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Abstract

We investigate streaming over multiple links. A file is spiito small units called chunks that may
be requested on the various links according to some poliay,raceived after some random delay.
After a start-up time called pre-buffering time, receivduigks are played at a fixed speed. There
is starvation if the chunk to be played has not yet arrived. phdide lower bounds (fundamental
limits) on the starvation probability of any policy. We fhetr propose simple, order-optimal policies
that require no feedback. For general delay distributiore provide tractable upper bounds for the
starvation probability of the proposed policies, allowtngelect the pre-buffering time appropriately.
We specialize our results to: (i) links that employ CSMA opogunistic scheduling at the packet level,
(i) links shared with a primary user (iii) links that userfaate sharing at the flow level. We consider
a generic model so that our results give insight into thegieand performance of media streaming
over (a) wired networks with several paths between the soaind destination, (b) wireless networks
featuring spectrum aggregation and (¢) multi-homed waeleetworks.

1 Introduction

We consider the problem of streaming a file divided into smaifs called “chunks” over multiple links.
Each chunk may be requested on any link. Requested churike arithe requested order, separated
by random delays. Randomness is due to propagation delagsge in the link quality and congestion
since the streaming flow shares the links with competing fldReceived chunks are stored in a buffer.
After a fixed start-up time called pre-buffering time, theaiwed chunks are played at a fixed speed. If a
chunk does not arrive before the time it is supposed to beegllyere is starvation. For video streaming,
starvation causes interruptions in the play-out and is thamroause for poor Quality-of-Service (QoS).
The goal is to design chunk request policies that minimieestarvation probability.

For clarity we use the generic term “links” to denote ensiten which packets may be requested.
Links may represent for instance: (a) several disjoint patitween a source and a destination in a wired
network (b) several disjoint frequency bands in a wirelgggesn featuring spectrum aggregation, (c)
several wireless interfaces which employ different protecfor instance cellular data, say LTE (Long
Term Evolution) and local area, say 802.11 (WiFi). Caseqoften referred to as “multihoming”. While
links may have different data rates as well as differenfiraianagement rules, a good protocol should
ensure that, from the point of view of the streaming flow, thppear as a single aggregated entity whose
data rate is the sum of the links data rates. The goal is hererform link aggregation efficiently so as
to minimize the starvation probability.
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The problem is motivated by several features of current adsv First, in current mobile networks,
video-on-demand services consume the majority of theawaibandwidth, and good traffic management
rules have a dramatic impact on the network performancethéyrdue to the massive deployment of
both cellular data networks and local area networks, mastsuist dense urban zones have access to
several wireless links. If feasible, spreading the loachiven those links is highly desirable. Finally
current streaming protocols such as the DASH standard [@fade by splitting video files in chunks and
requesting them as independent HTTP requests. There aradvemtages to this approach: (i) this is
a stateless protocol, the video server does not keep trattleaftate of the user playing the video, and
processes each chunk request independently (ii) reqgesdicth chunk through HTTP avoids issues with
middle-boxes (e.g. firewalls and NATs) which may block derfzorts for security.

There are two challenges. First the number of request pslisiexponential in the number of chunks,
so that exhaustive search is not feasible. Furthermorewondd like to minimize the amount of feed-
back required by policies to ease implementation. The skcballenge is to calculate the starvation
probability of a given policy by tractable formulas. Thisafes to select the pre-buffering time to ensure
that the starvation probability is smaller than some thoeshFor elastic traffic one is concerned with
the maximum achievable long-term throughput, which dependstly on the expected delay but not on
the full delay distribution. On the other hand for streamiiradfic, starvation is highly dependent on the
variability of the delays (e.g. the jitter), and accuratedictions of starvation probability must depend on
the full delay distribution. Analytical formulas are uskéwen when one can simulate the system since,
when the pre-buffering time is large, starvation tends t@lvare, “large-deviations” type of event. So
one needs long simulations to get accurate estimates.

Our contribution : We first derive lower bounds on the starvation probabilityoy policy. Those
bounds enable us to derive the scaling of the pre-buffeiing required to reach a target starvation
probability. We further propose simple, implementableiges (without feedback) to determine how
chunks may be requested on the various links. We derive Upmards and/or approximations for the
starvation probability of these policies. Those upper lisuare tractable, including both cases where
delays are independent and correlated. We deduce that tipegad policies are efficient since they
approach the fundamental limits derived earlier. Finaleyspecialize our results to several situations of
practical interest: (i) links that employ opportunisti®ieduling or random access at the packet level (ii)
links where the streaming flow is the secondary user of a tiwgmadio network, and is allowed to use
the link only when the primary user is inactive (iii) links ete the streaming flow shares the available
bandwidth with short-lived flows using (for instance) faite sharing.

The remainder of this article is organized as follows. Intise¢2 we highlight the relationship be-
tween our results and previous work. In secfidbn 3 we stateassumptions and notation. We provide
performance limits and state the proposed schemes in s&tidn sectiol b we calculate the perfor-
mance of the proposed schemes under general assumptiorspedialize our results to several popular
link models in sectiofll6. In secti¢h 7 we illustrate our resthrough numerical experiments. Secfion 8
concludes the article.

2 Related work

2.1 Performance evaluation and control for streaming

Streaming over wireless networks has become popular, aridédttention has been dedicated to its per-
formance evaluation, to understand the relationship betvpee-buffering and starvation. [2] considers a
G/G/1 queue where the first two moments of the arrival andsedistributions are known. The discrete
buffer size is approximated by a Wiener procesk. [3] comside ON-OFF wireless channel and performs
a probabilistic analysis based on the knowledge of the @lelyland arrival curves. An M/M/1 queue is
used in[4] to derive explicit formulas for the number of sttions, based on the Ballot theorem [5]. [6]



considers the combination of fading and flow level dynamars] calculates the starvation probability
by solving a set of ordinary differential equations consted on top of the Markov chain describing the
flow level dynamics.

