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Surprisingly, the issue of events localization in spacetime is poorly understood and a fortiori realized even in the context of Einstein’s
relativity. Accordingly, a comparison between observational data and theoretical expectationsmight then be strongly compromised.
In the present paper, we give the principles of relativistic localizing systems so as to bypass this issue. Such systemswill allow locating
users endowed with receivers and, in addition, localizing any spacetime event. These localizing systems are made up of relativistic
autolocating positioning subsystems supplemented by an extra satellite. They indicate that spacetime must be supplied everywhere
with an unexpected local four-dimensional projective structure besides the well-known three-dimensional relativistic projective
one. As a result, the spacetime manifold can be seen as a generalized Cartan space modeled on a four-dimensional real projective
space, that is, a spacetimewith both a local four-dimensional projective structure and a compatible (pseudo-)Riemannian structure.
Localization protocols are presented in detail, while possible applications to astrophysics are also considered.

1. Introduction

The general principles of the relativistic localizing systems
have been defined in a previous paper [1] with just a few
details on the projective underlying structure provided by
these localizing systems. The latter are based on the so-called
relativistic positioning systems [2–9]. The protocols of rela-
tivistic positioning are a priori rather simple. For instance, in
a four-dimensional spacetime, we can consider four emitting
satellites and users with their respective (timelike) worldlines.
The four emitters broadcast “emission coordinates” which are
no more and no less than time stamps generated by onboard
clocks and encoded within EM signals propagating in space-
time.Then, a so-called four-dimensional emission grid can be
constructed from this relativistic positioning system and its
system of emission coordinates. This grid can be eventually
superposed to a grid of reference supplied by a “system of
reference” (e.g., the well-known WGS84 system). And then,
from this superposition, the positions of the users can be
deduced in the given system of reference. More precisely, in
relativistic positioning systems, the emitters broadcast not

only their own time stamps, but also the time stamps they
receive from the others. This process of echoes undergone
by the time stamps enables users to construct the four-
dimensional emission grid because they can then deduce the
spacetime positions of the four emitters. And then, because
the positions of the four emitters can be known also in a
given system of reference the users can deduce their own
positions in this system of reference from their positions in
the emission grid.

Here, we focus on the relativistic localizing systemswhich
are systems incorporating relativistic positioning subsystems.
We showhow causal axiomatics [10–13] andparticular projec-
tive structures (actually, compasses) homeomorphic to 𝑃R1

and 𝑃R2 attached all along the worldlines of the emitters
of the localizing systems are sufficient to justify a four-
dimensional projective structure of the spacetime; in addition
to the well-known three-dimensional projective structure.

Beforehand, to proceed in the difficult and delicate
description of the relativistic localizing systems, we first need
to define as clearly as possible the terminology and the
different conventions and notations.
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2. Notations and Conventions

We consider a constellation of satellites called “emitters”
which typically broadcast numerical values (called “time
stamps”) generated, for instance, by embarked onboard
clocks.(1) The “main” emitters are denoted by E, E, Ẽ, and Ê

with their respective worldlines W, W, W̃, and Ŵ.
The “ancillary” emitterS and the “user”U have their
worldlines denoted, respectively, byWS andV.(2) The main emitters constitute the relativistic position-
ing system.(3) The ancillary emitterS and the main emitters consti-
tute the relativistic localizing systems.(4) The event to be localized is always denoted by the
small capital letter 𝑒.(5) TheuserU collects along its worldline all the data—in
particular, the time stamps—fromwhich the localiza-
tion of the event 𝑒 is deduced.Among these data, there
are those for identifying physically the event 𝑒 such as,
for instance, its shape, its spectrum, and so forth, and
which are obtained from apparatus making physical
analyses embarked onboard each mean emitter.(6) Any explicit event will be marked by symbols like
“∙,” “∗,” “∼,” “̂,” and so forth, or also by small
capital letters like “𝑝,” “ℓ,” and so forth. Non-marked
or numbered events will refer to general or generic,
unspecified events. For instance, 𝐸∙ will be a specified
eventwhile𝐸 or𝐸2 will be generic, unspecified events.(7) The generic events 𝐸, 𝐸, �̃�, �̂�, 𝑆, and 𝑈 belong,
respectively, to theworldlinesW,W,W̃,Ŵ,WS, and
V.(8) The time stamps will be denoted by the Greek letters
“𝜏,” “𝜏,” “�̃�,” “�̂�,” and “ ∘𝜏.”The first four previous time
stamps are “generated” and broadcast, respectively, by
the main emitters E, E, Ẽ, and Ê, and the last one
is “generated” and broadcast by the ancillary emitter
S. The four main emitters not only generate their
own time stamps but transmit also the time stamps
they receive. These main emitters constitute the var-
ious autonomous autolocating relativistic positioning
systems from which the relativistic localizing systems
presented further are constructed.(9) Two classes of time stamps are considered:

(i) The time stamps which are generated and then
broadcast by the emitters at given events on their
worldlines. Then, we agree to mark the corre-
sponding time stamps like the given events. For
instance, if an emitter generates and broadcasts
a time stamp at the specified event �̃�∙ or at
the generic event 𝐸1, then the respective time
stamps will be denoted by �̃�∙ or 𝜏1.

(ii) The time stamps which are the emission (or
time) coordinates of an event 𝐾—specified or

not—will be denoted by “𝜏�퐾,” “𝜏�퐾,” “�̃��퐾,” “�̂��퐾,”
and “ ∘𝜏�퐾.”(10) The ancillary emitter S generates and broadcasts its

own time stamp ∘𝜏 and it broadcasts also its time
(emission) coordinates provided by the relativistic
positioning system. In other words, it is also a partic-
ular user of the relativistic positioning system like the
user U. Contrarily to the ancillary emitter, the user
does not necessarily broadcast its emission coordi-
nates.(11) Projective frames at events 𝐸 will be denoted by F�퐸.
There are sets of “canonical projective points [⋅ ⋅ ⋅ ]�퐸”
which are the following:

(i) F�퐸 ≡ {[0]�퐸, [1]�퐸, [∞]�퐸} for projective frames of
the real projective line 𝑃R1, and

(ii) F�퐸 ≡ {[0, 0]�퐸, [1, 1]�퐸, [0,∞]�퐸, [∞, 0]�퐸} for pro-
jective frames of the 2-dimensional real projec-
tive space 𝑃R2.

The subscripts will be canceled out if there are no
ambiguities on the referring event.(12) The celestial circles/spheres are denoted by C, and
then C�퐾 is the celestial circle/hemisphere at the
event 𝐾. The celestial circles are invoked in the
definition of the “echoing systems” of relativistic
localizing systems in (2 + 1)-dimensional space-
time presented in Section 4. Considering relativistic
localizing systems and their corresponding echoing
systems (Section 5) in (3+1)-dimensional spacetime,
then 2-dimensional projective spaces 𝑃R2 are also
considered. But, contrarily to the relativistic localizing
systems in (2 + 1)-dimensional spacetime, the 2-
dimensional real projective spaces 𝑃R2 cannot be
immersed in spheres 𝑆2 (orR2). Then, as well-known
from the cell decomposition of 𝑃R2 = R2 ∪ 𝑃R1,
the Euclidean spaceR2 is identified in a standard way
with a hemisphere of 𝑆2 while 𝑃R1 is identified with
half of the equatorial boundary (see, e.g., [14, p. 10–14]
for details).(13) We denote by (see [15, Def. 3.1, p. R16] and [16])1

(i) “≺” the causal order,
(ii) “≪” the chronological order, and
(iii) “→” the horismos (or horismotic relation/order).(14) We call “emission (or positioning) grid R�푛

�푃” the
Euclidean space R�푛 of positioning, and “localization
(or quadrometric/pentametric) grid R�푚

�퐿 ” and
“anisotropic localization (or quadrometric/penta-
metric) grid R�푚

�퐴�퐿” two different Euclidean spaces
R�푚−1 × R∗ ascribed to two different, particular sets
of time coordinates used for the localization.(15) TheacronymsRPS andRLSmean, respectively, “Rela-
tivistic Positioning System” and “Relativistic Localizing
System.”



Advances in High Energy Physics 3

Ur

E

E

E


E


Figure 1: The causal structure of the RPS.
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Figure 2: The causal structure of the RLS.

3. RLSs in (1 + 1)-Dimensional Spacetime

In this (1+1)-dimensional case, there are twomain emittersE
andE constituting the RPS, and with the ancillary emitter S
they constitute the RLS. We first give the causal structures of
the RPS and the associated RLS. In Figures 1 and 2, and also,
in all other subsequent figures representing a causal structure,
the arrows represent always the horismotic relation between
two events.

3.1. The Causal Structure of the RPS. We have the causal
structure (see Figure 1 and Table 1) for the autolocating RPS
from which the positioning of the userU is realized.

Then, the position of the user at the event 𝑈�푟 in the
emission gridR2

�푃 is𝑈�푟 ≡ (𝜏�耠, 𝜏�耠). Also, the user can know from
the autolocating process the positions of the two emitters:𝐸�耠 ≡ (𝜏�耠, 𝜏�耠�耠) and 𝐸�耠 ≡ (𝜏�耠�耠, 𝜏�耠). Moreover, ephemerides are
regularly uploaded onboard the main emitters which broad-
cast with their time stamps these ephemerides to the users.
From these data, that is, ephemerides and positions of the
main emitters, the users can deduce their own positions with
respect to a given system of reference (e.g., the terrestrial
frame of WGS84). This is the core and the important interest
of the autolocating positioning systems to immediately fur-
nish the positions of the users with respect to a given system
of reference.

3.2. The Causal Structure of the RLS. In this very specific (1 +1)-dimensional case, the localized event 𝑒 is necessarily the
intersection point of two null geodesics. The causal structure
is shown in Figure 2 and Table 2.

Table 1: The events and their broadcast time stamps in the RPS.

Event Broadcasts time stamp(s) Received at𝐸�耠�耠 𝜏�耠�耠 𝐸�耠𝐸�耠�耠 𝜏�耠�耠 𝐸�耠𝐸�耠 (𝜏�퐸 = 𝜏�耠, 𝜏�耠�耠) 𝑈�푟𝐸�耠 (𝜏�耠�耠, 𝜏�耠 = 𝜏
�퐸
 ) 𝑈�푟

Table 2: The events and their broadcast time stamps in the RLS.

