1  Infeasible Infeasible  162653027.6 31.354 
2  Infeasible Infeasible  161786933.5 31.758 
3  Infeasible Infeasible  150016398.3 31.526 
4  Infeasible Infeasible  164223732.7 31.244 
5  Infeasible Infeasible  147613662 32.015 

Table 6  Objective functions value with best Z1 in final Pareto results 

 



   Deterministic  Robust 
   Z1 Z2  Z1 Z2 

ρ 
= 

0.
25

 
S1 

1  8754495.995 22.466  8052327.457 20.838 
2  6908261.096 19.23  7315716.184 21.061 
3  7866827.803 19.794  12274043.99 24.567 
4  9520855.238 20.985  8325079.542 21.862 
5  6756378.563 18.934  8954907.277 24.052 

S2 

1  77909945.1 195.836  79277216.27 211.592 
2  77111769.43 192.337  84780633.65 228.818 
3  66841833.63 179.589  72011777.22 209.990 
4  75987695.73 197.336  81542885.38 231.031 
5  67570577.73 199.618  63376425.69 197.675 

S3 

1  Infeasible Infeasible  179016979.1 396.233 
2  Infeasible Infeasible  186232041.9 397.4183 
3  Infeasible Infeasible  180777164.1 410.16735 
4  182781896.4 380.913  167776446.6 377.61048 
5  198087733 382.255  171878867.6 364.0492 

           

ρ 
= 

0.
50

 

S1 

1  7947074.394 19.764  7902448.414 21.681 
2  11575765.43 29.852  11950406.63 25.483 
3  8944049.478 16.654  12333551.09 23.192 
4  4595541.273 15.388  7024440.88 21.841 
5  4396903.496 14.431  9833181.338 26.866 

S2 

1  74385259.9 188.367  85857450.43 239.501 
2  67801283.87 174.3761  93747776.57 243.903 
3  71363586.18 183.426  82361563.93 232.719 
4  64996306.38 153.374  83582231.93 239.931 
5  64455603.07 183.208  89842825.5 241.261 

S3 

1  Infeasible Infeasible  192315126.2 408.985 
2  224139966.6 428.385  196541829.3 423.739 
3  Infeasible Infeasible  215277385.5 468.27 
4  192048328.9 353.183  195250678 420.575 
5  215198051.6 372.967  181121899.1 391.303 

           

ρ 
= 

0.
75

 

S1 

1  8925452.973 24.941  10563626.35 29.854 
2  7319703.219 20.395  11361483.47 27.281 
3  12143392.35 28.438  8937980.168 29.798 
4  9339241.583 20.563  14584946.98 35.799 
5  5212238.84 12.288  8663060.137 19.786 

S2 

1  72335438.41 162.589  87826885.85 258.516 
2  Infeasible Infeasible  100359058.4 264.211 
3  86370932.99 221.959  96011762.26 281.821 
4  62184179.47 145.705  81592600.49 226.414 
5  86072370.65 204.311  110391114 279.322 

S3 

1  Infeasible Infeasible  223630224 483.155 
2  Infeasible Infeasible  211832468.2 451.861 
3  Infeasible Infeasible  226999065 494.931 
4  Infeasible Infeasible  203310318 444.501 
5  Infeasible Infeasible  203836403.6 448.986 

Table 7  Objective functions value with best Z2 in final Pareto results 

 



  ρ = 0.25  ρ = 0.50  ρ = 0.75 
  Deterministic Robust  Deterministic Robust  Deterministic Robust 

S1  2.845 5.377  2.851 5.66  2.836 5.808 
S2  72.143 127.145  71.831 125.077  72.356 124.255 
S3  368.323 614.43  352.78 617.599  - 607.002 

Table 8  Computational times (Second) 
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