All these works considered a single wireless link in a clzdsiTCP/IP architecture. Another set
of works studied the impact of multihoming on streaming QB&: instance,[[7] studies multihomed
streaming in a residential context using a DSL and a cablaextion. Experiments show that connection
splitting/migration in case of congestion provides a digant QoS improvement. For lossy wireless
channels,[[B] considers the rate allocation problem as éim@ation problem to minimize a distortion
metric for the video taking into account the loss rate of eatkthe network paths.[]9] extends this
work to joint scheduling and Forward Error Correction (FE@hile [10] considers the specific case of
WIiFiI/UMTS multihoming in the design of the FEC scheme. Thesabjective of reducing the video
distortion is used in[[11] to design a multipath schedulimgiqy. These works aim at reducing video
distortion, while we are interested in HTTP-like video atreéng with pre-buffering where video chunks
are downloaded without distortion and the QoS metric is taevation probability.

Another set of works on multihomed streaming is related ta&ot centric networking where the rate
allocation between paths is driven by interest packetsrgése by the users. Authors in]12] consider a
group of neighboring users using their mobile devices tatlee same video, and exploit the fact that
users can exchange video chunks using direct connectistesaih of downloading all the chunks using
the cellular link. Others consideeal time services with stringent delay constraints for instanceeoi
[13] and live TV [14], which is out of the scope of the preseoirk

To the best of our knowledge, the present work is the first tove®ptimal allocation strategies for
streaming over multi-homed access with the starvationgdiity as the main performance indicator and
provide strong theoretical performance guarantees givémei form of tractable, analytical formulas.

Two contributions on multipath streaming which are commatary to ours aré [15] and [16]. In[15],
the authors propose a protocol for multipath streaming aatlate its performance experimentally but
do not conduct a theoretical analysis. The authors df [16hidate the problem as a Markov Decision
Process (MDP). Since computing the optimal policy of this IS prohibitively expensive they propose
a heuristic policy search algorithm for which no theordtgzarantees are available and its performance
is evaluated numerically.

2.2 Receiver driven transport protocols

While IP transport is under destination control, severakieer-driven transport protocols have been
proposed (see Gupta et al. in]17]). Receiver driven prdsolecave recently attracted a lot of attention
with the development of Information-Centric Netwrokin@€ ), where download rates are determined
by the rate at which interests are sent into the network btitesystem. Arianfar et al. [1.8] discuss the
challenges faced when designing transport protocols fotect centric networks and present a receiver-
driven transport protocol, ConTug, that takes into accthumpresence of multiple sources. Carofiglio et
al. propose another receiver-based protocol called ICQer@at Control Protocol) using AIMD window-
based congestion control[19,]120]. [21] proposes CCTCP {@uiCentric TCP) that considers the use of
multiple sources in the design of the protocol parametesh as the timeout timer.

In our work, we are neither interested in the design of swaisfport protocols, nor in the evaluation of
their performance for streaming traffic. Our objective iglesign optimal policies for splitting interests
over the different interfaces. We nevertheless assumarbahanisms that adapt the interest sending
rates to the state of each multihoming path are implemeptesljring that the available capacity of each
link is fully used. Our policies can thus be implemented atulpper layers over classical TCP/IP based
protocols, or in the form of a receiver-driven interest cohprotocol.



2.3 Spectrum Aggregation

Spectrum aggregation is driven by two different but comm@atary objectives: achieving higher user
data rates and exploiting all the available spectrum to adflwaffic from the mobile network. Typical
solutions to attain the former objective are the so-call@dier aggregation features in 3GPP, starting
with the dual cell feature in 3G systems (Release 8). The cklbleature aggregates two 3G carriers of
5 MHz and doubles the achievable data rate [22]. Howeverltiad cell feature has been shown {[23])
to achieve significant capacity gains for streaming sesuiltee to the trunking effect, especially since the
data rate in Release 7 is not sufficient to meet the requires@dmV streaming . It is noted that this
gain is reduced when MIMO is combined with the dual cell featim Release 9. The term “dual-cell”
has been changed to “carrier aggregation” in recent stdsdes more than two carriers are aggregated
starting from Release 10. 3GPP then introduced a more addaacrier aggregation mechanism, where
the unused spectrum in the 1.4 GHz band (originally allat&te TDD mode but not used in Europe) is
aggregated with the FDD LTE spectrum via multihoming [24].

Another set of spectrum aggregation technologies aimsegasing the system capacity and offload-
ing the cellular traffic to other systems, while offering ateeQoS to users. This started with Cognitive
Radio (CR) which suggests to reuse unused spectrum altbtatether services in a secondary, non-
priority, way [25]. The first commercial services relateddR reuse white spaces left by TV systems
[26]. However, as spectrum availability cannot be guamahte secondary users, multihoming is advo-
cated: users simultaneously connect to both licensed andicensed spectrum. 3GPP systems adopt
multihoming to aggregate 4G spectrum with WiFi spectrumthi@ so-called dual connectivity mode
[27], exploiting the presence of both WiFi and 4G radio freqey modules in almost all user devices.
The 3GPP LWIP Release 13 standard includes aggregationfifand LTE (called “Wifi Boost”) at the
IP layer, and[[2B, 29] show that large performance gaindtrésun this aggregation.

As opposed to classical carrier aggregation where resall@eation is fully centralized, systems
based on CR and dual connectivity can be user-centric: sease the medium and decide which packets
to send to each carrier, possibly assisted by the netviolk [Becisions are taken by users based on
local information (sensing) and contextual informatidnKlquality estimates) provided by the network.
Different carriers are usually heterogeneous in termsdibrehannel quality (independent fast fading),
coverage (path loss and slow fading) and load (humber ofexted users). The decisions taken by users
have a large impact on QoS and an efficient protocol is needed.

3 The model

3.1 Basic Description

We consider a file divided itV chunks of unit size, indexed by € [1, N]. There are’ > 1 links, on
which any chunk can be requested. When a requested churdeised on a link, it is placed in a buffer.
After a pre-buffering time denoted b > 0 the file is read at unit speed. Namely, at time- B, if
chunkn is present in the buffer then it is read, and otherwise stamvaccurs.