Event Broadcasts time stamp(s) Received at𝐸∙ 𝜏∙ 𝐸�푝𝐸∙ 𝜏∙ 𝐸�푝𝐸�푝 (𝜏∙, 𝜏�푝 = 𝜏�퐸𝑝 ) 𝑈�푟𝐸�푝 (𝜏�퐸𝑝 = 𝜏�푝, 𝜏∙) 𝑈�푟
Then, the protocol of localization gives the following time

coordinates for 𝑒 ≡ (𝜏�푒, 𝜏�푒) in the localization grid R2
�퐿: 𝜏�푒 =𝜏�퐸∙ = 𝜏∙ and 𝜏�푒 = 𝜏

�퐸
∙ = 𝜏∙.

Remark 1. It matters to notice that the two events of reception𝑈�푟 and 𝑈�푟 are matched by the user on the basis of a crucial
identification of the physical data transmitted by the two
main emitters (see convention 5) which allow explicitly
identifying the physical occurrence of an event 𝑒. And then,
the whole different time stamps collected at these two events
can be therefore considered by the user as those needed to
make the localization of 𝑒.
3.3. Consistency between the Positioning and

Localizing Protocols: Identification

Definition 2 (consistency). We say that the localizing and the
positioning protocols or systems are “consistent” if and only
if the time coordinates (𝜏�퐾, 𝜏�퐾, . . .) ascribed to each event𝐾 belonging to an emitter’s worldline and provided by the
localization (resp. positioning) system are the same as those
provided by the positioning (resp., localization) system.

Remark 3. In this (1 + 1)-dimensional case, when we identify
the time stamps 𝜏�푒 and 𝜏�푒 with, respectively, 𝜏�퐸∙ and 𝜏

�퐸
∙ , then

the localization is equivalent to the positioning. This leads to
the general Definition 5 below.

Remark 4. The consistency between the localizing and the
positioning protocols is not an absolute necessity. We can
obtain different time coordinates for the same event 𝐾
belonging to an emitter’s worldline from the positioning
system or the localizing one if we change the time stamps
ascriptions in the protocols of localization presented further.
Then, we can choose arbitrarily the emission grid or the grid
of localization to position the event𝐾, and, then, we can refer
to the preferred grid for the time coordinates ascribed to any
other event, positioned or localized. In other words, because
the systems of localization include implicitly by construction
derived positioning systems, the latter can differ from the
initial ones. In this case, the consistency is not satisfied but
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Figure 3: The causal structure of the RPS in a (2 + 1)-dimensional
spacetime.

we can still refer the time coordinates of any event with
respect to the localization grids rather than to the emission
grids. The only advantage of the consistency is that once the
events are localized then the time coordinates can be ascribed
indifferently to any of the two grids.

Definition 5. Let a localized event 𝑒 and an event 𝐾 on the
worldlines of amain emitter or of the ancillary emitter be such
that 𝑒 → 𝐾 or 𝐾 → 𝑒 or 𝑒 = 𝐾. Then, we call “identification”
in the emission (position) grid the ascription of an emission
coordinate of 𝑒 to an emission coordinate of𝐾.

4. RLSs in (2 + 1)-Dimensional Spacetime

In this case, there are three main emitters E, E, and Ẽ
constituting the autolocating RPS and, again, an ancillary
emitter S with which they constitute the RLS.

4.1. The Causal Structure of the RPS. This causal structure is
described in Figure 3 and Table 3.

Then, the position in the emission grid R3
�푃 of the user at𝑈�푟 is (𝜏�耠, 𝜏�耠, �̃��耠), and those of 𝐸�耠, 𝐸�耠, and �̃��耠 are, respectively,(𝜏�耠, 𝜏�耠�耠�耠, �̃��耠�耠�耠), (𝜏�耠�耠, 𝜏�耠, �̃��耠�耠), and (𝜏�耠�耠�耠, 𝜏�耠�耠, �̃��耠).

Remark 6. It matters to notice that in autolocating RPSs the
time stamp broadcast by each main emitter is also one of its
emission coordinates, for example, 𝜏�퐸 = 𝜏�耠 for E at 𝐸�耠 in
Table 1 and 𝜏�耠 = 𝜏

�퐸
 for E at 𝐸�耠 in Table 3. This property is

common to any RPS whatever is the spacetime dimension.

4.2. The Description of the RLS and Its Causal Structures.
The determination of the first emission coordinate 𝜏�푒 for the
event 𝑒 to be localized is obtained from a first system of light
“echoes” associated with the privileged emitter E. And then,
this system is linked to one event of reception 𝑈�푟 ∈ V where
all the time stamps are collected by the user. We denote by
Ech this system of light “echoes” on the worldline of the
given, privileged emitter E.

Also, one of the key ingredient in the echoing process
presented below is the way any event 𝐾 in the past null cone

Table 3: The events and their broadcast time stamps.

Event Broadcasts time stamp(s) Received at𝐸�耠�耠�耠 𝜏�耠�耠�耠 �̃��耠𝐸�耠�耠�耠 𝜏�耠�耠�耠 𝐸�耠�̃��耠�耠�耠 �̃��耠�耠�耠 𝐸�耠𝐸�耠�耠 𝜏�耠�耠 𝐸�耠𝐸�耠�耠 𝜏�耠�耠 �̃��耠�̃��耠�耠 �̃��耠�耠 𝐸�耠𝐸�耠 (𝜏�퐸 = 𝜏�耠, 𝜏�耠�耠�耠, �̃��耠�耠�耠) 𝑈�푟𝐸�耠 (𝜏�耠�耠, 𝜏�耠 = 𝜏
�퐸
 , �̃��耠�耠) 𝑈�푟�̃��耠 (𝜏�耠�耠�耠, 𝜏�耠�耠, �̃�̃

�퐸
 = �̃��耠) 𝑈�푟

of 𝐸�푝 is associated with a “bright” point on the celestial circle
C�퐸𝑝

(see Figure 8). Because 𝐾 → 𝐸�푝, we can only consider
null “directions” 𝑘�퐸𝑝 at the origin 𝐸�푝 and tangent at 𝐸�푝 to
the null geodesic joining 𝐾 to 𝐸�푝. The abstract space whose
element are these past null directions we callN−. This space
can be represented by the intersection C�퐸𝑝

of the past null
cone with a space-like surface passing through an event𝑁�푝 ∈
W in the past vicinity of 𝐸�푝, that is, 𝑁�푝 ≪ 𝐸�푝. Then, the
exterior of this celestial circle represents space-like directions.

In physical terms, the significance ofC�퐸𝑝
is the following.

Light rays reaching the event 𝐸�푝 and detected by the “eye” of
the satellite correspond to null lines through 𝐸�푝 whose past
directions constitutes the field of vision of the “observing”
satellite.This isN− and it is represented by the celestial circle
C�퐸𝑝

which is an accurate geometrical representation of what
the satellite actually “sees.” For, the satellite can be considered
as permanently situated at the center of a unit circle (his
circle of vision) onto which the satellite maps all it detects
at any instant. Then, the mapping of the past null directions
at 𝐸�푝 to the points of C�퐸𝑝

we can call the sky mapping.
Additionally, because (1) the circle 𝑆1 is homeomorphic to the
real projective line 𝑃R1 and (2)we need angle measurements
to frame the points of C�퐸𝑝

associated with any event 𝐾 in
the past null cone of 𝐸�푝 to be furthermore localized, then
a particular production process of projective frame for C�퐸𝑝

must be devised and incorporated in the echoing system
definition now given below.

Definition 7 (the echoing system Ech). The echoing system
Ech associated with the privileged emitter E is based on the
following features (see Figure 4 and Table 4):

(i) One primary event 𝐸�푝 with its celestial circleC�퐸𝑝
.

(ii) Three secondary events 𝐸∙, �̃�∙, and S∙, associated,
respectively, with the canonical projective points[0]�퐸𝑝 , [∞]�퐸𝑝 , and [1]�퐸𝑝 of the projective frame F�퐸𝑝

defined onC�퐸𝑝
.

(iii) Two ternary events: 𝐸⬦ and 𝐸�耠�耠.
(iv) A compass onC�퐸𝑝

with a moving origin anchored on
the projective point [1]�퐸𝑝 ofC�퐸𝑝

associated with S∙.
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Figure 4: The causal structure of Ech with the event 𝑒.
Table 4: The events and their broadcast time stamps in the Ech
system.

Event Broadcasts time stamp Received at𝐸⬦ 𝜏⬦ 𝐸∙𝐸�耠�耠 𝜏�耠�耠 �̃�∙
S∙ 𝜏S∙ 𝐸�푝𝐸∙ 𝜏⬦ 𝐸�푝�̃�∙ 𝜏�耠�耠 𝐸�푝

(v) An event of reception𝑈�푟 ∈ V at which all the data are
collected and sent by the emitter E.

The determination of the second (resp., third) emission
coordinate 𝜏�푒 (resp., �̃��푒) for the event 𝑒 to be localized is
obtained from a second (resp., third) system of “echoes”
associated with the privileged emitter E (resp., Ẽ). It is also
linked to one event of reception 𝑈ℓ (resp. �̃�ℓ) where all the
time stamps are collected.We denote byEch (resp., Ẽch) this
second (resp., third) system of “echoes” on the worldline of
the privileged emitter Ech (resp., Ẽch).

Then, we have the following.

Definition 8 (the echoing systemsEch and Ẽch). The defini-
tions of the echoing systemsEch and Ẽch are obtained when
making the following substitutions of events andmarks in the
definition of Ech:

(i) For Ech: (𝑈, 𝐸, 𝐸, �̃�) → (𝑈, 𝐸, �̃�, 𝐸) and ∙ → ∗,
(ii) For Ẽch: (𝑈, 𝐸, 𝐸, �̃�) → (�̃�, �̃�, 𝐸, 𝐸) and ∙ → �耠.

Then, we have the causal structure of the echoing system
Ech (Figure 4 and Table 4); the other two causal structures
for Ech and Ẽch (Figures 5 and 6) are deduced from the
causal structure ofEch bymaking the substitutions indicated
in Definition 8. We indicate also the three structures with the
event 𝑒 (Figure 7).
Remark 9. Again (Remark 1), it matters to notice that the
three events of reception 𝑈�푟, 𝑈�푟, and �̃��푟 (Figure 7) are
matched by the user on the basis of an identification of the
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Figure 5: The causal structure of Ech with the event 𝑒.
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Figure 6: The causal structure of Ẽch with the event 𝑒.
physical data for 𝑒 transmitted by the main emitters (see
convention 5).

