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Abstract

We investigate streaming over multiple links. A file is splitinto small units called chunks that may
be requested on the various links according to some policy, and received after some random delay.
After a start-up time called pre-buffering time, received chunks are played at a fixed speed. There
is starvation if the chunk to be played has not yet arrived. Weprovide lower bounds (fundamental
limits) on the starvation probability of any policy. We further propose simple, order-optimal policies
that require no feedback. For general delay distributions,we provide tractable upper bounds for the
starvation probability of the proposed policies, allowingto select the pre-buffering time appropriately.
We specialize our results to: (i) links that employ CSMA or opportunistic scheduling at the packet level,
(ii) links shared with a primary user (iii) links that use fair rate sharing at the flow level. We consider
a generic model so that our results give insight into the design and performance of media streaming
over (a) wired networks with several paths between the source and destination, (b) wireless networks
featuring spectrum aggregation and (c) multi-homed wireless networks.

1 Introduction

We consider the problem of streaming a file divided into smallunits called “chunks” over multiple links.
Each chunk may be requested on any link. Requested chunks arrive in the requested order, separated
by random delays. Randomness is due to propagation delays, change in the link quality and congestion
since the streaming flow shares the links with competing flows. Received chunks are stored in a buffer.
After a fixed start-up time called pre-buffering time, the received chunks are played at a fixed speed. If a
chunk does not arrive before the time it is supposed to be played there is starvation. For video streaming,
starvation causes interruptions in the play-out and is the main cause for poor Quality-of-Service (QoS).
The goal is to design chunk request policies that minimize the starvation probability.

For clarity we use the generic term “links” to denote entities on which packets may be requested.
Links may represent for instance: (a) several disjoint paths between a source and a destination in a wired
network (b) several disjoint frequency bands in a wireless system featuring spectrum aggregation, (c)
several wireless interfaces which employ different protocols, for instance cellular data, say LTE (Long
Term Evolution) and local area, say 802.11 (WiFi). Case (c) is often referred to as “multihoming”. While
links may have different data rates as well as different traffic management rules, a good protocol should
ensure that, from the point of view of the streaming flow, theyappear as a single aggregated entity whose
data rate is the sum of the links data rates. The goal is hence to perform link aggregation efficiently so as
to minimize the starvation probability.
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×: INRIA, Paris (France), habisd1@gmail.com
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The problem is motivated by several features of current networks. First, in current mobile networks,
video-on-demandservices consume the majority of the available bandwidth, and good traffic management
rules have a dramatic impact on the network performance. Further, due to the massive deployment of
both cellular data networks and local area networks, most users in dense urban zones have access to
several wireless links. If feasible, spreading the load evenly on those links is highly desirable. Finally
current streaming protocols such as the DASH standard [1] operate by splitting video files in chunks and
requesting them as independent HTTP requests. There are twoadvantages to this approach: (i) this is
a stateless protocol, the video server does not keep track ofthe state of the user playing the video, and
processes each chunk request independently (ii) requesting each chunk through HTTP avoids issues with
middle-boxes (e.g. firewalls and NATs) which may block certain ports for security.

There are two challenges. First the number of request policies is exponential in the number of chunks,
so that exhaustive search is not feasible. Furthermore, onewould like to minimize the amount of feed-
back required by policies to ease implementation. The second challenge is to calculate the starvation
probability of a given policy by tractable formulas. This enables to select the pre-buffering time to ensure
that the starvation probability is smaller than some threshold. For elastic traffic one is concerned with
the maximum achievable long-term throughput, which depends mostly on the expected delay but not on
the full delay distribution. On the other hand for streamingtraffic, starvation is highly dependent on the
variability of the delays (e.g. the jitter), and accurate predictions of starvation probability must depend on
the full delay distribution. Analytical formulas are useful even when one can simulate the system since,
when the pre-buffering time is large, starvation tends to bea rare, “large-deviations” type of event. So
one needs long simulations to get accurate estimates.

Our contribution : We first derive lower bounds on the starvation probability of any policy. Those
bounds enable us to derive the scaling of the pre-buffering time required to reach a target starvation
probability. We further propose simple, implementable policies (without feedback) to determine how
chunks may be requested on the various links. We derive upperbounds and/or approximations for the
starvation probability of these policies. Those upper bounds are tractable, including both cases where
delays are independent and correlated. We deduce that the proposed policies are efficient since they
approach the fundamental limits derived earlier. Finally we specialize our results to several situations of
practical interest: (i) links that employ opportunistic scheduling or random access at the packet level (ii)
links where the streaming flow is the secondary user of a cognitive radio network, and is allowed to use
the link only when the primary user is inactive (iii) links where the streaming flow shares the available
bandwidth with short-lived flows using (for instance) fair rate sharing.