We define the chunk request policy which is represented bycwnve < [1, K]V, wherer,, = k
if chunk n is requested on link. We assume that if two chunks< n’ are requested on the same link
thenn is requested before’. It is clear that this always ensures lower starvation. Windel,(n) =
>, _, H{m = k}, the number of chunks comprised betwdesndn requested on link. We further

n’=1

defineX(¢) the delay of the-th chunk requested on link Namely, ifw,, = k, chunkn arrives at time
Z?i(l") X1 (¢). The starvation probability’ is the probability that there exists a chunk that arrivesraft



the time it was supposed to be played, so that:

dy(n)
pPN=p sz,n:ﬁn:kandZXk(ﬂ)>n+B .
/=1

It is noted that in generat can be sample path dependent, so thdepends on the delayX(¢))e, k.
We will consider two types of policies.

e Static policies 7 does not depend oiX (¢))e,k
e Oracle policies is an arbitrary function of X (¢)) ¢«

Static policies may depend on the delay statistics but ndein realization, so that they require no feed-
back and are attractive in terms of implementation. Oraoleijes are policies that “know everything”,
including the delays of chunks not yet received. Oraclegiediare not implementable and mainly serve
here as a performance upper bound.

3.2 Assumptions
We introduce several sets of assumptions on the delays.

Assumption 1 (I.1.D. delays) For all k, (X% (¢))¢>0 is an i.i.d sequence with expectatipp, variance
o? and cumulant generating functiagiy (a) = log(E[e*X*()]). We assume that},(a) < +oo on an
open neighbourhood oX.

Assumption 2 (Markovian delays) For all & there exists a continuous time, stationary ergodic Markov
chain on a discrete spacg denoted by(Sk(t)).cr With stationary distributionm; and transition rate
matrix Q* = (¢*(i, §))i jes. There exists a function: S — R* such that for all¢, k:

7, (£) = min {t >0: /0 r(Sk(u))du > f} )
Xi(0) = 1() — (£ = 1).
We defingu, = E[X(£)].

The Markovian case can be understood as follows: at tiimk £ is in stateS;(u) and the streaming
flow has an instantaneous data rate- @) (u)). So7x(¢) is the duration required to receivechunks

of unit size. HenceX(¢) = 7(¢) — 7.(¢ — 1). The state is typically the number and/or state of the
other flows sharing link: with the streaming flow. For both sets of assumptions we define 1/,

the average data rate of lifk and R = Zle r, the sum of data rates. Based on the valugrof
we distinguish three regimes: underloadHf > 1, critical if R = 1 and overload ifR < 1. We
define the frequency vectgr = (f1,..., fx), with fr = r/R. In order to balance the loads of the
available links, the number of chunks requested on knghould be close taV fi, hence the name
"frequency” for f.. We shall see that the proposed algorithms precisely aciisimthat goal. We denote

22

by U (z) = é f;oo e~z dz the complementary c.d.f of the standard Normal distributigor clarity,

we denote byP" (7, B) the starvation probability fo’V chunks, prebuffering timé3 and policyr.
Finally we introduce an assumption on the independencelajsi@cross links.

Assumption 3 (Independent Links) (X (¢))¢>o is independent froniX ;. (€)),>o for all & # k'.



3.3 Applicability of the model and rate adaptation

Two remarks about the model are in order. First it should hedthat the Markovian delay assumption
includesanydelay distribution an@nyform of correlation between the successive delays obsemwed
given link. Indeed, there are no restrictions on the sizéeftate spacg nor on the transition rateg”.
For instance the procesSi(t)). can follow any of the classical queues (as considered im maok) say
M/M/1, G/G/1 etc.

Second, throughout the article we assume that the videordigas fixed and it is taken to be unity
in our notation simply to ease presentation. Indeed, intm@csome form of rate adaptation will be
implemented: before the video is played, the data rates., rx will be estimated, and the data rate
of the video will be chosen approximately equa@fi1 r¢. This guarantees that the video quality is
as high as possible while starvation probability can be nswall by choosing the pre-buffering time
appropriately and using an efficient policy to request clsunk

Performing rate adaptation is relatively simple sincevbimes only first order statistics, namely the
first moments of the delays;, sincer, = 1/u. On the other hand selecting the pre-buffering time to
avoid starvation seems more challenging since it involliescomplete distribution of delays including
higher moments (e.g. the jitter), as starvation is mostliad &vent” due to large, rare fluctuations of the
delays.

4 Performance limits and algorithms

4.1 Fundamental Limits

Our first result presented in theoréin 1 is a lower bound on tdr@ation probability that holds for all
oracle policies (hence for static policies as well). Thaititn behind statement (i) is simple: if starvation
does not occur, then, for allthe total number of chunks received on all links at timyeB must be greater
or equal ton, otherwise there exists a chunkwhich has not been received at time+ B < n + B.
The lower bound is not explicit but may be computed easilyityuation. Statement (ii) shows that for
large files (V — o0), if R < 1, then the pre-buffering time must be of the ord8r' — 1)N + O(v/N),
otherwise the starvation probability tendsitoFor large files, we obtain an explicit lower bound using
the central limit theorem. This lower bound is an increasdimgtion of the delay variances, and tends
to 1 when we letminy, 07 — co. As a consequence, in the critical case, if the delays areyheded,
one cannot ensure a starvation probabitityl with O(v/N) pre-buffering time. Also there are sharp
transitions between the regimes: frdbh= (1) (underload) taB = O(v/N) (critical) to B = O(N)
(overload). We will subsequently show that these ordersighe. Also note that, intuitively, the law of
iterated logarithm would suggest the pre-buffering timéecat leastO (/N loglog(NV)) in the critical
regime and we show that this intuition is flawed.

Theorem 1 The following holds for all oracle policies.
(i) Forall B> 0andN > 0 we have:

PN(r,B)>P |3n € [1,N]: Y Di(n) <n
k=1
d
Di(n) = max{d > 0: Y  Xi(¢) < B+n}.
(=1



(i) Let assumptions]1 arid 3 hold. K < 1, for all b > 0:

a b
lim inf N(r -1 b .
nf PN(m (RN = 1)N + \/N)z]g@(%m)

Proof. (i) Consider a fixed oracle policy. Define the event

A= {an €[1,N]: > Di(n) < n}
k=1

Considern fixed and assume th@klil Dy (n) > n. DefineN] (n) the number of chunks received on
link % before timeB + n, andN"(n) = Zszl N7 (n) the total number of chunks received before time
B + n. By definition N[ (n) < Dy(n) for all k, so thatN™(n) < Zle Di(n) < n. Hence, at time
n + B, there exists a chunk’ < n which has not been received. We deduce that dccurs, starvation
occurs which proves the first claim.