4.3. The Projective Frames and the Time Stamps Correspon-
dences. The realization of the RLS is based on a sort of
spacetime parallax, that is, a passage from angles “𝛼” mea-
sured on celestial circles to spatiotemporal distances. And
thus, because spatiotemporal distances are evaluated from
time stamps “𝜏” in the present context, we need to make the
translation of angles into time stamps. This involves onboard
compasses embarked on each main emitter to find somehow
the bearings. Then, this translation is neither more nor less
than a change of projective frames.

To make this change of projective frames effective, we
need to define the projective frames on the celestial circles
attached to each main emitter. This can be done ascribing
to specific “bright points” detected on the celestial circles
both angles and time stamps.This ascription is then naturally
achieved if these bright points are the main emitters them-
selves since they broadcast the time stamps. But, if we have
three emitters for the RPS, then only two bright points can be
detected on each celestial circle attached to eachmain emitter.
And, we need three bright points to have a projective frame
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Figure 8: The past null cone and the celestial circleC�퐸𝑝
.

Table 5: The change of projective frame and the corresponding
events.

Event F�퐸𝑝
F�휏
�퐸𝑝𝑒 [tan𝛼�푒] [𝜏�푒]𝐸∙ [0] [𝜏⬦]�̃�∙ [∞] [𝜏�耠�耠]

S∙ [1] [𝜏S∙ ]

on the celestial circle homeomorphic to 𝑃R1, hence the need
for the ancillary emitter S. The change of projective frames
is described in Table 5 and Figures 8 and 9. For instance, the
main emitterEbroadcasts the time stamp 𝜏⬦ at the secondary
event 𝐸∙, and the former is then received by the emitter E
at the primary event 𝐸�푝. Also, if E is always associated by
convention with the canonical projective point [0]�퐸𝑝 on the
celestial circle ofE, then we deduce that 𝜏⬦ corresponds by a
projective transformation to 0. And then, we proceed in the
same way with the other two canonical projective points.

As a result, the relations between the angles and the time
stamps are the following:

tan𝛼�푒 = [𝜏⬦ : 𝜏�耠�耠 | 𝜏�푒 : 𝜏S∙] = [𝜏⬦ : 𝜏�耠�耠 | 𝜏�푒][𝜏⬦ : 𝜏�耠�耠 | 𝜏S∙]≡ M (𝜏�푒) , (1a)

tan𝛼�푒 = [𝜏⬦ : 𝜏�耠�耠 | 𝜏�푒 : 𝜏S∗] = [𝜏⬦ : 𝜏�耠�耠 | 𝜏�푒][𝜏⬦ : 𝜏�耠�耠 | 𝜏S∗]≡ M (𝜏�푒) ,
(1b)

tan �̃��푒 = [�̃�⬦ : �̃��耠�耠 | �̃��푒 : �̃�S] = [�̃�⬦ : �̃��耠�耠 | �̃��푒][�̃�⬦ : �̃��耠�耠 | �̃�S]≡ M̃ (�̃��푒) ,
(1c)

where [𝑎 : 𝑏 | 𝑐 : 𝑑] is the cross-ratio of the four projective
points 𝑎, 𝑏, 𝑐, and 𝑑:

[𝑎 : 𝑏 | 𝑐 : 𝑑] = [𝑎 : 𝑏 | 𝑐][𝑎 : 𝑏 | 𝑑]
where [𝑎 : 𝑏 | 𝑐] = [𝑎 : 𝑏 | 𝑐 : ∞] = (𝑎 − 𝑐𝑏 − 𝑐) . (2)

Conversely, the time coordinates for the event 𝑒 are then
obtained from the angles measurements and the following
formulas:

𝜏�푒 = (𝜏⬦ − 𝜏�耠�耠 [𝜏⬦ : 𝜏�耠�耠 | 𝜏S∙] tan𝛼�푒1 − [𝜏⬦ : 𝜏�耠�耠 | 𝜏S∙] tan𝛼�푒 ) , (3a)

𝜏�푒 = (𝜏⬦ − 𝜏�耠�耠 [𝜏⬦ : 𝜏�耠�耠 | 𝜏S∗] tan𝛼�푒1 − [𝜏⬦ : 𝜏�耠�耠 | 𝜏S∗] tan𝛼�푒 ) , (3b)

�̃��푒 = (�̃�⬦ − �̃��耠�耠 [�̃�⬦ : �̃��耠�耠 | �̃�S] tan �̃��푒1 − [�̃�⬦ : �̃��耠�耠 | �̃�S] tan �̃��푒 ) . (3c)

And thus, the event 𝑒 is localized in the localization grid R3
�퐿.

Then, we deduce the following lemma.

Lemma 10. The map

S : (tan𝛼�푒, tan𝛼�푒, tan �̃��푒) ∈ T
3 → (𝜏�푒, 𝜏�푒, �̃��푒) ∈ T

3, (4)

whereT3 ≡ (𝑃R1)3 is an automorphism.

Proof. This is obvious from the relations (1a)–(1c), because
M,M, and M̃ are bijective Möbius transformations.

4.4. The Consistency between the Positioning and
Localization Protocols

Theorem 11. The localization and the positioning protocols or
systems in a (2 + 1)-dimensional spacetime are consistent.
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Figure 9: The projective line associated with the celestial circleC�퐸𝑝
.

Proof. The consistency must be satisfied if 𝑒 is an element of
the emitters’ worldlines. Indeed, the localization protocol is
consistent with the positioning protocol if the set of events
on the emitters’ worldlines fromwhich the localization of any
event 𝑒 is possible are themselves localizable.

Case 1 (𝑒 ∈ WS). We consider two cases: 𝑒 ≪ S∙ andS∙ ≪ 𝑒.
The other cases with S∗ or 𝑆�耠 instead of S∙ give the same
results. Now, we start with the assumption 𝑒 ≪ S∙ from
which we deduce the following causal structure:

Ep

e≪∙
(5)

In particular, from S∙ ≪ 𝑒 → 𝐸�푝, we find2 that S∙ ≺𝑒 ≺ 𝐸�푝, and then, with S∙ → 𝐸�푝, we obtain3 S∙ → 𝑒 → 𝐸�푝.
But then2, we have S∙��≪𝑒. With the assumption 𝑒 ≪ S∙, we
deduce also 𝑒��≪S∙, and therefore S∙ = 𝑒. Hence, we consider
that S∙ = 𝑒 and with the other two sets of events S∗ with𝐸�푝 or 𝑆�耠 and �̃��푝, we deduce finally that 𝑒 = S∙ = S∗ =𝑆�耠 ≡ 𝑆. Therefore, we conclude that the time coordinates of𝑒 provided by the positioning system are 𝜏�푒 = 𝜏�푆, 𝜏�푒 = 𝜏�푆, and�̃��푒 = �̃��푆.

Besides, from the projective frames, we have also

tan𝛼�푒 = [𝜏⬦ : 𝜏�耠�耠 | 𝜏�푒 : 𝜏S∙] = 1, (6a)

tan𝛼�푒 = [𝜏⬦ : 𝜏�耠�耠 | 𝜏�푒 : 𝜏S∗] = 1, (6b)

tan �̃��푒 = [�̃�⬦ : �̃��耠�耠 | �̃��푒 : �̃�S] = 1. (6c)

And therefore, we obtain𝜏�푒 = 𝜏S∙ ,𝜏�푒 = 𝜏S∗ ,�̃��푒 = �̃�S , (7)

which are the coordinates of 𝑆.
In conclusion, the localization protocol is consistent with

the positioning one.

Case 2 (𝑒 is a primary event: 𝑒 = 𝐸�푝(primary) ∈ W). In this
case, we obtain the causal structure (Figure 10).

Then, from the three echoing causal structuresEch,Ech,
and Ẽch, we have 𝑒 = 𝐸�푝 = 𝐸∗ = 𝐸�耠 where 𝐸∗ is associated
with the projective point [∞]�퐸𝑝 and 𝐸�耠 is associated with the

projective point [0]̃
�퐸𝑝
. Consequently, we have tan𝛼�푒 = ∞

and tan �̃��푒 = 0. Also, we have 𝐸∙ = 𝐸�耠�耠 and �̃�∙ = �̃�⬦ from
which we deduce from the positioning system that their time
coordinates are equal; that is, we have (one of the emission
coordinates is equal to the broadcast one in the positioning
protocol; see Remark 6)𝜏

�퐸
∙ = 𝜏∙ = 𝜏�耠�耠 = 𝜏

�퐸
 ,�̃�̃

�퐸
∙ = �̃�∙ = �̃�⬦ = �̃�̃

�퐸
⬦ . (8)

Besides, from the localization protocol, we have

tan𝛼�푒 = [𝜏⬦ : 𝜏�耠�耠 | 𝜏�푒 : 𝜏S∙] =? (not defined) , (9a)

tan𝛼�푒 = [𝜏⬦ : 𝜏�耠�耠 | 𝜏�푒 : 𝜏S∗] = ∞, (9b)

tan �̃��푒 = [�̃�⬦ : �̃��耠�耠 | �̃��푒 : �̃�S] = 0. (9c)

Hence, we deduce 𝜏�푒 =?,𝜏�푒 = 𝜏�耠�耠,�̃��푒 = �̃�⬦. (10)

And from the positioning protocol, because 𝐸�푝 is a
positioned point with emission coordinates (𝜏�퐸𝑝 , 𝜏∙, �̃�∙), we
have also 𝜏�푒 = 𝜏�퐸𝑝 = 𝜏∙,

�̃��푒 = �̃��퐸𝑝 = �̃�∙, (11)

and therefore, with (8), we deduce the consistency for two
time stamps. Actually, 𝜏�푒 is not obtained by localization but
by identification (Definition 5). Indeed, we know that 𝑒 is
an element of W and that 𝜏�푒 = 𝜏�퐸𝑝 is broadcast by the
identified main emitter E. This determination of 𝜏�푒 is then
similar to the emission coordinate ascription presented in the(1 + 1)-dimensional case for which localization is equivalent
to positioning (Remark 3), hence the consistency.