The remainder of this article is organized as follows. In section 2 we highlight the relationship be-
tween our results and previous work. In section 3 we state ourassumptions and notation. We provide
performance limits and state the proposed schemes in section 4. In section 5 we calculate the perfor-
mance of the proposed schemes under general assumptions. Wespecialize our results to several popular
link models in section 6. In section 7 we illustrate our results through numerical experiments. Section 8
concludes the article.

2 Related work

2.1 Performance evaluation and control for streaming

Streaming over wireless networks has become popular, and a lot of attention has been dedicated to its per-
formance evaluation, to understand the relationship between pre-buffering and starvation. [2] considers a
G/G/1 queue where the first two moments of the arrival and service distributions are known. The discrete
buffer size is approximated by a Wiener process. [3] considers an ON-OFF wireless channel and performs
a probabilistic analysis based on the knowledge of the playback and arrival curves. An M/M/1 queue is
used in [4] to derive explicit formulas for the number of starvations, based on the Ballot theorem [5]. [6]
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considers the combination of fading and flow level dynamics,and calculates the starvation probability
by solving a set of ordinary differential equations constructed on top of the Markov chain describing the
flow level dynamics.

All these works considered a single wireless link in a classical TCP/IP architecture. Another set
of works studied the impact of multihoming on streaming QoS.For instance, [7] studies multihomed
streaming in a residential context using a DSL and a cable connection. Experiments show that connection
splitting/migration in case of congestion provides a significant QoS improvement. For lossy wireless
channels, [8] considers the rate allocation problem as an optimization problem to minimize a distortion
metric for the video taking into account the loss rate of eachof the network paths. [9] extends this
work to joint scheduling and Forward Error Correction (FEC), while [10] considers the specific case of
WiFi/UMTS multihoming in the design of the FEC scheme. The same objective of reducing the video
distortion is used in [11] to design a multipath scheduling policy. These works aim at reducing video
distortion, while we are interested in HTTP-like video streaming with pre-buffering where video chunks
are downloaded without distortion and the QoS metric is the starvation probability.

Another set of works on multihomed streaming is related to content centric networking where the rate
allocation between paths is driven by interest packets generated by the users. Authors in [12] consider a
group of neighboring users using their mobile devices to view the same video, and exploit the fact that
users can exchange video chunks using direct connections instead of downloading all the chunks using
the cellular link. Others considerreal timeservices with stringent delay constraints for instance voice
[13] and live TV [14], which is out of the scope of the present work.

To the best of our knowledge, the present work is the first to derive optimal allocation strategies for
streaming over multi-homed access with the starvation probability as the main performance indicator and
provide strong theoretical performance guarantees given in the form of tractable, analytical formulas.

Two contributions on multipath streaming which are complementary to ours are [15] and [16]. In [15],
the authors propose a protocol for multipath streaming and evaluate its performance experimentally but
do not conduct a theoretical analysis. The authors of [16] formulate the problem as a Markov Decision
Process (MDP). Since computing the optimal policy of this MDP is prohibitively expensive they propose
a heuristic policy search algorithm for which no theoretical guarantees are available and its performance
is evaluated numerically.

2.2 Receiver driven transport protocols

While IP transport is under destination control, several receiver-driven transport protocols have been
proposed (see Gupta et al. in [17]). Receiver driven protocols have recently attracted a lot of attention
with the development of Information-Centric Netwroking (ICN), where download rates are determined
by the rate at which interests are sent into the network by theend-system. Arianfar et al. [18] discuss the
challenges faced when designing transport protocols for content centric networks and present a receiver-
driven transport protocol, ConTug, that takes into accountthe presence of multiple sources. Carofiglio et
al. propose another receiver-based protocol called ICP (Interest Control Protocol) using AIMD window-
based congestion control [19, 20]. [21] proposes CCTCP (Content Centric TCP) that considers the use of
multiple sources in the design of the protocol parameters such as the timeout timer.