(ii) Define BN = (R~ — 1)N + by/N. Define the following events:

BIZCV = {Dk(N) < ka} R BN = ﬂ?:lgk-

If BN occurs,z,f:1 Dyi(N) < Nszzl fx = N so that starvation occurs. Eve{’ occurs if and only
if

N fr

> Xi(t) > N+ B,

=1
so that, replacing?” by its expression:
N fi N

1 N + BY — kaﬂk b

— Xi(0) — pug) > = .
TRTs 2 Xk 0 =) VT v

By the central limit theorem:

1 N fi
T L0 ) 2 N0

in distribution so that:

which gives the announced result. O

4.2 Efficient Algorithms

Intuitively, to obtain an efficient policy, chunks should tegjuested on link: at frequencyf, so that
the number of requested chunkgn) is close ton f;,. We define a class of static policies called upper
balanced policies. We say thats f-upper balanced if for alt, n we have:

di,(n) < (n+ K —1)fx.



If frequencies are not rational numbers it is not obvious howuild such a policy. We show a simple
recursive way to construct upper balanced policies witlitrany frequencies.

Proposition 1 Considerr such that for alln > 0:

din—1)+1
Jr

with ties broken arbitrarily. Them is f-upper balanced.

Ty, € argmin
k

dr,(n=1)41

Proof. We drop.™ for convenience. Define(n) = w,

. Sincer,, € argmin we

Tn

havea(n) < W for all k. Hencefia(n) < di(n — 1) + 1 for all k, and summing ovekr we get:
a(n) = a(n) S fr < Dplde(n—1) +1) =n—1+ K.

Let us now prove thad (n) < (n + K — 1) f; for all n. We proceed by induction. The inequality is
true forn = 0 sinced;(0) =0 < (K — 1) fx. Considem such thatly(n — 1) < (n— 14+ K — 1) f}, for
all k. If k # m, thendi(n) =di(n—1) < (n—1+ K — 1) fi < (n+ K — 1) fx. On the other hand, if
k = m, we havedy(n) = dip(n—1)+1 = fra(n) < (n+ K — 1) f.. Thereforel,(n) < (n+ K —1) fi
for all n and allk as announced. O

Upper balanced sequences share a close resemblance aitbddbequences used in optimal routing
problems such a$ [81]. A key difference is that it is usuaifiallt to compute balanced sequences
when eitherK > 3 or frequencies are not rational. When frequencies are rimnid, one cannot
construct upper balanced sequences that are periodicasa {simple) recursive formula to calculate
upper balanced sequences seems good enough. It is alsotihatedontrary to problems of maximal
throughput scheduling for elastic traffic, Bernoulli rangiis not satisfactory. Namely using randomized
sequences where(, ), is ani.i.d sequence ofl, ..., K } with distribution( f1, ..., fx) is no good since
this would gived] (n) — nfi, = O(y/n) (central limit theorem).

The policy defined in propositidd 1 can be implemented effiitijein practice as follows. As said pre-
viously, rate adaptation is performed so that..., rx and R are estimated before chunks are requested.
This allows to estimate frequencigs ..., fx, and in turn calculate, (the link on which chunk is re-
quested) for alk using propositiofill. This requir€3(V) operations and(K ) memory. An advantage
of this policy is that it is completely static, hence it does require to monitor the state of the various
links once the streaming flow has started.

For very long files, the data rates of the various links mayngleaon a slow time scale (say a few
minutes), and to deal with this one may simply perform ratepaation periodically and recompute
based on propositidd 1.

5 Performance evaluation

5.1 Performance for i.i.d. delays

We consider i.i.d. delays. Our second result is thedrem Zwhives upper bounds for the starvation
probability of upper balanced policies, and shows thath@3 regimes of interest they are order optimal.
Namely the pre-buffering times have the same scalings dswres bound of theorei 1. More precisely,
for statement (iii), we consider the regime whéte< 1. From our previous result the pre-buffering time
must be greater thafR—! — 1)N + O(v/N), otherwiseP — 1 whenN — co. So we consider pre-
buffering time(R~! — 1)N + b+ K — 1 and study the starvation probability as a functiom.ofndeed,
P /4 1ifand only ifb scales a®(v/N) whenN — ooc.

The proofis based on Doob’s maximal inequality and befatrsf theorerh]2 we define the exponent
ay, which appears in our upper bounds. We defifiéa) = Gi(a) — a/ fr. If Xp(¢) < 1/fr a.s. then
defineaj = +o0, and otherwise defing; = max{a > 0 : Fj(a) = 0}. GivenGy(.), a} can always be



calculated numerically using a zero-finding procedure sischisection or Newton’s method. We further
give explicit formulas for calculating;; in several cases of interest: exponential delays and suiss&m
delays, see Propositidn 2. We recall tigt(¢) is sub-Gaussian if there exist§ > 0 such that for
alla > 0: Gr(a) < auy + a®vi/2. Itis noted that if delays are Gaussian or bounded, thendhey
sub-Gaussian, see Remhtk 1.

Proposition 2 ConsiderR > 1.
(i) If X3 (€) ~ Exp(ry,), thena} = rx(1 + W(—Re~ )/ R) with W the Lambert function.
(i) If Xy (¢) is vi-sub-Gaussian them} > 2p;, (R — 1) /v3.

Proof. (i) If X,(¢) ~ Exp(rs), thenGi(a) = /(1 — a), a € [0,7%). Soaj, is a solution to the
equation:

= exp(a/fi)
Considerv € [0, R] and definez = (1 — v/R). Substituting in the equation above we g~ =
ve~?. Sincev — wve" is strictly increasing orj0, 1] and strictly decreasing ofi, +cc) this equation
has at most two solutions: = R is a trivial solution, which gives = 0. The other solution is found
by noticing that-Re~* = —ve~", so that-v = W (—Re~ %), anda = (1 + W(—Re~#)/R) which
proves the result.

(i) If Xi(¢) < 1/fr a.s. themaj = +oo so that the claim is trivially true. If we do not have
Xi(0) <1/fr as., therFy(a) ST OO Definea = 2u (R — 1) /vi. By continuity of F}, to prove that

ay > a it suffices to prove thaky, (@) < 0. If X (¢) is vi-sub-Gaussian, we have

a2v2 2,,2

Fr(a) < apy + k—i:a,uk(l—R)—i—avk.
2 Tk
Settinga = @ we obtain that;, (@) < 0 which concludes the proof. g
Remark 1 (a) If Xy (¢) ~ N (i, 0}) thenGy(a) = ap; + a*oi /2 and X (¢) is o7 sub-Gaussian.
(b) If Xy (¢) € [z, ] .S. thenX (¢) is (z — x)?/4 sub-Gaussian (by Hoeffding's lemma).