Case 3 (𝑒 is a secondary event: 𝑒 = 𝐸∙(secondary) ∈ W or𝑒 = 𝐸�耠(secondary) ∈ W). Then, the causal structure is the
following whenever 𝑒 = 𝐸∙ (Figure 11):

(i) 𝑒 = 𝐸∙(secondary) ∈ W. Then, the localization pro-
tocol at 𝐸�푝 gives the formula tan𝛼�푒 = [𝜏⬦ : 𝜏�耠�耠 | 𝜏�푒 :
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Figure 10: The causal structure for the three echoing protocols Ech, Ech, and Ẽch whenever 𝑒 = 𝐸�푃.
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Figure 11: The causal structure for the three echoing protocols Ech, Ech, and Ẽch whenever 𝑒 = 𝐸∙.
𝜏S∙] = 0 because 𝐸∙ is associated with the projective
point [0]�퐸𝑝 . Therefore, we have 𝜏�푒 = 𝜏⬦. But, from
the positioning protocol, the emission coordinate 𝜏

�퐸
∙

of 𝐸∙ relative to the main emitter E is 𝜏⬦ broadcast
at the ternary event 𝐸⬦. Hence, 𝜏

�퐸
∙ = 𝜏⬦ and

we deduce the consistency of the localization proto-
col with the positioning protocol for one emission
coordinate.

(ii) 𝑒 = 𝐸�耠(secondary) ∈ W. The reasoning is similar to
the previous one.Then, we deduce the consistency for�̃��푒 = �̃�

�퐸
 = �̃��耠�耠 because (1) �̃��푝 is the primary event for𝐸�耠 and �̃��耠�耠 is the ternary event for 𝐸�耠, and (2) [�̃�⬦ :�̃��耠�耠 | �̃��푒 : �̃�S] = ∞ which involves �̃��푒 = �̃��耠�耠.

Now, we consider two distinct causal structures of local-
ization 𝑎 and 𝑏 such that 𝑒 = 𝐸∙�푎 = 𝐸�耠�푏 fromwhich we deduce
the consistency for 𝜏�푒 and �̃��푒. Furthermore, as in Case 2, we
deduce 𝜏�푒 by identification (Definition 5) and we obtain 𝜏�푒 =𝜏
�퐸
∙𝑎 = 𝜏

�퐸
𝑏 , hence the consistency.

Case 4 (𝑒 is a ternary event). For instance, we can set 𝑒 = 𝐸⬦.
But then, we have also 𝑒 = 𝐸⬦ → 𝐸�푃 on WE which is
impossible since we have only the chronological order on the
emitters’ worldlines.

Remark 12. From this theorem, we can then notice that RLSs
are based on autolocalization protocols similarly to RPSs
which are based on autolocation protocols. As a result, RLSs
and RPSs are independent of any system of reference.
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4.5. The Local Projective Structure

Definition 13. We call

(i) Emission grid the Euclidean space R3
�푃 ≡ R3 of the

positioned events 𝑒�푃 = (𝜏�푒, 𝜏�푒, �̃��푒);
(ii) Localization (or quadrometric) grid the Euclidean

space R4
�퐿 ≡ R3 × R∗ of the localized events 𝑒�퐿 =(𝜏�푒, 𝜏�푒, �̃��푒, ∘𝜏�푒), where ∘𝜏�푒 is provided by the ancillary

emitter S by identification from the horismotic rela-
tion 𝑆�퐿 → 𝑒�푃 (𝑆�퐿 ∈ WS) or the “message function”
[11] 𝑓−S : R3

�푃 → WS; that is, the time stamp ∘𝜏�퐿
broadcast by S at 𝑆�퐿 is such that ∘𝜏�퐿 ≡ ∘𝜏�푒;

(iii) Anisotropic localization (or quadrometric) grid the
Euclidean space R4

�퐴�퐿 ≡ R3 × R∗ of events 𝑒�퐴�퐿 =( ∘𝜏�푒𝜏�푒, ∘𝜏�푒𝜏�푒, ∘𝜏�푒�̃��푒, ∘𝜏�푒).
Definition 14. We denote by 𝐼 : R4

�퐿 → R4
�퐴�퐿 the bijective map

such that 𝐼(𝑒�퐿) = 𝑒�퐴�퐿. And we denote by 𝜋 : R4
�퐴�퐿 → R3

�푃 the
submersion such that 𝜋(𝑒�퐴�퐿) = 𝑒�푃.
Remark 15. In these definitions, the time coordinate ∘𝜏�푒 must
be nonvanishing. If this condition is not satisfied we can,
nevertheless, always consider that the ancillary emitter S

generates a time number ∘𝜌 and broadcasts 𝑒 ∘�휌 ≡ ∘𝜏. This can be
realized from a real-time computer with ∘𝜌 as the generated
input and 𝑒 ∘�휌 as the broadcast output. Obviously, we can
assume the same for the main emitters.

Let 𝑔 be an element of 𝐺𝐿(4,R) such that 𝑔 ⋅ 𝑒�퐴�퐿 = 𝑒�耠�퐴�퐿.
And thus, 𝐺𝐿(4,R) acts linearly on R4

�퐴�퐿. Then, the action of𝐺𝐿(4,R) onR4
�퐿 andR

3
�푃 is nonlinear and locally transitive and

it defines homographies (i.e., conformal transformations):

𝑒�耠�푃 = (𝐴 ⋅ 𝑒�푃 + 𝑏𝑐 ⋅ 𝑒�푃 + 𝜇 ) ,
𝑔 ≡ (𝐴 𝑏

�푡𝑐 𝜇) , (12a)

∘𝜏�耠�푒 = ∘𝜏�푒 (𝑐 ⋅ 𝑒�푃 + 𝜇) , (12b)

where 𝜇 ∈ R, (𝑏, 𝑐) ∈ (R3)2, and 𝐴 ∈ 𝑀3×3(R). Let us notice
that ∘𝜏�푒 does not intervene in (12a). Moreover, we deduce
that 𝑃𝐺𝐿(4,R) acts locally transitively on R3

�푃. Therefore, we
obtain the following.

Theorem 16. The (2 + 1)-dimensional spacetime manifold has
a local 3-dimensional projective structure inherited from its
causal structure.

Proof. Let 𝑥, 𝑡, and 𝑠�푖 (𝑖 = 1, 2, 3) in R4
�퐴�퐿 be such that𝑥 ≡ 𝑒�퐴L = (𝑥3 = ∘𝜏�푒𝜏�푒, 𝑥2 = ∘𝜏�푒𝜏�푒, 𝑥1 = ∘𝜏�푒�̃��푒, 𝑥0 = ∘𝜏�푒) ,𝑡 ≡ (𝑡3 = 𝑡0 tan𝛼�푒, 𝑡2 = 𝑡0 tan𝛼�푒, 𝑡1 = 𝑡0 tan �̃��푒, 𝑡0) ,(𝑡0 ̸= 0) ,

𝑠1 ≡ (𝑠31 = 𝑠01𝜏S∙ , 𝑠21 = 𝑠01𝜏⬦, 𝑠11 = 𝑠01𝜏�耠�耠, 𝑠01 = 𝜏S∙𝜏⬦𝜏�耠�耠) ,(𝑠01 ̸= 0) ,
𝑠2 ≡ (𝑠32 = 𝑠02𝜏S∗ , 𝑠22 = 𝑠02𝜏⬦, 𝑠12 = 𝑠02𝜏�耠�耠, 𝑠02= 𝜏S∗𝜏⬦𝜏�耠�耠) , (𝑠02 ̸= 0) ,
𝑠3 ≡ (𝑠33 = 𝑠03�̃�S , 𝑠23 = 𝑠03�̃�⬦, 𝑠13 = 𝑠03�̃��耠�耠, 𝑠03= �̃�S �̃�⬦�̃��耠�耠) , (𝑠03 ̸= 0) .

(13)

Then, the relations (1a)–(1c) can be put in the forms
(𝛼, 𝛽, 𝜇, ] = 0, 1, 2, 3; no summation on 𝑖 = 1, 2, 3)

𝐾�푖
�훼,�훽,�휇,]𝑠�훼�푖 𝑠�훽�푖 𝑥�휇𝑡] = 0,

𝐾0
�훼,�훽,�휇,]𝑠�훼�푖 𝑠�훽�푖 𝑥�휇𝑡] ̸= 0, (14)

where the coefficients of the tensors𝐾�푖 take only the values 0
or ±1 and the only nonvanishing coefficient of𝐾0 is𝐾0

0,0,0,0.
Then, it is easy to show that for all 𝑔�푥 and 𝑔�푡 in𝐺𝐿(4,R) there
exists 𝑔 ∈ 𝐺𝐿(4,R) such that

𝐾�푖 (𝑔 ⋅ 𝑠�푖, 𝑔 ⋅ 𝑠�푖, 𝑔�푥 ⋅ 𝑥, 𝑔�푡 ⋅ 𝑡) = 0,𝐾0 (𝑔 ⋅ 𝑠�푖, 𝑔 ⋅ 𝑠�푖, 𝑔�푥 ⋅ 𝑥, 𝑔�푡 ⋅ 𝑡) ̸= 0. (15)

In particular, if 𝑔 ≡ Id and if the 𝑠�푖 are fixed, then the set of
localized events 𝑥 ≡ 𝑒�퐴�퐿 ∈ R4

�퐴�퐿 is an orbit of 𝐺𝐿(4,R) and
the set of corresponding events 𝑒�푃 = 𝜋(𝑒�퐴�퐿) is an orbit of the
projective group 𝑃𝐺𝐿(4,R).

And then, because the relations (14) are homogeneous
polynomials, we deduce that R4

�퐴�퐿 has a projective structure
as expected.

Remark 17. ThemapS defined locally byM−1×M−1×M̃−1
on

R3
�푃 is the so-called “solderingmap4” S of Ehresmann defined

on 𝑃R3 = R3
�푃 ∪ 𝑃R2 to the spacetime manifoldM:

PR3 × PR3 PR3

ℳ PR3≃
ＦＩ＝.

S ≃
ＦＩ＝.

M−1 × M
−1

× M−1 (16)

And the set of homogeneous equations 𝐾�푖(𝑠�푖, 𝑠�푖, 𝑡, 𝑥) = 0
when the 𝑠�푖 are fixed defines leaves in the trivial bundle𝑃R3 × 𝑃R3. After reduction of the bundle R4 × R4 → M
to this projective bundle, the projective Cartan connection
in the sense of Ehresmann [17] is defined as the differential𝑑𝐾 ≡ 𝑑𝐾1 × 𝑑𝐾2 × 𝑑𝐾3 with respect to the vertical variables
V ≃ (tan𝛼�푒, tan𝛼�푒, tan �̃��푒) and the horizontal variables 𝑒�푃;
and thus, the tangent spaces of these horizontal leaves are the
annihilators/contact elements of 𝑑𝐾.
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Figure 12: The causal structure of the RPS in a (3 + 1)-dimensional
spacetime.