In our work, we are neither interested in the design of such transport protocols, nor in the evaluation of
their performance for streaming traffic. Our objective is todesign optimal policies for splitting interests
over the different interfaces. We nevertheless assume thatmechanisms that adapt the interest sending
rates to the state of each multihoming path are implemented,ensuring that the available capacity of each
link is fully used. Our policies can thus be implemented at the upper layers over classical TCP/IP based
protocols, or in the form of a receiver-driven interest control protocol.
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2.3 Spectrum Aggregation

Spectrum aggregation is driven by two different but complementary objectives: achieving higher user
data rates and exploiting all the available spectrum to offload traffic from the mobile network. Typical
solutions to attain the former objective are the so-called carrier aggregation features in 3GPP, starting
with the dual cell feature in 3G systems (Release 8). The dualcell feature aggregates two 3G carriers of
5 MHz and doubles the achievable data rate [22]. However, thedual cell feature has been shown ([23])
to achieve significant capacity gains for streaming services due to the trunking effect, especially since the
data rate in Release 7 is not sufficient to meet the requirements of TV streaming . It is noted that this
gain is reduced when MIMO is combined with the dual cell feature in Release 9. The term “dual-cell”
has been changed to “carrier aggregation” in recent standards as more than two carriers are aggregated
starting from Release 10. 3GPP then introduced a more advanced carrier aggregation mechanism, where
the unused spectrum in the 1.4 GHz band (originally allocated for TDD mode but not used in Europe) is
aggregated with the FDD LTE spectrum via multihoming [24].

Another set of spectrum aggregation technologies aims at increasing the system capacity and offload-
ing the cellular traffic to other systems, while offering a better QoS to users. This started with Cognitive
Radio (CR) which suggests to reuse unused spectrum allocated to other services in a secondary, non-
priority, way [25]. The first commercial services related toCR reuse white spaces left by TV systems
[26]. However, as spectrum availability cannot be guaranteed to secondary users, multihoming is advo-
cated: users simultaneously connect to both licensed and non-licensed spectrum. 3GPP systems adopt
multihoming to aggregate 4G spectrum with WiFi spectrum, inthe so-called dual connectivity mode
[27], exploiting the presence of both WiFi and 4G radio frequency modules in almost all user devices.
The 3GPP LWIP Release 13 standard includes aggregation of WiFi and LTE (called “Wifi Boost”) at the
IP layer, and [28, 29] show that large performance gains result from this aggregation.

As opposed to classical carrier aggregation where resourceallocation is fully centralized, systems
based on CR and dual connectivity can be user-centric: userssense the medium and decide which packets
to send to each carrier, possibly assisted by the network [30]. Decisions are taken by users based on
local information (sensing) and contextual information (link quality estimates) provided by the network.
Different carriers are usually heterogeneous in terms of radio channel quality (independent fast fading),
coverage (path loss and slow fading) and load (number of connected users). The decisions taken by users
have a large impact on QoS and an efficient protocol is needed.

3 The model

3.1 Basic Description

We consider a file divided inN chunks of unit size, indexed byn ∈ [[1, N ]]. There areK ≥ 1 links, on
which any chunk can be requested. When a requested chunk is received on a link, it is placed in a buffer.
After a pre-buffering time denoted byB > 0 the file is read at unit speed. Namely, at timen + B, if
chunkn is present in the buffer then it is read, and otherwise starvation occurs.

We define the chunk request policy which is represented by a vector π ∈ [[1,K]]N , whereπn = k
if chunkn is requested on linkk. We assume that if two chunksn < n′ are requested on the same link
thenn is requested beforen′. It is clear that this always ensures lower starvation. We define dk(n) =
∑n

n′=1 1{πn′ = k}, the number of chunks comprised between1 andn requested on linkk. We further
defineXk(ℓ) the delay of theℓ-th chunk requested on linkk. Namely, ifπn = k, chunkn arrives at time
∑dk(n)

ℓ=1 Xk(ℓ). The starvation probabilityPN is the probability that there exists a chunk that arrives after
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the time it was supposed to be played, so that:

PN = P



∃k, n : πn = k and
dk(n)
∑

ℓ=1

Xk(ℓ) > n+B



 .

It is noted that in generalπ can be sample path dependent, so thatπ depends on the delays(Xk(ℓ))ℓ,k.
We will consider two types of policies.

• Static policies: π does not depend on(Xk(ℓ))ℓ,k

• Oracle policies: π is an arbitrary function of(Xk(ℓ))ℓ,k

Static policies may depend on the delay statistics but not ontheir realization, so that they require no feed-
back and are attractive in terms of implementation. Oracle policies are policies that “know everything”,
including the delays of chunks not yet received. Oracle policies are not implementable and mainly serve
here as a performance upper bound.

3.2 Assumptions

We introduce several sets of assumptions on the delays.

Assumption 1 (I.I.D. delays) For all k, (Xk(ℓ))ℓ≥0 is an i.i.d sequence with expectationµk, variance
σ2
k and cumulant generating functionGk(a) = log(E[eaXk(ℓ)]). We assume thatGk(a) < +∞ on an

open neighbourhood of0.