Theorem 2 Considerr an f-upper balanced policy. Let assumptigis 1 &hd 3 hold. Defipe= f. N
andGy, = {a: Fy(a) > 0}.
(i) For all b > 0 and all N we have:

b+ K —1) 1— mi Ny Fy(ar)—arb|
PUmo+k -y <1 ] |1~ mig
(i) If R > 1, we havex} > 0 and for all N and allb > 0:
K
PN b+ K—1)<1— ][ —e .
k=1

(i) If R <1, andX(¢) is vi-sub-Gaussian for alt, then for allb > 0 and all V:

i s
PNa, (R =N +b+K—1)<1—J[[1—e 27V,
k=1



Corollary 1 The following holds without assumptigh 3.
(i) For all b > 0 and all N we have:

K
PN(W,b+K7 1 Z Hgl eNKFk (ar)— axb
k€YK
k=1

(i) If R > 1, we havey; > 0 and forall N and allb > 0:

=

PN(mb+K—1)<> e

k=1
(i) If R <1, andX(¢) is vi-sub-Gaussian for alt, then for allb > 0 and all N

b2

K
PV, (RT'=1)N+b+ K —1)<> e iV,
k=1

Proof. (i) Considern such thatr,, = k. Define My (t) = 2221 X (¢). Considerd = di(n), so thatn

is thed-th chunk requested on link. The pre-buffering time is equal to+ K — 1, and chunkz is not
received in time if and only ifV/;.(d) > n+ b+ K — 1. Further, sincer is f upper balanced we have
d=di(n) <(n+ K —1)frsothatd/fr + 1 — K < n. Itis also noted thai;.(n) < Nj. Hence, using
independence:

PN, b+ K—1)<P {Hk: : max My(d) —d/fr > b}

1<d< Ny

< 1—ﬁ (1—P[1£2>J<VkMk(d)—d/fk ZbD

k=1
Considera € Gy. DefineZy(d) = e*Mk(d)=d/fx) 7, (d) is a sub-martingale, indeed,
E[Zi(d)| Ze(d — 1)] = Zi(d — 1) (@) > Z,(d — 1),

sincea € Gi. Using Doob’s maximal inequality:

Pl max Mi(d) — d/fu > 8] = B[ max Z4(d) 2 ] < e VB[Z(Ni)] = ¢ H )
< min eNkFr(a)—ab,
T acgy

Replacing we get the first claim:

ar €

PN(m,b+ K —1) H {1 — min eNefrlar)—arb |

(i) Assume thatR > 1. For all k, we prove that eitheX;(¢) < 1/f a.s., or otherwise there
existsa} > 0 such thatF'(a) = 0. The derivative ofF}(.) evaluated at = 0 is E[X;(¢)] — 1/fx =
k(1 — R) < 0. ThereforeFy(a) < 0 for a > 0 on an open neighborhood 6f Choose: > 0 such that
P[Xk(¢) > 1/ fr + €] > 0. We have:

Fila) 2 1og(PLXu(0) 2 1/ + er0/F9) —affi ~ae | 5 oo
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Hence by continuity of'(.) there exists:j, > 0 such thatF'(aj) = 0. The second claim is obtained by
settingay, = aj, for all k in the first claim.

(iii) ConsiderR < 1. DefineB = b+ N(R~! —1). Foralla > 0, from Jensen’s inequality we
haveGy(a) > apy, SO F;(a) > aur(l — R) > 0. Hencel0, +00) C G, anday, € Gi. SinceXy () is
vi-sub-GaussiarGy(a) < aux + a®vi /2, so that:

NipFr(a) —aB < a(N(R™' — 1) — B) + a®*vi N fx/2 = —ab + a*vi N fr/2.

Settinga = ZNf we obtainNy Fi(a) — aB < —
replaced byB) we obtain the announced result.

The corollary follows from the same reasoning but using thiem bound (which does not require
assumptiofl3 to hold):

QUQNf Substituting in the first claim (wheteis

K
N . . _ > < ) — . >
(mb+ K —1)<P 3k'151152)1{\/kMk(d) d/fk_b] _;]P’Lé%%%kMk(d) d/fx > 0] .

5.2 Performance for Markovian delays

We turn to Markovian delays. Even for very simple transitioatricesQ* and rate functions(.) it

is difficult to find a tractable formula for the starvation peadility, as it involves upper bounding the
crossing probability of a random walk with correlated imoents (see for instance [32]). It is noted
that the starvation probability does not only depend oricstaty distributions of the link states; but
also on the the transition rate mat}. One can expect larger starvation probability when the Mhark
chain has a strong correlation since in that case the stnggfiow can experience long bursts of large
delays. We propose to consider a regime whgrg) evolves on a “faster time scale” than the streaming
flow of interest. In that case we can find a simple, tractabfgression for the starvation probability
shown in theorerfi]3. This approximation is useful in pragtgiece streaming flows are long (several
minutes), while most phenomena causing link variability sinort, for instance fading, medium access
protocols and short lived elastic flows. We consider speed0, and we define the accelerated process
(Sk(ot)):. This process is again a continuous time, stationary ecgbidirkov chain, with the same
stationary distributionn;,, and transition rate matrixQ".

Theoreni B, statement (i) shows the intuitive fact that wRen 1 and one let$ — oo, the starvation
probability vanishes. Indeed, seen from the streaming tlosvlink variability disappears and the chunk
delays become equal (almost surely)todue to the ergodic theorem for Markov chains, This suggests
to look at a setting whetit depends orp and approachesas¢ — oco. To avoid a trivial result (i.e.

P — 0or P — 1wheng — o00), the sum rate and pre-buffering time should scalé /4% — C /@)
andCy/+/¢ + K — 1 respectively withC, Cy two positive constants, as done in theofdm 3, statement
(ii). Before stating our result we state lemfja 1 dué td [33jiol shows that the amount of data received
on a link can be approximated by a Wiener process with apateirift and variance. By a slight abuse
of notation, we identify-(.) with the vecton(r(i));es.