Remark 18. Also, as a result, the spacetime manifold can be
considered as a “generalized Cartan space” which is endowed
with both (1) a “projective Cartan connection” (of dimension
4) providing a local projective structure, and (2) a compatible
(pseudo-)Riemannian structure viewed for instance as a
horizontal section in the four-dimensional anisotropic grid.

Also, we can eventually define a Ehresmann connection
providing a horizontal/vertical splitting in the tangent space
of the principal bundle of projective frames of the spacetime
manifold. And then, once this Ehresmann connection is
given, we can define from this splitting a projective Cartan
connection5 which can be viewed as the infinitesimal changes
of the projective frames with respect to themselves.

5. RLSs in (3 + 1)-Dimensional Spacetime

We need similarly four main emitters E, E, Ẽ, and Ê
providing a RPS and, again, one ancillary emitter S emitting
its time coordinates and its own time stamp ∘𝜏 from a clock to
get a RLS.

5.1. The Causal Structure of the RPS. The protocol becomes
more and more complex to implement. Indeed, sixteen time
stamps are needed to provide to the users their positions in a
given system of reference. These positions are obtained from
the knowledge the users acquire of their own positions and
those of themain emitters both in the emission grid and in the
system of reference; and this is due to the ephemerides that
the emitters upload to the users and the autolocating process.
The causal structure of the RPS is shown in Figure 12 and
Table 6.

The position in the emission grid R4
�푃 of the user at 𝑈�푟 is(𝜏�耠, 𝜏�耠, �̃��耠, �̂��耠).

5.2.The Description of the RLS. As in the (2+1)-dimensional
case, we need a system of light echoes associated with each
privileged emitter, each linked to an event of reception on
the user’s worldline. Again, we denote by Ech the system of

Table 6: The events 𝐸�耠, 𝐸�耠, �̃��耠, and �̂��耠 and their broadcast time
stamps received at 𝑈�푟.
Event Broadcasts time stamps𝐸�耠 (𝜏�耠 = 𝜏�퐸 , 𝜏(iv), �̃��耠�耠�耠, �̂�(iv))𝐸�耠 (𝜏�耠�耠, 𝜏�耠 = 𝜏

�퐸
 , �̃��耠�耠, �̂��耠�耠�耠)�̃��耠 (𝜏�耠�耠�耠, 𝜏�耠�耠, �̃��耠 = �̃�̃

�퐸
 , �̂��耠�耠)�̂��耠 (𝜏(iv), 𝜏�耠�耠�耠, �̃�(iv), �̂��耠 = �̂�̂

�퐸
 )

light echoes for the privileged emitter E with 𝐸�푝 as primary
event. But now, contrarily to the (2 + 1)-dimensional case, we
must consider celestial spheres rather than celestial circles.
And then, we have again sky mappings from the past null
cones directions at the primary events to the “bright” points
on the associated celestial spheres. Nevertheless, we have only
homeomorphisms between hemispheres with half of their
boundaries and 𝑃R2. Thus, a problem occurs a priori in
this (3 + 1)-dimensional case because we have two disjoint
hemispheres for each celestial sphere. And then, consecutive
problems appear for the choice and the realization of these
hemispheres in the localizing protocol. However, we show
in the sequel this problem vanishes completely when con-
sidering the full set of echoing systems and the particular
hemispheres implementation we present for the emitters. We
need, first, the following definition for the determination of
the first emission coordinate 𝜏�푒.
Definition 19 (the echoing system Ech). The echoing system
Ech associated with the privileged emitter E is based on the
following features (see Figure 15):

(i) One primary event 𝐸�푝 with its celestial sphereC�퐸𝑝
.

(ii) Four secondary events𝐸∙, �̃�∙, and �̂�∙ with the ancillary
event S∙, associated, respectively, with the canonical
projective points [∞, 0]�퐸𝑝 , [0,∞]�퐸𝑝 , [0, 0]�퐸𝑝 , and[1, 1]�퐸𝑝 of the projective frame F�퐸𝑝

defining one
specific hemisphere of the celestial sphere C�퐸𝑝

(Fig-
ure 15).

(iii) One ternary event 𝐸♯ for 𝐸∙, two ternary events 𝐸⬦
and 𝐸⬦ for �̃�∙, two ternary events 𝐸�耠�耠 and 𝐸�耠�耠 for �̂�∙,
and none for S∙,

(iv) Two compasses on the specific hemisphere of C�퐸𝑝

defined above with a moving origin anchored on the
projective point [1, 1]�퐸𝑝 associated with S∙.

(v) One event of reception 𝑈�푟 ∈ V at which all the data
are collected and sent by the emitterE.

Then,we have the following hierarchy of events in the four
different echoing systems Ech, Ech, Ẽch, and Êch:

(i) Four primary events 𝐸�푝, 𝐸�푝, �̃��푝, and �̂��푝, each
with three secondary events and one ancillary event
(Table 7).

(ii) Four horismotic relations 𝐸�푝 → 𝑈�푟, 𝐸�푝 → 𝑈�푟, �̃��푝 →�̃��푟, and �̂��푝 → �̂��푟, where the chronologically ordered
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Table 7:The four primary events and their secondary/ancillary events with their corresponding projective points on the celestial hemispheres
C�퐸𝑝

,C�퐸𝑝
,C̃

�퐸𝑝
, andĈ

�퐸𝑝
homeomorphic to 𝑃R2.

Echoing system Primary event [∞, 0] [0,∞] [0, 0] [1, 1]
Ech 𝐸�푝 ∈ W 𝐸∙ �̃�∙ �̂�∙ S∙

Ech 𝐸�푝 ∈ W �̃�† �̂�† 𝐸† S†

Ẽch �̃��푝 ∈ W̃ �̂�∗ 𝐸∗ 𝐸∗ S∗

Êch �̂��푝 ∈ Ŵ 𝐸�耠 𝐸�耠 �̃��耠 S�耠

events of reception 𝑈�푟, 𝑈�푟, �̃��푟, and �̂��푟 belong to the
user worldlineV.

(iii) One or two (normal and shifted) ternary events by
secondary event except for the ancillary event:

Ech: 𝐸∙ : 𝐸♯, �̃�∙ : 𝐸⬦, 𝐸⬦, �̂�∙ : 𝐸�耠�耠, 𝐸�耠�耠, (17a)

Ech: �̃�† : 𝐸♯, �̂�† : 𝐸⬦, �̃�⬦, 𝐸† : 𝐸�耠�耠, �̃��耠�耠, (17b)

Ẽch: �̂�∗ : �̃�♯, 𝐸∗ : �̃�⬦, �̂�⬦, 𝐸∗ : �̃��耠�耠, �̂��耠�耠, (17c)

Êch: 𝐸�耠 : �̂�♯, 𝐸�耠 : �̂�⬦, 𝐸⬦, �̃��耠 : �̂��耠�耠, 𝐸�耠�耠. (17d)

(iv) Two events associated with the projective points[∞, 0] and [0,∞] define the equatorial circle dividing
the celestial sphere 𝑆2 ≃ 𝑃R2#𝑃R2 in two celestial
hemispheres C which are identified to a unique
projective space 𝑃R2. In other words, the directions
of propagation of the light rays detected as bright
points on the hemispheres are not considered. This
could be a problem a priori. Actually, this difficulty is
completely canceled out from the operating principles
of RLSs as we will see in the sequel.

(v) Two compasses on each celestial hemisphere C�퐸𝑝
,

C�퐸𝑝
,C̃

�퐸𝑝
, andĈ

�퐸𝑝
with a commonmoving origin for

angle measurements anchored on the projective point[1, 1].
(vi) We recall thatS broadcasts as a particular user its own

emission coordinates (𝜏�푆, 𝜏�푆, �̃��푆, 𝜏�푆) obtained from the
positioning system for all 𝑆 ∈ WS. It broadcasts also
all along WS its own time coordinate denoted again
by ∘𝜏.

5.3. The Causal Structure of the RLS. We represent (Figures
13 and 14 and Tables 8 and 9) only the causal structure for
the echoing system Ech; the other echoing systems Ech,
Ẽch, and Êch can be easily obtained from the symbolic
substitutions deduced from Table 7 and (17a)–(17d).

5.4. The Projective Frame, the Time Stamps Correspondence,
and the Consistency. We consider the projective frame at the
primary event 𝐸�푝 and the time stamps correspondence asso-
ciated with the change of projective frame on C�퐸𝑝

(Table 10
and Figure 15). Obviously, the other correspondences and

changes of projective frames can be deduced in the same
way for the three other primary events. Then, we obtain four
corresponding pairs of time coordinates for 𝑒 in the four
celestial hemispheres (Table 11).

Then, the change of projective frame on the celestial
hemisphere gives the following relation:

(𝑎 𝑑 𝑔𝑏 𝑒 ℎ𝑐 𝑓 𝑘)(1 0 0 1 𝜌 tan𝛼�푒0 1 0 1 𝜌 tan𝛽�푒0 0 1 1 𝜌 )
= (𝑢𝜏♯ V𝜏⬦ 𝑤𝜏�耠�耠 (𝑢 + V + 𝑤) 𝜏S∙ 𝑟𝜏∙�푒𝑢𝜏∙ V𝜏⬦ 𝑤𝜏�耠�耠 (𝑢 + V + 𝑤) 𝜏S∙ 𝑟𝜏∙�푒𝑢 V 𝑤 (𝑢 + V + 𝑤) 𝑟 ) ,

(18)

where 𝜌𝑢V𝑤𝑟(𝑢 + V + 𝑤) ̸= 0, and where the determinant
of the square matrix on the l.h.s. of this equality must be
nonvanishing. Then, we deduce that

(𝑢𝜏♯ V𝜏⬦ 𝑤𝜏�耠�耠𝑢𝜏∙ V𝜏⬦ 𝑤𝜏�耠�耠𝑢 V 𝑤 )(1 𝜌 tan𝛼�푒1 𝜌 tan𝛽�푒1 𝜌 )
= 𝑟 (𝑢 + V + 𝑤)(𝜏S∙ 𝜏∙�푒𝜏S∙ 𝜏∙�푒1 1) ,

(19)

and we can take in addition 𝑢 + V + 𝑤 = 𝑟 = 1.
Obviously, we obtain from the three other echoing sys-

tems three other similar systems of equations for the other
six unknown time coordinates given in Table 11 for 𝑒.