Assumption 2 (Markovian delays) For all k there exists a continuous time, stationary ergodic Markov
chain on a discrete spaceS denoted by(Sk(t))t∈R with stationary distributionmk and transition rate
matrixQk = (qk(i, j))i,j∈S . There exists a functionr : S → R

+ such that for allℓ, k:

τk(ℓ) = min

{

t ≥ 0 :

∫ t

0

r(Sk(u))du ≥ ℓ

}

,

Xk(ℓ) = τk(ℓ)− τk(ℓ − 1).

We defineµk = E[Xk(ℓ)].

The Markovian case can be understood as follows: at timeu, link k is in stateSk(u) and the streaming
flow has an instantaneous data rate ofr(Sk(u)). So τk(ℓ) is the duration required to receiveℓ chunks
of unit size. HenceXk(ℓ) = τk(ℓ) − τk(ℓ − 1). The state is typically the number and/or state of the
other flows sharing linkk with the streaming flow. For both sets of assumptions we definerk = 1/µk,
the average data rate of linkk, andR =

∑K
k=1 rk the sum of data rates. Based on the value ofR

we distinguish three regimes: underload ifR > 1, critical if R = 1 and overload ifR < 1. We
define the frequency vectorf = (f1, ..., fK), with fk = rk/R. In order to balance the loads of the
available links, the number of chunks requested on linkk should be close toNfk, hence the name
”frequency” forfk. We shall see that the proposed algorithms precisely accomplish that goal. We denote

by Ψ(x) = 1√
2π

∫ +∞
x e−

z2

2 dz the complementary c.d.f of the standard Normal distribution. For clarity,

we denote byPN (π,B) the starvation probability forN chunks, prebuffering timeB and policyπ.
Finally we introduce an assumption on the independence of delays across links.

Assumption 3 (Independent Links) (Xk(ℓ))ℓ≥0 is independent from(Xk′ (ℓ))ℓ≥0 for all k 6= k′.
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3.3 Applicability of the model and rate adaptation

Two remarks about the model are in order. First it should be noted that the Markovian delay assumption
includesanydelay distribution andany form of correlation between the successive delays observedon a
given link. Indeed, there are no restrictions on the size of the state spaceS nor on the transition ratesQk.
For instance the process(Sk(t))k can follow any of the classical queues (as considered in prior work) say
M/M/1, G/G/1 etc.

Second, throughout the article we assume that the video datarate is fixed and it is taken to be unity
in our notation simply to ease presentation. Indeed, in practice, some form of rate adaptation will be
implemented: before the video is played, the data ratesr1, ..., rK will be estimated, and the data rate
of the video will be chosen approximately equal to

∑K
k=1 rk. This guarantees that the video quality is

as high as possible while starvation probability can be madesmall by choosing the pre-buffering time
appropriately and using an efficient policy to request chunks.

Performing rate adaptation is relatively simple since it involves only first order statistics, namely the
first moments of the delaysµk, sincerk = 1/µk. On the other hand selecting the pre-buffering time to
avoid starvation seems more challenging since it involves the complete distribution of delays including
higher moments (e.g. the jitter), as starvation is mostly a ”tail event” due to large, rare fluctuations of the
delays.

4 Performance limits and algorithms

4.1 Fundamental Limits

Our first result presented in theorem 1 is a lower bound on the starvation probability that holds for all
oracle policies (hence for static policies as well). The intuition behind statement (i) is simple: if starvation
does not occur, then, for alln the total number of chunks received on all links at timen+B must be greater
or equal ton, otherwise there exists a chunkn′ which has not been received at timen′ + B ≤ n + B.
The lower bound is not explicit but may be computed easily by simulation. Statement (ii) shows that for
large files (N → ∞), if R ≤ 1, then the pre-buffering time must be of the order(R−1 − 1)N +O(

√
N),

otherwise the starvation probability tends to1. For large files, we obtain an explicit lower bound using
the central limit theorem. This lower bound is an increasingfunction of the delay variancesσ2

k, and tends
to 1 when we letmink σ

2
k → ∞. As a consequence, in the critical case, if the delays are heavy tailed,

one cannot ensure a starvation probability< 1 with O(
√
N) pre-buffering time. Also there are sharp

transitions between the regimes: fromB = O(1) (underload) toB = O(
√
N) (critical) toB = O(N)

(overload). We will subsequently show that these orders aretight. Also note that, intuitively, the law of
iterated logarithm would suggest the pre-buffering time tobe at leastO(

√

N log log(N)) in the critical
regime and we show that this intuition is flawed.

Theorem 1 The following holds for all oracle policiesπ.
(i) For all B ≥ 0 andN ≥ 0 we have:

PN (π,B) ≥ P

[

∃n ∈ [[1, N ]] :

K
∑

k=1

Dk(n) < n

]

Dk(n) = max{d ≥ 0 :
d
∑

ℓ=1

Xk(ℓ) ≤ B + n}.
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(ii) Let assumptions 1 and 3 hold. IfR ≤ 1, for all b ≥ 0:

lim inf
N→∞

PN(π, (R−1 − 1)N + b
√
N) ≥

K
∏

k=1

Ψ

(

b

σk

√
fk

)

.