Lemma 1 ([33]) DefineG?(t \/_fo 7(Sk(éu)) — ri)du. Considerg® = (g*(i));cs a solution to
the Poisson equatiorQ” ¢* = r( ) — ri. Further define the asymptotic variance :

T =2 r(i)g" (D)mr(i).

€S

ThenG?(.) converges to a Wiener process with déifand variancerz, wheng — oo.

11



Given transition matrixQ*, the Poisson equation can be solved numerically by calogléte pseudo
inverse of@*. We show below that for in several cases of interest, one aiae the Poisson equation in
closed form and deduce the asymptotic variaigeThis makes our performance bounds fully tractable.
We may now state theoremh 3. The proof uses standard resutt®esing probabilities for Wiener pro-
cesses, and the interested reader can refer t6 [34, 35héftarice).

Theorem 3 Considerr an f-upper balanced policy. Let assumptigmhs 2 Ahd 3 hold.
(i) ConsiderR > 1 andb > 0 fixed. Then for allV:

PN b+ K—1) — 0.

Pp—o0

(ii) ConsiderCy, Cy > 0, defineb? = Cy/+/$ and assume thak = R? = 1/(1 — C1/+/¢). Then
forall NV:

K
lim sup PN(m, 0% + K —1) <1-[] (1 ~P [ max 7, W(t) —rpCyt > rkcg]) :
¢—00 Pl te[K,N+K—1]

with (W (¢)), a standard Wiener process.
(ii)(a) If ¢, =0, we have:

K
lim sup PN9(m,b? + K —1) <1- [] (1 — 20 <&>)
¢p—00 Pl
(iiy(b) If C1 > 0, forall N:
K _yricice
lim sup PYO(m, 0% + K —1) <1-[] (16 ) .
¢p—r00 h

Corollary 2 The following holds without assumptigh 3.
(i) ConsiderR > 1 andb > 0 fixed. Then for allV:

PN b+ K—1) — 0.

p—00
(i) Let Oy, Cy > 0,0% = Cy/\/pandR = R® =1/(1 — C,/+/d). Forall N:

K
lim sup PV?(m,b® + K — 1) < g P [ max oW (t) — rpyCit > rkCQ] .
b 00 = [te[K.N+E-1]

with (W (t)). a standard Wiener process.
(ii)(a) If ¢, =0, we have:

K
’CQ
lim sup PN(m,b® + K — 1) < 2@(”—)
cbﬂlzo)o ( >_; orVN + K —1

(iii)(b) If C1 > 0, for all N:

_27‘2C1C2

K
lim sup PN’¢(w,b¢+K—1)§Ze .
¢—00 h—1

12



Proof.

(i) We omit superscripts’ for clarity. We defineff, (¢ fo 7(Sk(¢u))du, andGy(t) = /o(Hy(t)—
rit) andB = b+ K — 1. Consider chunk, to be read at time + B, and requested on link, so that
m, = k. Chunkn does not arrive in time if and only if less thdp(n) chunks have been received on link
k attimen + B, so thatHy(n + B) < di(n) < fr(n + K — 1) sincer is f-upper balanced. Hence
Hy(n+ B) — (n+ B) fi < —fib. Therefore the starvation probability can be upper bourged

P[3k: min Hy(n+ B) — (n+ B) fi < —fib].
nel,N]

Now, from lemmalL, we know that, for afl,

Hy(n+ B) = (n+ B)fx — o (n+ B)(re — fx) = (n+ B)ri(1 = 1/R) >0

sinceR > 1. We deduce that the starvation probability goe8 wthen¢ — oo as announced.
(ii) Itis noted thatR, f, andB = b® + K — 1 depend omp, and we omit the superscrigt for clarity.
Assume that evertH(n + B) — (n + B) fi, < — fib} occurs. Then:

Gr(n+ B) + V/o(ri — fu)(n+ B) < =/ b
We have assumed thft = /R = r(1 — C1/+/¢) andb = 02/\/5, so that replacing above yields:
Gr(n+ B) +r,C1(n+ B) < —Car(1 — C1 /\/9).
So the starvation probability is upper bounded by:

P= : i . < - - .
P P[Ekte[[K,I}lVTK—ﬁk(t) +trCy < —Corg(1 — C1/\/9)]

Letting ¢ — oo and using lemm@] 1:

lim sup P < P[3k: max TrWi(t) — trpCy > 1rCs)
00 te[K,N+K—1]

K
=1- H (1 —P |: max 3kW(ﬁ) —trp,Cy > ’I“kCQ]) .

K,N+K-1
i te[K,N+K—1]

whereW;(.), ..., Wik (.) are independent standard Wiener processes, and where evimdependence to
obtain the last equality.
(iii)(a) ConsiderC; = 0. We recall the reflexion principle.

Proposition 3 Consideri¥ (¢) a standard Brownian motion, then for @l > 0 and7" > 0:
P ( sup W (t) > w) =2P(W(T) > w).
0<t<T

Now using the reflexion principle:

P [ max W (t) > rkCg] <P [ max  opW(t) > Tk02:|
te[K,N+K—1] te[0,N+K—1]

=2P[W(N+ K —1) > r,Cy /5]

=20 (—T’“CQ )
B GVN+K—1)"
and replacing in (ii) gives the announced statement.
(iii)(b) ConsiderC; > 0. We first recall a result on the probability that a Wiener msscwith negative
drift hits a positive level.

13



Proposition 4 Considerl¥ (¢) a standard Brownian motiom; > 0, i > 0 andw > 0. Then:

2pw

P <sup(JW(t) —ut) > w> T

t>0
We apply the result above to yield:

_2rkC’1C2

P [ max (IEkW(t) —ryCht) > Tk02:| <P [sup(?kW(t) —r;Cit) > 1, Co| = £
te[K,N+K—1] t>0

Replacing in (ii) gives the announced result.
The corollary is obtained by the same reasoning using a woand (which does not require assump-

tion[3):

K
]P’[Elk:ng[lligvﬂHk(nwLB) (n+ B)fr < —fib] g; ng[llu}v]]Hkn+B) (n+ B) fr < —frb].