Now, besides, we have necessarily the relations:𝜏∙�푒 = 𝜏�耠�푒 ,𝜏∙�푒 = 𝜏†�푒 ,�̃�∗�푒 = �̃�†�푒 ,�̂�∗�푒 = �̂��耠�푒.
(20)

Indeed, if one of these four precedent equalities is not
satisfied, then itmeans that if the event 𝑒, the worldlines of the
main emitters, and the ancillary one are fixed, then, at least
one time stamp among the eight can vary. And then, one of
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Figure 13: The echoing system Ech.
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Figure 14: The causal structure for the four echoing systems Ech,
Ech, Ẽch, and Êch with the event 𝑒. The chronological order
between S∙, S†, S∗, and S�耠 belonging toWS can be different.
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Figure 15: The projective disk on the celestial hemisphere C�퐸𝑝

centered at 𝐸�푝 and the four canonical projective points and the
corresponding projective point for 𝑒.
the eight angles on the four celestial hemispheres necessarily
can vary as well. But then, it would mean that the position of
the event 𝑒 seen on the celestial hemispheres of the four main
emitters can vary arbitrarily whenever 𝑒 is fixed. In other

Table 8: The secondary/ancillary events and their broadcast time
stamps in the Ech system.

Event Broadcasts time stamps Received at𝐸∙ (𝜏♯, 𝜏∙ = 𝜏
�퐸
∙ ) 𝐸�푝�̃�∙ (𝜏⬦, 𝜏⬦) 𝐸�푝�̂�∙ (𝜏�耠�耠, 𝜏�耠�耠) 𝐸�푝

S∙ (𝜏S∙ , 𝜏S∙ ) 𝐸�푝
Table 9: The ternary events and their broadcast time stamps in the
Ech system.

Event Broadcasts time stamps Received at𝐸♯ 𝜏♯ 𝐸∙𝐸⬦ 𝜏⬦ �̃�∙𝐸⬦ 𝜏⬦ �̃�∙𝐸�耠�耠 𝜏�耠�耠 �̂�∙𝐸�耠�耠 𝜏�耠�耠 �̂�∙
words, 𝑒 might have more than one corresponding “bright”
point on each celestial hemisphere; and, in particular, because
we have continuous functions, then it might correspond to𝑒, in particular, a connected “bright” line on one of the
four celestial hemispheres. This would involve necessarily
the existence of more than one and only one horismotic
relation “→.”This situation can be encountered in the case of
the existence of conjugate points for light-like geodesics for
instance in Riemannian manifolds. Then, considering only
one horismos, the relations (20) must be satisfied.

Then, we obtain the following.

Lemma 20. Let T4 ≡ (𝑃R1)4 be the 4-torus. Then, the RLS
provides a map

M4 : (tan𝛼�푒, tan𝛼�푒, tan �̃��푒, tan �̂��푒) ∈ T
4 →(𝜏�푒, 𝜏�푒, �̃��푒, �̂��푒) ∈ T
4

(21)

which is an automorphism.



Advances in High Energy Physics 13

Table 10: The change of projective frame and the corresponding
events.

Event F�퐸𝑝
F�휏
�퐸𝑝𝑒 [tan𝛼�푒, tan𝛽�푒] [𝜏∙�푒 , 𝜏∙�푒]𝐸∙ [∞, 0] [𝜏♯, 𝜏∙ = 𝜏

�퐸
∙ ]�̃�∙ [0,∞] [𝜏⬦, 𝜏⬦]�̂�∙ [0, 0] [𝜏�耠�耠, 𝜏�耠�耠]

S∙ [1, 1] [𝜏S∙ , 𝜏S∙ ]
Table 11: The pairs of time coordinates for 𝑒 deduced in the four
celestial hemispheres.

Celestial hemisphere Time coordinates for 𝑒
C�퐸𝑝

(𝜏∙�푒 , 𝜏∙�푒)
C�퐸𝑝

(𝜏†�푒 , �̃�†�푒 )
C̃
�퐸𝑝

(�̃�∗�푒 , �̂�∗�푒 )
Ĉ
�퐸𝑝

(�̂��耠�푒, 𝜏�耠�푒)
Proof. This lemma can be easily proved simply by solving
systems of equations like (19) but we indicate interesting
intermediate homogeneous equations in the computations.
From the relations (20) and the equations at each primary
event such as (19) at 𝐸�푝, we deduce that there are four linear
relations between “tan𝛼” and “tan𝛽.” And then, it can be
shown that we obtain four Möbius relations linking the four
tan𝛼’s to the four time coordinates 𝜏�푒, 𝜏�푒, �̃��푒, and �̂��푒 of 𝑒
generalizing the situation encountered in the precedent (2 +1)-dimensional case.

More precisely, considering the primary event 𝐸�푝, we
obtain (19). At the other primary event �̃��푝, we obtain the
similar following relations (] ̸= 0):

(𝑝�̃�♯ 𝑞�̃�⬦ 𝑚�̃��耠�耠𝑝�̂�∗ 𝑞�̂�⬦ 𝑚�̂��耠�耠𝑝 𝑞 𝑚 )(1 ] tan �̃��푒1 ] tan �̃��푒1 ]

)
= 𝑛 (𝑝 + 𝑞 + 𝑚)(�̃�S∗ �̃�∗�푒�̂�S∗ �̂�∗�푒1 1 ) ,

(22)

where again we can impose the relations 𝑛 = 𝑝 + 𝑞 + 𝑚 = 1.
Then, from now and throughout, we set

𝜏�푒 ≡ 𝜏∙�푒 = 𝜏�耠�푒 ,𝜏�푒 ≡ 𝜏∙�푒 = 𝜏†�푒 ,�̃��푒 ≡ �̃�∗�푒 = �̃�†�푒 ,�̂��푒 ≡ �̂�∗�푒 = �̂��耠�푒.
(23)

And then, it can be shown that the relations (19) and (22),
those depending explicitly on the time stamps, can be put in
the following forms (𝑝, 𝑞 = 1, . . . , 4 and 𝜇, ] = 0, 1, . . . , 4):𝐾�푝�푞�휇]𝑠�푝𝑆�푞𝑥�휇𝑡] = 0,𝐾�푝�푞�휇]𝑠�푝𝑆�푞𝑥�휇𝑡] = 0, (24a)

�̃��푝�푞�휇]�̃��푝�̃��푞𝑥�휇𝑡] = 0,
�̂��푝�푞�휇]�̂��푝�̃��푞𝑥�휇𝑡] = 0, (24b)

where𝑥 ≡ ( ∘𝜏�푒𝜏�푒, ∘𝜏�푒𝜏�푒, ∘𝜏�푒�̃��푒, ∘𝜏�푒�̂��푒, ∘𝜏�푒) ,𝑡 ≡ (𝜇 tan𝛼, 𝜇 tan𝛽, 𝜇 tan �̃�, 𝜇 tan �̃�, 𝜇) , (25a)

𝑠 ≡ (𝜏♯, 𝜏⬦, 𝜏�耠�耠, 𝑠0) ,
𝑠 ≡ (𝜏∙, 𝜏⬦, 𝜏�耠�耠, 𝑠0 = 𝑠0) , (25b)

�̃� ≡ (�̃�♯, �̃�⬦, �̃��耠�耠, �̃�0) ,
�̂� ≡ (�̂�∗, �̂�⬦, �̂��耠�耠, �̂�0 = �̃�0) , (25c)

𝑆 ≡ (
𝜏S∙ 𝜏⬦ 𝜏�耠�耠𝜏S∙ 𝜏⬦ 𝜏�耠�耠1 1 1

 ,

𝜏♯ 𝜏S∙ 𝜏�耠�耠𝜏∙ 𝜏S∙ 𝜏�耠�耠1 1 1

 ,

𝜏♯ 𝜏⬦ 𝜏S∙𝜏∙ 𝜏⬦ 𝜏S∙1 1 1

 ,
𝜏♯ 𝜏⬦ 𝜏�耠�耠𝜏∙ 𝜏⬦ 𝜏�耠�耠1 1 1

) ,
(26a)

�̃� ≡ (
�̃�S∗ �̃�⬦ �̃��耠�耠�̂�S∗ �̂�⬦ �̂��耠�耠1 1 1

 ,

�̃�♯ �̃�S∗ �̃��耠�耠�̂�∗ �̂�S∗ �̂��耠�耠1 1 1

 ,

�̃�♯ �̃�⬦ �̃�S∗�̂�∗ �̂�⬦ �̂�S∗1 1 1

 ,
�̃�♯ �̃�⬦ �̃��耠�耠�̂�∗ �̂�⬦ �̂��耠�耠1 1 1

) ,
(26b)

where 𝑠0 and �̃�0 are nonvanishing arbitrary coefficients and𝜇 ̸= 0. Hence, we have four homogeneous algebraic equations
linking the vectors 𝑡 and 𝑥. Obviously, we have also four
other similar homogeneous equations for 𝑥 and another 𝑡�耠 ≃(tan𝛼, tan𝛽, tan �̂�, tan �̂�) deduced from the echoing systems
at the other two primary events 𝐸�푝 and �̂��푝:𝐾�푝�푞�휇]𝑠�耠�푝𝑆�푞𝑥�휇𝑡�耠] = 0,

𝐾�푝�푞�휇]𝑠�耠�푝𝑆�푞𝑥�휇𝑡�耠] = 0, (27a)

�̃��푝�푞�휇]�̃��耠�푝�̂��푞𝑥�휇𝑡�耠] = 0,
�̂��푝�푞�휇]�̂��耠�푝�̂��푞𝑥�휇𝑡�耠] = 0, (27b)
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where 𝑠�耠0 = 𝑠�耠0 and �̃��耠0 = �̂��耠0 are nonvanishing arbitrary coef-
ficients. And then, because 𝑥 is determined completely from
(24a)-(24b), (27a)-(27b) are linearly depending on (24a)-
(24b) which involves that we have linear relations between
the two sets of “angles” 𝑡 ≃ (tan𝛼, tan𝛽, tan �̃�, tan �̃�) and 𝑡�耠 ≃(tan𝛼, tan𝛽, tan �̂�, tan �̂�). Hence, taking linear combinations
of the systems of equations (27a)-(27b) and (24a)-(24b)
and taking into account also the remaining equations in
(19) and (22) not depending on the time stamps we can
deduce a system of four homogeneous equations linking 𝑦 ≡(tan𝛼, tan𝛼, tan �̃�, tan �̂�, 1) and 𝑧 ≡ (𝜏�푒, 𝜏�푒, �̃��푒, �̂��푒, 1):

𝐻�푖
�휇,]𝑦�휇𝑧] = 0, (𝑖 = 1, 2, 3, 4) , (28)

where 𝑠0, �̃�0, 𝑠�耠0, and �̃��耠0 do not intervene anymore. And (28)
determines univocally 𝑥 up to the time coordinate ∘𝜏�푒, that
is, (𝜏�푒, 𝜏�푒, �̃��푒, �̂��푒). Moreover, (28) is another expression for
Möbius transformations between each given angle and a
linear combination of (𝜏�푒, 𝜏�푒, �̃��푒, �̂��푒), hence the result for an
automorphism on the 4-torus.