Proof. (i) Consider a fixed oracle policyπ. Define the event

A =

{

∃n ∈ [[1, N ]] :

K
∑

k=1

Dk(n) < n

}

.

Considern fixed and assume that
∑K

k=1 Dk(n) > n. DefineNπ
k (n) the number of chunks received on

link k before timeB + n, andNπ(n) =
∑K

k=1 N
π
k (n) the total number of chunks received before time

B + n. By definitionNπ
k (n) ≤ Dk(n) for all k, so thatNπ(n) ≤ ∑K

k=1 Dk(n) < n. Hence, at time
n+ B, there exists a chunkn′ ≤ n which has not been received. We deduce that ifA occurs, starvation
occurs which proves the first claim.

(ii) DefineBN = (R−1 − 1)N + b
√
N . Define the following events:

BN
k = {Dk(N) < Nfk} , BN = ∩K

k=1Bk.

If BN occurs,
∑K

k=1 Dk(N) < N
∑K

k=1 fk = N so that starvation occurs. EventBN
k occurs if and only

if
Nfk
∑

ℓ=1

Xk(ℓ) > N +BN ,

so that, replacingBN by its expression:

1√
Nfk

Nfk
∑

ℓ=1

(Xk(ℓ)− µk) >
N +BN −Nfkµk√

Nfk
=

b√
fk

.

By the central limit theorem:

1√
Nfk

Nfk
∑

ℓ=1

(Xk(ℓ)− µk) →
N→∞

N (0, σ2
k),

in distribution so that:

P[BN
k ] →

N→∞
Ψ

(

b

σk

√
fk

)

.

EventsBN
1 , ...,BN

K are independent so that

PN (π,BN ) ≥
K
∏

k=1

P[BN
k ] →

N→∞

K
∏

k=1

Ψ

(

b

σk

√
fk

)

.

which gives the announced result. �

4.2 Efficient Algorithms

Intuitively, to obtain an efficient policy, chunks should berequested on linkk at frequencyfk, so that
the number of requested chunksdk(n) is close tonfk. We define a class of static policies called upper
balanced policies. We say thatπ is f -upper balanced if for allk, n we have:

dπk (n) ≤ (n+K − 1)fk.
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If frequencies are not rational numbers it is not obvious howto build such a policy. We show a simple
recursive way to construct upper balanced policies with arbitrary frequencies.

Proposition 1 Considerπ such that for alln ≥ 0:

πn ∈ argmin
k

dπk (n− 1) + 1

fk

with ties broken arbitrarily. Thenπ is f -upper balanced.

Proof. We drop.π for convenience. Definea(n) =
dπn(n−1)+1

fπn
. Sinceπn ∈ argmink

dπ
k (n−1)+1

fk
, we

havea(n) ≤ dk(n−1)+1
fk

for all k. Hencefka(n) ≤ dk(n− 1) + 1 for all k, and summing overk we get:
a(n) = a(n)

∑

k fk ≤∑k(dk(n− 1) + 1) = n− 1 +K.
Let us now prove thatdk(n) ≤ (n+K − 1)fk for all n. We proceed by induction. The inequality is

true forn = 0 sincedk(0) = 0 ≤ (K − 1)fk. Considern such thatdk(n− 1) ≤ (n− 1 +K − 1)fk for
all k. If k 6= πn thendk(n) = dk(n− 1) ≤ (n− 1 +K − 1)fk ≤ (n+K − 1)fk. On the other hand, if
k = πn we havedk(n) = dk(n− 1)+1 = fka(n) ≤ (n+K− 1)fk. Thereforedk(n) ≤ (n+K− 1)fk
for all n and allk as announced. �

Upper balanced sequences share a close resemblance with balanced sequences used in optimal routing
problems such as [31]. A key difference is that it is usually difficult to compute balanced sequences
when eitherK ≥ 3 or frequencies are not rational. When frequencies are not rational, one cannot
construct upper balanced sequences that are periodic, so that a (simple) recursive formula to calculate
upper balanced sequences seems good enough. It is also notedthat, contrary to problems of maximal
throughput scheduling for elastic traffic, Bernoulli routing is not satisfactory. Namely using randomized
sequencesπ where(πn)n is an i.i.d sequence on{1, ...,K} with distribution(f1, ..., fK) is no good since
this would givedπk (n)− nfk = O(

√
n) (central limit theorem).