]
The result is also valid wheR = 1 (critical case) sinc€’, can be null. IfC; = Cs the bound still
holds but is not informative.

6 Case Studies

In this section we specialize our results to several simpdets for wired and wireless links. We show
how to calculate relevant quantities such(ag.) anda>. We focus on a particular link and indexes

, .F are omitted for clarity. We consider simple models for taddlity. It is noted that as far as CSMA
and opportunistic scheduling are concerned, one coulda®nsate adaptation (at the expense of more
complicated expressions) and still derive the cumulaneggtimg function, since for reasonable models,
delays follow a phase-type distribution.

6.1 Wireless links with random access (CSMA-like)

We consider the following model for random access, whichianBhi's model[[36] with one back-off
stage. A fixed number of flows compete for access to a link. Eacink is split inton; frames. Time
is slotted, withT the time slot duration, and when the streaming flow attemptsctess the link, it
is successful with probability. If the attempt is successful, a frame is transmitted duargiot. If
the attempt is unsucessful, then the streaming flow waits fduration uniformly distributed between
0 and WT,, with W the window size. Given the number of competing flows and thedaiv size,

p may be calculated using a fixed point equation as$_in [36]. Tihe tequired to transmit a frame is
Z =T, (lJrWZZ 1 Ui) with G NGeo(v) and(U;) i.i.d. uniform on|0, 1] and independent @F. Define

a/ = aT,W. We haveE[e*'Vi] = fo e “du = h(a'). (U;); are i.i.d and independent fro6 so:

Ele? S0 = Y BG = g (HW'U”) = 2P = iy

920 920

if (1 —p)h(a’) < 1and= oo otherwise. We deduce:

log(E[e*?]) = Tya + log <1 -(1- ;h(an) '
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The time to transmit a chunk is the sumrof i.i.d copies ofZ, and we deduce the cumulant generating
function:

G(a) = ny <Tsa+log<1_(1_£h(aWTs)>) . h(a) = (e* —1)/a.

with a such tha(l — p)h(aWT;) < 1.

6.2 Wireless links using channel-aware scheduling

We consider channel-aware scheduling with a large numidewe$. Once again chunks are dividedip
frames. In each time slot (duratidn), a scheduler chooses the flow whose ratio between instmtan
data rate and expected data rate is maximal and the chosetrdlosmits a frame. Definethe inverse
of the number of competing flows, the time required to transnfiame isZ = T(1 + G) whereG ~
Geof), and the time required to transmit a chunk is a sumaii.d copies ofZ. We deduce the cumulant

generating function:
p
= T, 1 -, . < T .
Gla) =ns (a s (1 -1 p)e“Ts))

with @ < —log(1 — p)/Ts. This model is reasonable if the number of flows is large, abtte instanta-
neous data rate of the chosen user equals the peak ratetélahéeved with maximal modulation and
coding scheme).

6.3 Wireless ON-OFF channels

We consider a typical model used in cognitive radio. A linlsigred between a primary user and the
streaming flow acting as a secondary user. The primary uaetigity follows a two-states Markov
process, which is independent of the secondary user gcfitie streaming flow transmits only when the
primary user is not transmitting. The link has two stateatest when the primary user is active and no
data is transmitted so that0) = 0 and statel, when the link is available and data is transmitted at rate
r(1) = 1. The transition rate matrix i§ = (aﬂ ﬂa>. The stationary distribution i = (755, a%ﬂ)

and the expected data rate-is- a%ﬂ. The Poisson equation readsr, 1 — r) = (g¥ — g&)(8, —a) and
a solution isig* = (0, a_—+1ﬁ)' The asymptotic variance is:

5 2B«
T latBpP

As expectedg? is large whenn + 3 is small, since in that case the channel state has a stromg tim
correlation.

6.4 Sharing links with small flows

The last model we consider is a link shared between the singaflow and small exponential flows
arriving as a Poisson process. Some form of resource sharirggd (for instance fair rate sharing) and
when there are small flows, the streaming flow transmits data at rdte). For fair rate sharing we have
r(n) = 1/(1+n). The state of the linl§(¢) is the number of small flows at tinteand follows an M/M/1
process with arrival raté and service ratg. Define the loagh = \/u < 1. The stationary distribution
ism(n) = p"(1— p). The expected data ratetis= Y, ., 7(n)p" (1 — p). DefineR(n) = r(n) — 7. We
now solve the Poisson equation.
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Proposition 5 The asymptotic variancg” is:
Z Z R(n)R(i)(p" — p").
n>0 =0

Proof. By homogeneity, for a fixed value @f it sufficient to solve the Poisson equation for= 1, and
divide the obtained solution by. For A = 1 the Poisson equation reads:

R(0) = g(1) — 9(0)
Rn)=gn+1)+ptgln—1)—1+p Hgn) , n>1.

If g is a solution then for alk € R, g’ = g + = is also a solution, which can be checked by inspection.
Hence we look for a solution that verifigg0) = 0. We deduce thay(1) = R(0). Defineg(n) =
g(n)p™(1 — p). Multiplying the previous equation by***(1 — p) we get:

g(n+1) = g(n) = p" (1 = p)R(n) + p(g(n) — g(n — 1)).

One may readily check thgtn + 1) — g(n) = p"(1 — p) >_r_, R(k) satisfies the above recursion, and
we deducey by summing its increments:

Z (i+1) ) Z p—p
i=0

Replacingg, we obtain the asymptotic variance for= 1:

7= 23 Rmin) =2 Y. SRR} — o).

n>0 n>0 1=0

||
QQI

and dividing by yields the result. O

7 Numerical Experiments

We evaluate the numerical performance of the proposed shand the accuracy of the various bounds
derived above. Throughout this section we consitfer= 3600 (a video file of 1 hour with chunks
of 1 second). We simply simulate the model described in @edli, we do not simulate the actual
transmission and decoding of chunks. To calculate theatiarvprobability, we simulate the successive
delays on each linkX . (¢))y.¢, calculate whether or not starvation occurs and averagetudt overl 0°
independent runs.

7.1 li.d. delays

We first consider i.i.d delays. On Figurk 1(a) we considerltnks with i.i.d exponential delays, and we
plot the starvation probability as a function of the preférihg time, for various values at. Figure1(b)
shows the same for Gaussian delays with variafceslin both cases our upper bounds are close to the
true starvation probabilities, and their accuracy impsowédien we approach the critical regimke~ 1.
The critical regime is the most interesting in practicecsinate adaptation selects a video data rate close
to R to ensure maximal quality while avoiding overload.