Remark 21. We can notice from Lemma 20 that we obtain
the time coordinates (𝜏�푒, 𝜏�푒, �̃��푒, �̂��푒) for 𝑒 from only two
echoing systems, for example, at 𝐸�푝 and �̃��푝 with the four
“angles” (tan𝛼, tan𝛽, tan �̃�, tan �̃�), or from the four echoing
systems at 𝐸�푝, 𝐸�푝, �̃��푝, and �̂��푝 with the four “angles”(tan𝛼, tan𝛼, tan �̃�, tan �̂�).
Theorem 22. The localization and the positioning protocols or
systems in a (3 + 1)-dimensional spacetime are consistent.

Proof. The proof is obvious because (1) the RLS in the (3 +1)-dimensional case has a causal structure which can be
decomposed in four causal substructures each equivalent to
the one given for the RLS in the (2 + 1)-dimensional case and(2) we need only the “angles” 𝛼 to localize 𝑒 in each of these
subsystems of localization.

5.5. The Local Projective Structure

Definition 23. We call

(i) Emission grid the Euclidean space R4
�푃 ≡ R4 of the

positioned events 𝑒�푃 = (𝜏�푒, 𝜏�푒, �̃��푒, �̂��푒);
(ii) Localization (or pentametric) grid the Euclidean space

R5
�퐿 ≡ R4 × R∗ of the localized events 𝑒�퐿 =(𝜏�푒, 𝜏�푒, �̃��푒, �̂��푒, ∘𝜏�푒) where ∘𝜏�푒 is provided by the ancillary

emitter S by identification from the horismotic rela-
tion 𝑆�퐿 → 𝑒�푃 (𝑆�퐿 ∈ WS) or the “message function”
[11] 𝑓−S : R4

�푃 → WS; that is, the time stamp ∘𝜏�퐿
broadcast by S at 𝑆�퐿 is such that ∘𝜏�퐿 ≡ ∘𝜏�푒;

(iii) Anisotropic localization (or pentametric) grid the
Euclidean space R5

�퐴�퐿 ≡ R4 × R∗ of events 𝑒�퐴�퐿 =( ∘𝜏�푒𝜏�푒, ∘𝜏�푒𝜏�푒, ∘𝜏�푒�̃��푒, ∘𝜏�푒�̂��푒, ∘𝜏�푒).

Definition 24. We denote by 𝐼 : R5
�퐿 → R5

�퐴�퐿 the bijective map
such that 𝐼(𝑒�퐿) = 𝑒�퐴�퐿. And we denote by 𝜋 : R5

�퐴�퐿 → R4
�푃 the

submersion such that 𝜋(𝑒�퐴�퐿) = 𝑒�푃.
Let 𝑔 be an element of 𝐺𝐿(5,R) such that 𝑔 ⋅ 𝑒�퐴�퐿 =𝑒�耠�퐴�퐿. And thus, 𝐺𝐿(5,R) acts linearly on R5

�퐴�퐿. Then, the
action of 𝐺𝐿(5,R) on R5

�퐿 and R4
�푃 defines homographies (i.e.,

conformal transformations):

𝑒�耠�푃 = (𝐴 ⋅ 𝑒�푃 + 𝑏𝑐 ⋅ 𝑒�푃 + 𝜇 ) ,
𝑔 ≡ (𝐴 𝑏

�푡𝑐 𝜇) , (29a)

∘𝜏�耠�푒 = ∘𝜏�푒 (𝑐 ⋅ 𝑒�푃 + 𝜇) , (29b)

where 𝜇 ∈ R, (𝑏, 𝑐) ∈ (R4)2, and 𝐴 ∈ 𝑀4×4(R). Therefore, we
obtain the following.

Theorem 25. The (3+1)-dimensional spacetime manifold has
a local 4-dimensional projective structure inherited from its
causal structure.

Proof. The proof is similar with the proof of Theorem 16 but
with the systems of homogeneous equations (24a)-(24b) or
(27a)-(27b) or (28) instead of the system (14).

Remark 26. The map S defined locally by M4 on R4
�푃 is the

so-called “soldering map” S of Ehresmann defined on 𝑃R4 =
R4
�푃 ∪ 𝑃R3 to the spacetime manifoldM:

ℳ PR4≃
ＦＩ＝.

PR4 × PR4 PR4

S ≃
ＦＩ＝.

M4 (30)

And the set of homogeneous equations (24a)-(24b) or
(27a)-(27b) or (28) defines leaves in the trivial bundle 𝑃R4 ×𝑃R4. After reduction of the bundle R5 × R5 → M to this
projective bundle, the projective Cartan connection in the
sense of Ehresmann [17] is defined as the differential 𝑑𝐻 ≡𝑑𝐻1 ×𝑑𝐻2 ×𝑑𝐻3 ×𝑑𝐻4 with respect to the vertical variables
V ≃ (tan𝛼, tan𝛼, tan �̃�, tan �̂�) and the horizontal variables 𝑒�푃;
and thus, the tangent spaces of these horizontal leaves are the
annihilators/contact elements of 𝑑𝐻.

Remark 27. As in the (2 + 1)-dimensional case (see
Remark 18), the spacetime manifold can be considered as a
“generalized Cartan space” which is endowed with both (1)
a “projective Cartan connection” (of dimension 5) providing
a local projective structure and (2) a compatible (pseudo-)
Riemannian structure viewed for instance as a horizontal
section in the five-dimensional anisotropic grid.
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6. Conclusion

The previous results are obtained on manifolds of dimension
less than or equal to four and satisfying only causal axiomat-
ics. This involves only the following assumptions:

(i) A finite speed of light from the existence of the
horismotic relation “→,”

(ii) Isotropy (compasses) because the conformal invari-
ance is a common consequence of all the causal
axiomatics (Malament’s Theorem [13], Woodhouse’s
axiomatics [11], King-Hawking-McCarty’s axiomatics
[12], e.g.; see also [10]).

(iii) Homogeneity is void ofmeaning in causal axiomatics.

And then, we deduced that

(i) the spacetime manifold has a local projective struc-
ture in addition to the global (pseudo-)Riemannian
structure.

(ii) The spacetime manifold is a “generalized Cartan
space” with a “projective Cartan connection” (see
Remarks 18 and 27). A forthcoming publication is
planned to clarify these aspects.

(iii) The space and time coordinates are locally trans-
formed by homographies. Indeed, the time stamps(𝜏�훼) = (𝜏�푒, 𝜏�푒, �̃��푒, �̂��푒) (𝛼 = 1, . . . , 4) are the “emission
coordinates.” Then, they define a null coframe (𝑑𝜏�훼)
also called “null GPS coordinates” which are linearly
related to timelike (GPS) coordinates [5] such as the
usual space and time coordinates (𝑢�훼) ≡ (𝑥, 𝑦, 𝑧, 𝑡).
Therefore, we obtain transformations similar to the
transformations (29a) for the space and time coordi-
nates:

𝑢�훼 = (𝑈�훼
�훽𝑢�耠�훽 + V�훼𝑤�휇𝑢�耠�휇 + 𝜌 ) , 𝛼, 𝛽, 𝜇 = 1, . . . , 4. (31)

Besides, applying by inquisitiveness these projective aspects
in astrophysics, we consider a modification of the Newton’s
law of gravitation by a homography:→𝐹 (→𝑟 0) ≡ −𝐺𝑚0𝑚𝑟20 (𝛼 + 𝛽𝑡 + 𝜇𝑟0)2 �̂�0, �̂�0 = →𝑟 0𝑟0 , (32)

where we consider that →𝐹 , the time 𝑡, and the radial distance𝑟0 between the punctual masses𝑚0 and𝑚 are evaluated with
respect to a frame attached to𝑚, and 𝛼, 𝛽, and 𝜇 are constants.

This modification differs from those investigated in
MOND theories which satisfy the so-called Milgrom’s law
[18]. Also, contrarily to MOND theories, the present modi-
fication of Newton’s law preserves the action/reaction prin-
ciple. This modification is based on the notion of projective
tensor differing from the usual notion of Euclidean tensor.

We can quote É. Cartan on this notion of Euclidean
tensor [19, Section 23, p. 22]. The latter can be considered
as a set of numbers (𝑢1, 𝑢2, . . . , 𝑢�푟) brought into coinci-
dence with another set of numbers (𝑢�耠1, 𝑢�耠2, . . . , 𝑢�耠�푟) by a

linear transformation 𝑆�표 corresponding to a rotation 𝑅�표 in
a given “underlying” Euclidean space R�푘. Then, the linear
transformation 𝑆�표 corresponds to another transformation 𝑅�표
preserving the origin 𝑜 of R�푘. Thus, we obtain tensors at this
origin.

Now, a projective tensor can be considered as a set
of numbers (V1, V2, . . . , V�푟) brought into coincidence with
another set of numbers (V�耠1, V�耠2, . . . , V�耠�푟) by a linear transfor-
mation 𝑆�표 corresponding to an homography 𝐻�표 preserving
the origin 𝑜 (𝐻�표 is then a central collineation of center 𝑜) of
a given “underlying” Euclidean spaceR�푘. In other words, the
equivariance is defined for Euclidean tensors with respect to
linear groups of transformations whereas the equivariance
for projective tensors is defined with respect to the group of
central collineations which is a subgroup of the projective
group.