The policy defined in proposition 1 can be implemented efficiently in practice as follows. As said pre-
viously, rate adaptation is performed so thatr1, ..., rK andR are estimated before chunks are requested.
This allows to estimate frequenciesf1, ..., fK , and in turn calculateπn (the link on which chunkn is re-
quested) for alln using proposition 1. This requiresO(N) operations andO(K) memory. An advantage
of this policy is that it is completely static, hence it does not require to monitor the state of the various
links once the streaming flow has started.

For very long files, the data rates of the various links may change on a slow time scale (say a few
minutes), and to deal with this one may simply perform rate adaptation periodically and recomputeπ
based on proposition 1.

5 Performance evaluation

5.1 Performance for i.i.d. delays

We consider i.i.d. delays. Our second result is theorem 2, which gives upper bounds for the starvation
probability of upper balanced policies, and shows that, in the 3 regimes of interest they are order optimal.
Namely the pre-buffering times have the same scalings as thelower bound of theorem 1. More precisely,
for statement (iii), we consider the regime whereR ≤ 1. From our previous result the pre-buffering time
must be greater than(R−1 − 1)N + O(

√
N), otherwiseP → 1 whenN → ∞. So we consider pre-

buffering time(R−1 − 1)N + b+K − 1 and study the starvation probability as a function ofb. Indeed,
P 6→ 1 if and only if b scales asO(

√
N) whenN → ∞.

The proof is based on Doob’s maximal inequality and before stating theorem 2 we define the exponent
a⋆k which appears in our upper bounds. We defineFk(a) = Gk(a) − a/fk. If Xk(ℓ) < 1/fk a.s. then
definea⋆k = +∞, and otherwise definea⋆k = max{a ≥ 0 : Fk(a) = 0}. GivenGk(.), a⋆k can always be
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calculated numerically using a zero-finding procedure suchas bisection or Newton’s method. We further
give explicit formulas for calculatinga⋆k in several cases of interest: exponential delays and sub-Gaussian
delays, see Proposition 2. We recall thatXk(ℓ) is sub-Gaussian if there existsv2k ≥ 0 such that for
all a ≥ 0: Gk(a) ≤ aµk + a2v2k/2. It is noted that if delays are Gaussian or bounded, then theyare
sub-Gaussian, see Remark 1.

Proposition 2 ConsiderR > 1.
(i) If Xk(ℓ) ∼ Exp(rk), thena⋆k = rk(1 +W (−Re−R)/R) withW the Lambert function.
(ii) If Xk(ℓ) is v2k-sub-Gaussian thena⋆k ≥ 2µk(R− 1)/v2k.

Proof. (i) If Xk(ℓ) ∼ Exp(rk), thenGk(a) = rk/(rk − a), a ∈ [0, rk). So a⋆k is a solution to the
equation:

rk
rk − a

= exp(a/fk)

Considerv ∈ [0, R] and definea = rk(1 − v/R). Substituting in the equation above we get:Re−R =
ve−v. Sincev 7→ ve−v is strictly increasing on[0, 1] and strictly decreasing on[1,+∞) this equation
has at most two solutions.v = R is a trivial solution, which givesa = 0. The other solution is found
by noticing that−Re−R = −ve−v, so that−v = W (−Re−R), anda = rk(1 +W (−Re−R)/R) which
proves the result.

(ii) If Xk(ℓ) ≤ 1/fk a.s. thena⋆k = +∞ so that the claim is trivially true. If we do not have
Xk(ℓ) ≤ 1/fk a.s., thenFk(a) →

a→∞
∞. Definea = 2µk(R − 1)/v2k. By continuity ofFk, to prove that

a⋆k ≥ a it suffices to prove thatFk(a) ≤ 0. If Xk(ℓ) is v2k-sub-Gaussian, we have

Fk(a) ≤ aµk +
a2v2k
2

− a

fk
= aµk(1 −R) +

a2v2k
2

.

Settinga ≡ a we obtain thatFk(a) ≤ 0 which concludes the proof. �

Remark 1 (a) If Xk(ℓ) ∼ N (µk, σ
2
k) thenGk(a) = aµj + a2σ2

k/2 andXk(ℓ) is σ2
k sub-Gaussian.

(b) If Xk(ℓ) ∈ [x, x] a.s. thenXk(ℓ) is (x− x)2/4 sub-Gaussian (by Hoeffding’s lemma).

Theorem 2 Considerπ an f -upper balanced policy. Let assumptions 1 and 3 hold. DefineNk = fkN
andGk = {a : Fk(a) ≥ 0}.

(i) For all b ≥ 0 and allN we have:

PN (π, b+K − 1) ≤ 1−
K
∏

k=1

[

1− min
ak∈Gk

eNkFk(ak)−akb

]

.