On Figurd 2 we consider two heterogeneous links. The firsisim CSMA-type link (subsectidn .1)
with access probability,, and window size od time slots. The second link uses opportunistic scheduling
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Figure 1: I.i.d. delaysR > 1, starvation probability vs upper bound.

(subsection 6]2) with access probability For both links, the slot size I8, = 10ms and each chunk is
made ofny = 100 frames. The video data rate is chosen to ensure that weRavel and close td.
This scenario represents a streaming flow split betweeunlaeind WiFi links. We present the starvation
probability as a function of the pre-buffering times caételd by simulation, our upper bound, and an
approximation obtained by replacing the delays by Gausig#ays with the same mean and variance. In
the legend, "S.” stands for simulation, "U.” for Upper Bouadd "G.” for Gaussian Approximation. The
Gaussian approximation is fair, due to the fact that theydefa chunk is the sum of a large number of
independent random variables (central limit theorem).

7.2 Markovian delays

We turn to Markovian delays. On Figire 3(a) we consider an@m™F- link (subsectiofh 613). We represent
the ratio between the asymptotic varia@Geand the variance of the amount of data received during a unit

of time fol r(Sk(u))du, as a function of the transition rate As expected, when grows, the Markov

chain Sk (u) moves faster, and we approach the asymptotic regime wfaleresk(u))du becomes nor-
mally distributed with meam; and variance&;. Further, this happens for reasonably small values of
.

Figure[3(b) shows the same for a link shared with small floviisgufair rate sharing (subsectibn b.4).
The same conclusions hold, so that the varianc§010f(Sk(u))du approaches; when\ grows (the
chain moves faster). Furthermore, we see that the conveggstiaster for small loads. This is logical
since the mixing time of the chain grows with the process;(¢) has a stronger time correlation for
high loads.

On Figured# we plot the starvation probability as a functiéthe pre-buffering time for two sym-
metrical ON-OFF links (resp. links with fair rate sharingddnadp = 0.7). We compare the starvation
probability to the diffusion approximation suggested iadren{8. In both cases the diffusion approx-
imation is surprisingly accurate, and gives a tractable@gmation to an otherwise intractable (to the
best of our knowledge) problem.
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Figure 2: Wifi + cellular links,R > 1, starvation probability vs upper bound.

7.3 Real world data

Finally we present some experiments on real world tracesstdfe a file of32 MB on an HTTP server
and, using HTTP byte range requests, we successively recfuasks ofl 00 kB of this file and measure
the corresponding delay. This gives us a trace Bi2h succesive chunk delays. We repeat this
times to obtair20 traces. We go through this process twice: first for a wirekl (anlaptop connected to
the Internet through Ethernet, labelled “Link 1”), and aeléss link (the same laptop connected to the
Internet through a WiFi router, labelled “Link 2”). Linkseheterogenous, and we hagez 2.

L) —p)]|

In table[1 we present the absolute value of the autocoroelatf delays‘E[(Xk(l)’“’“)(f’“(

O

estimated from our traces for both links, whérelenotes the lag. Given linkwe estimate this guantity
and average the result over traces. Delays are only weakiglated, so that assuming i.i.d. delays
(Assumptiori]l) seems adequate.

In Figure[3 we present the starvation probability calculaie four arbitrairly chosen traces. Given
a trace, for each link we calculate the empirical distribatof delays, then draww samples with re-
placement from this distribution and check whether or natvsttion has occured. We then estimate the
starvation probability by averaging the result ovét independent trials (curve 'Trace’). Then we com-
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pute(fix, 67 ) the empirical mean and variance of the delays and we combaetstarvation probability
when delays are i.i.d. Gaussian with mean and varigages; ) (curve 'Gaussian’). Finally we calculate
the analytic formula obtained in Theorér 2, statement\ien delays are i.i.d. Gaussian with mean
and variancé;i;, 67) (curve 'Analytic’). The three curves are close to each offtethat: i.i.d. Gaussian
delays provide a simple and robust model, our analyticahtdas predict the starvation probability accu-
rately and provide simple, efficient rules to set the predmirify time. Delays cannot strictly be Gaussian
since they are always positive, but the obtained predistaoe accurate across all the considered traces.

Lag 0 1 2 3 4 5 6 7
Link1 | 1.00| 0.04| 0.04| 0.06 | 0.06 | 0.06 | 0.05| 0.05
Link2 | 1.00| 0.03| 0.04| 0.04| 0.04| 0.05| 0.05| 0.06

Table 1: Real-world data: autocorrelation of delays

8 Conclusion

We have investigated streaming over multiple links. We hanavided lower bounds on the starvation
probability of any policy and proposed simple schemes tpat@ach those limits. For general delay
distributions, we have provided tractable upper boundgHerstarvation probability of the proposed
policies. Our results cover several models of practicariggt such as links that employ CSMA or op-
portunistic scheduling at the packet level, on-off chasmeld links that use fair rate sharing at the flow
level. Numerical experiments demonstrate the accuradyeoptoposed bounds and approximations.
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General

number of chunks per file

number of links

pre-buffering time

di(n) number of chunks< n requested on link
X, (¢) delay of thel-th chunk requested on link

S

P starvation probability

T chunk request policy

bk expected delay of link

Tk expected data rate of link

R sum rate of links

I frequency of linkk

v c.c.d.f. of the standard normal distribution
l.i.d. delays

o; variance of delays of link

Gy cumulant generating function of delays of likk
v? variance upper bound for sub-Gaussian delay
Fi(a)  Gi(a) —a/fe

ay largest zero of),

Markovian delays
Sk(t)  state of linkk at timet

QF transition rate matrix of link

mp stationary distribution of link

S link state space

r(.) instantaneous data rate

) speed

g* solution to the Poisson equation

o asymptotic variance (from the Poisson equati
Wireless links with random access / scheduling
T, time slot duration

W window size

P success probability

ny number of frames per chunk

Wireless ON-OFF channels
a, B transition probabilities
Sharing links with small flows

"

hn)

A arrival rate

1 service rate

P load

g expected data rate

Table 2: Used Notation: Index
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