Also, if we have tensor fields, that is, tensors at different
origins 𝑝 elements of a manifold (as space of parameters),
then, there correspond fields (or families) of transformations𝑆�푝 on this manifold associated with fields of rotations 𝑅�표,�푝
(Euclidean tensor fields) or fields of central collineations𝐻�표,�푝 (projective tensor fields) associated with the origin𝑜 of the underlying Euclidean space R�푘. Then, the tensor
fields are equivariant if and only if the equivariance is
satisfied at any point 𝑝. We recognize in this description the
structure of a tensor bundle of rank 𝑘 of which the transition
morphisms (functions) are the rotation or the collineation
fields, the transformation fields 𝑆�푝 are defined from the local
trivializations of the bundle, and the origin 𝑜 is an element
of the fiber. Moreover, the equivariance of tensor fields is
obviously the so-called left-invariance with respect to right
actions of structural groups.

Then, we consider, first, the (non-modified) force of
gravitation →𝐹 as a Euclidean vector field with a spherical
symmetry with respect to the point 𝑝0 where the mass 𝑚0 is
located. The mass 𝑚 is at the point 𝑝 and, as indicated pre-
viously, →𝐹 and →𝑟 0 are evaluated with respect to a Euclidean
frame attached to 𝑝. Then, clearly, rotating this frame does
not change 𝑟0 and it rotates in the same way the vector �̂�0.

Second, if →𝐹 is modified to be a projective vector field
with a spherical symmetry with respect to 𝑝0, we must
proceed as follows. In this projective framework, the central
collineation fields𝐻�표,�푝 are defined such that at each𝑝 they are
particular changes of projective frames F�푝. More precisely,
we recall that the projective frames of a projective space of
dimension four are defined by six vectors in a vector space
of dimension five of which five are linearly independent.
Then, projective transformations, that is, homographies, are
the linear, injective transformations in this five-dimensional
vector space which is also called the space of homogeneous
coordinates. Then, central collineations are those projective
transformations preserving, up to a multiplicative factor, a
particular, given five-dimensional vector, that is, the origin 𝑜
of the five-dimensional fiber. In general, this vector is chosen
among the vectors of a given projective frame. Moreover, 𝑝
can be kept invariant with respect to central collineations
which constitute a subgroup of the group of projective
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transformations. Indeed, these central collineations can also
be viewed as local changes of inhomogeneous coordinates
centered at 𝑝, that is, 𝑝 is the origin of the local system of
coordinates. Hence, if (𝑥, 𝑦, 𝑧, 𝑡) are space and time coordi-
nates centered at 𝑝 such that 𝑝 ≡ (0, 0, 0, 0) = (𝑥�푝, 𝑦�푝, 𝑧�푝, 𝑡�푝),
then the changes of coordinates we must consider are given
by the homographies (31) where V�훼 = 0 (𝛼 = 1, . . . , 4); that is,
we have central collineations 𝐻�푝,�표 : (𝑢�耠�훼) ≡ (𝑥�耠, 𝑦�耠, 𝑧�耠, 𝑡�耠) →(𝑢�훼) ≡ (𝑥, 𝑦, 𝑧, 𝑡) such that

𝑢�훼 = 𝑈�훼
�훽𝑢�耠�훽(𝑞 + ℎ𝑡�耠 + →𝑘 ⋅ →𝑟�耠) , (33)

where
→𝑟�耠 ≡ (𝑢�耠�푖) ≡ (𝑥�耠, 𝑦�耠, 𝑧�耠) (𝑖, 𝑗, . . . = 1, 2, 3), (𝑈�훼

�훽 ) is a
matrix field, 𝑞 and ℎ are scalar fields, and

→𝑘 is a vector field
all of them depending on 𝑝.

In particular, if the time and space splitting of the Newto-
nian physics is maintained in this change of coordinates, then
wemust have𝑈�푖

4 = 𝑈4
�푖 = 0. And then, we deduce in particular

that

𝑟 = 𝜆 𝑟�耠(𝑞 + ℎ𝑡�耠 + →𝑘 ⋅ →𝑟�耠) ,
𝑡 = 𝜇 𝑡�耠(𝑞 + ℎ𝑡�耠 + →𝑘 ⋅ →𝑟�耠) , (34)

where 𝜆 = det(𝑈�푖
�푗) and 𝜇 = 𝑈4

4 . Also, from (33), considering

that (1) →𝐹 is a projective five-vector with two vanishing
components, that is, →𝐹 ≡ (𝐹1, 𝐹2, 𝐹3, 0, 0), and (2) the central
collineations are represented (or, are originated from) by the
linear transformations 𝑈 ≡ (𝑈�푎

�푏 ) (𝑎, 𝑏 = 1, . . . , 5) such that𝑈�푎
5 = 0, 𝑈5

�푖 = 𝑘�푖 (𝑖 = 1, . . . , 3), 𝑈5
4 = ℎ, and 𝑈5

5 = 𝑞, then we
obtain in particular 𝐹�푖 ≡ ∑3

�푗=1𝑈�푖
�푗𝐹�耠�푗.

Then, it is easy to see that (32) becomes equivariant with
respect to these changes of coordinates if and only if we set
the necessary but, nevertheless, sufficient condition that the

vector field
→𝑘 satisfies the relation

→𝑘 ≡ 𝜎→𝑟�耠0/𝑟�耠0, where 𝜎 is a

scalar field depending on 𝑝 and
→𝑟�耠0 is the vector from 𝑝 to 𝑝0

in the new system of coordinates. Indeed, with this condition,
we obtain the new Newtonian force:→𝐹�耠 (→𝑟�耠0) ≡ −𝐺𝑚0𝑚𝑟�耠20 (𝛼�耠 + 𝛽�耠𝑡�耠 + 𝜇�耠𝑟�耠0)2 �̂��耠0, �̂��耠0 = →𝑟�耠0𝑟�耠0 . (35)

More precisely, the equivariance is obtained as soon as
→𝑟�耠 is

equal to
→𝑟�耠0 , that is, whenwemove along the line joining𝑝 and𝑝0, and then,→𝐹 is an equivariant, projective vector field along

this line onto which only the Newton’s law is experimentally
evaluated. Also, we obtain the field of transformations 𝑆�푝 as
expected and a justification of the modification (32) of the
Newton’s law of gravitation.

r

v 6(r)

3(r)
1(r)
2(r)
4(r)
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Figure 16

Furthermore, →𝐹 is then only equivariant with respect to
a subgroup of the central collineations because we must set→𝑘 ≡ 𝜎�̂��耠0. This is the result of (1) the central symmetry of →𝐹
and (2) the Newtonian physics framework with the time and
space splitting. Also, it can be noticed that in this Newtonian
context, the terms such as 𝛽𝑡 + 𝜇𝑟0 in the expression of →𝐹
may sound like a Minkowski inner product and could be
the expression of a retarded Newtonian force as there exist
retarded fields in electromagnetism.

In addition, we assume that the centripetal acceleration is
a projective object and that it is modified in the same way as
the Newton’s law of gravitation: V2/𝑟0 → (𝛼 + 𝛽𝑡 + 𝜇𝑟0)V2/𝑟0.

Then, if we modify the Newton’s law of gravitation
with a homography as indicated above preserving the mass
distribution 𝜌(𝑟) to see the relative change between 𝜌(𝑟) and
the radius 𝑟, then we can deduce the following rotational
velocity field:

V (𝑟) ≡ ((1 + 𝑎𝑡 + 𝑏𝑟) 𝑀 (𝑟)𝑟 )1/2
where 𝑀(𝑟) ≡ ∫�푟

0
𝑢�푘𝜌 (𝑢) 𝑑𝑢. (36)

Then, whenever 𝑡 = 1 and for different mass distributions𝜌, we obtain the following qualitative curves if we consider𝑘 = 2 for spherical distributions of mass in (36) (Figure 16
and Table 12).

Then, we see that the curves have a resemblance to
the observed data. This suggests more exhaustive studies of
the relations between galactic mass densities and rotational
velocity fields according to relations (36) with varying expo-
nent 𝑘. Moreover, the modified force →𝐹 in (32) depends on
the time 𝑡 which could be related to a notion of cosmological
expansion, a relation which could be also studied in future
works.

Finally, a last question arises from these projective
aspects: what could be the vanishing points in such spacetime
manifolds modeled locally by four-dimensional projective
spaces? These vanishing points are at infinity in a projective
space of dimension 3, and then, they appear to be points of
congruence of timelike worldlines not necessarily crossing in
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Table 12

Rotational velocity Mass distribution 𝑎 𝑏
V1 𝜌1 (𝑟) = {{{3 if 𝑟 ≤ 10 if 𝑟 ≥ 1 −0.7 0.5
V2 𝜌2(𝑟) = 𝑒−�푟2 (Gaussian) −0.7 0.5
V3 𝜌3(𝑟) = 11 + 2𝑟2 (Lorentzian) −0.7 0.5
V4 𝜌4(𝑟) = 𝑒−�푟 (Exponential) −0.7 0.5
V5 𝜌5(𝑟) = 𝑟𝑒−�푟 −0.7 0.5
V6 𝜌6(𝑟) = 10000𝜌1(10𝑟) + 𝜌5(𝑟) −0.7 5
the four-dimensional spacetime. Hence, could this produce a
sort of Big-Bang effect?
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Endnotes

1. Roughly speaking, let 𝑥 and 𝑦 be two events in space-
time. Then, (1) 𝑥 ≺ 𝑦 means that 𝑦 is in the future null
cone of 𝑥 or in its interior, (2) 𝑥 ≪ 𝑦 means that 𝑦 is in
the interior of the future null cone of 𝑥, and (3) 𝑥 → 𝑦
means that 𝑥 and 𝑦 are joined by a null geodesic starting
from 𝑥 to 𝑦. The relation of order → is reflexive and it is
also called the horismotic relation (see, e.g., [15, p. R9]).

2. In [16]: (i) Condition (V): 𝑥 ≪ 𝑦 ⇒ 𝑥 ≺ 𝑦. (ii)
Condition (VII): 𝑥 → 𝑦 ⇔ 𝑥 ≺ 𝑦 and 𝑥��≪𝑦.

3. Lemma 1-1 [16]: Let 𝑥, 𝑦, and 𝑧 be points in a causal
space. If 𝑥 ≺ 𝑦 ≺ 𝑧 and 𝑥 → 𝑧 then 𝑥 → 𝑦 → 𝑧.

4. The ancillary emitter S can also be considered as the
“soldering” emitter.

5. We can notice that projective Cartan connections differ
from Ehresmann connections which are projector fields
(in principal bundles) but projective Cartan connec-
tions are not; the word “projective” does not refer to
a projection in a vector space but to the projective
geometry/frames. Also, these two connections differ
from the notion of Cartan connection in the sense of
Ehresmannwhich is associated with the definition of the
soldering map.
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