(ii) If R > 1, we havea⋆k > 0 and for allN and allb > 0:

PN (π, b+K − 1) ≤ 1−
K
∏

k=1

[1− e−a⋆
kb].

(iii) If R ≤ 1, andXk(ℓ) is v2k-sub-Gaussian for allk, then for allb > 0 and allN :

PN(π, (R−1 − 1)N + b+K − 1) ≤ 1−
K
∏

k=1

[1− e
− b2

2v2
k
Nfk ].

9



Corollary 1 The following holds without assumption 3.
(i) For all b ≥ 0 and allN we have:

PN(π, b +K − 1) ≤
K
∑

k=1

min
ak∈Gk

eNkFk(ak)−akb.

(ii) If R > 1, we havea⋆k > 0 and for allN and allb > 0:

PN (π, b+K − 1) ≤
K
∑

k=1

e−a⋆
kb.

(iii) If R ≤ 1, andXk(ℓ) is v2k-sub-Gaussian for allk, then for allb > 0 and allN :

PN (π, (R−1 − 1)N + b+K − 1) ≤
K
∑

k=1

e
− b2

2v2
k
Nfk .

Proof. (i) Considern such thatπn = k. DefineMk(t) =
∑t

ℓ=1 Xk(ℓ). Considerd = dk(n), so thatn
is thed-th chunk requested on linkk. The pre-buffering time is equal tob +K − 1, and chunkn is not
received in time if and only ifMk(d) ≥ n + b + K − 1. Further, sinceπ is f upper balanced we have
d = dk(n) ≤ (n+K − 1)fk so thatd/fk + 1−K ≤ n. It is also noted thatdk(n) ≤ Nk. Hence, using
independence:

PN (π, b+K − 1) ≤ P

[

∃k : max
1≤d≤Nk

Mk(d)− d/fk ≥ b

]

≤ 1−
K
∏

k=1

(

1− P

[

max
1≤d≤Nk

Mk(d)− d/fk ≥ b

])

Considera ∈ Gk. DefineZk(d) = ea(Mk(d)−d/fk). Zk(d) is a sub-martingale, indeed,

E[Zk(d)|Zk(d− 1)] = Zk(d− 1)eFk(a) ≥ Zk(d− 1),

sincea ∈ Gk. Using Doob’s maximal inequality:

P[ max
1≤d≤Nk

Mk(d)− d/fk ≥ b] = P[ max
1≤d≤Nk

Zk(d) ≥ eab] ≤ e−ab
E[Zk(Nk)] = eNkFk(a)−ab

≤ min
a∈Gk

eNkFk(a)−ab.

Replacing we get the first claim:

PN (π, b+K − 1) ≤ 1−
K
∏

k=1

[

1− min
ak∈Gk

eNkFk(ak)−akb

]

.

(ii) Assume thatR > 1. For all k, we prove that eitherXk(ℓ) ≤ 1/fk a.s., or otherwise there
existsa⋆k > 0 such thatF (a⋆k) = 0. The derivative ofFk(.) evaluated ata = 0 is E[Xk(ℓ)] − 1/fk =
µk(1 − R) < 0. ThereforeFk(a) < 0 for a > 0 on an open neighborhood of0. Chooseǫ > 0 such that
P[Xk(ℓ) ≥ 1/fk + ǫ] > 0. We have:

Fk(a) ≥ log(P[Xk(ℓ) ≥ 1/fk + ǫ]ea(1/fk+ǫ))− a/fk ∼ aǫ →
a→+∞

+∞

10



Hence by continuity ofF (.) there existsa⋆k > 0 such thatF (a⋆k) = 0. The second claim is obtained by
settingak ≡ a⋆k for all k in the first claim.

(iii) ConsiderR ≤ 1. DefineB = b + N(R−1 − 1). For all a ≥ 0, from Jensen’s inequality we
haveGk(a) ≥ aµk, soFk(a) ≥ aµk(1 − R) ≥ 0. Hence[0,+∞) ⊂ Gk andak ∈ Gk. SinceXk(ℓ) is
v2k-sub-Gaussian,Gk(a) ≤ aµk + a2v2k/2, so that:

NkFk(a)− aB ≤ a(N(R−1 − 1)−B) + a2v2kNfk/2 = −ab+ a2v2kNfk/2.

Settinga = b
v2

k
Nfk

we obtainNkFk(a) − aB ≤ − b2

2v2

k
Nfk

. Substituting in the first claim (whereb is

replaced byB) we obtain the announced result.
The corollary follows from the same reasoning but using the union bound (which does not require

assumption 3 to hold):

PN (π, b+K − 1) ≤ P

[

∃k : max
1≤d≤Nk

Mk(d)− d/fk ≥ b

]

≤
K
∑

k=1

P

[

max
1≤d≤Nk

Mk(d) − d/fk ≥ b

]

.

�

5.2 Performance for Markovian delays

We turn to Markovian delays. Even for very simple transitionmatricesQk and rate functionsr(.) it
is difficult to find a tractable formula for the starvation probability, as it involves upper bounding the
crossing probability of a random walk with correlated increments (see for instance [32]). It is noted
that the starvation probability does not only depend on stationary distributions of the link statesmk but
also on the the transition rate matrixQk. One can expect larger starvation probability when the Markov
chain has a strong correlation since in that case the streaming flow can experience long bursts of large
delays. We propose to consider a regime whereSk(t) evolves on a “faster time scale” than the streaming
flow of interest. In that case we can find a simple, tractable expression for the starvation probability
shown in theorem 3. This approximation is useful in practice, since streaming flows are long (several
minutes), while most phenomena causing link variability are short, for instance fading, medium access
protocols and short lived elastic flows. We consider speedφ > 0, and we define the accelerated process
(Sk(φt))t. This process is again a continuous time, stationary ergodic Markov chain, with the same
stationary distributionmk, and transition rate matrixφQk.

Theorem 3, statement (i) shows the intuitive fact that whenR > 1 and one letsφ → ∞, the starvation
probability vanishes. Indeed, seen from the streaming flow,the link variability disappears and the chunk
delays become equal (almost surely) tork due to the ergodic theorem for Markov chains, This suggests
to look at a setting whenR depends onφ and approaches1 asφ → ∞. To avoid a trivial result (i.e.
P → 0 or P → 1 whenφ → ∞), the sum rate and pre-buffering time should scale as1/(1 − C1/

√
φ)

andC2/
√
φ + K − 1 respectively withC1, C2 two positive constants, as done in theorem 3, statement

(ii). Before stating our result we state lemma 1 due to [33], which shows that the amount of data received
on a link can be approximated by a Wiener process with appropriate drift and variance. By a slight abuse
of notation, we identifyr(.) with the vector(r(i))i∈S .

Lemma 1 ([33]) DefineGφ(t) =
√
φ
∫ t

0 (r(Sk(φu)) − rk)du. Considergk = (gk(i))i∈S a solution to
the Poisson equation:Qkgk = r(.) − rk. Further define the asymptotic variance :

σ2
k = −2

∑

i∈S
r(i)gk(i)mk(i).

ThenGφ(.) converges to a Wiener process with drift0 and varianceσ2
k, whenφ → ∞.
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Given transition matrixQk, the Poisson equation can be solved numerically by calculating the pseudo
inverse ofQk. We show below that for in several cases of interest, one can solve the Poisson equation in
closed form and deduce the asymptotic varianceσ2

k. This makes our performance bounds fully tractable.
We may now state theorem 3. The proof uses standard results oncrossing probabilities for Wiener pro-
cesses, and the interested reader can refer to [34, 35] (for instance).

Theorem 3 Considerπ anf -upper balanced policy. Let assumptions 2 and 3 hold.
(i) ConsiderR > 1 andb > 0 fixed. Then for allN :

PN,φ(π, b+K − 1) →
φ→∞

0.

(ii) ConsiderC1, C2 ≥ 0, definebφ = C2/
√
φ and assume thatR = Rφ ≡ 1/(1 − C1/

√
φ). Then

for all N :

lim sup
φ→∞

PN,φ(π, bφ +K − 1) ≤ 1−
K
∏

k=1

(

1− P

[

max
t∈[[K,N+K−1]]

σkW (t)− rkC1t ≥ rkC2

])

.

with (W (t))t a standard Wiener process.
(iii)(a) If C1 = 0, we have:

lim sup
φ→∞

PN,φ(π, bφ +K − 1) ≤ 1−
K
∏

k=1

(

1− 2Ψ

(

rkC2

σk

√
N +K − 1

))

(iii)(b) If C1 > 0, for all N :

lim sup
φ→∞

PN,φ(π, bφ +K − 1) ≤ 1−
K
∏

k=1

(

1− e
−2

r2
k
C1C2

σ2

k

)

.

Corollary 2 The following holds without assumption 3.
(i) ConsiderR > 1 andb > 0 fixed. Then for allN :

PN,φ(π, b+K − 1) →
φ→∞

0.

(ii) Let C1, C2 ≥ 0, bφ = C2/
√
φ andR = Rφ ≡ 1/(1− C1/

√
φ). For all N :

lim sup
φ→∞

PN,φ(π, bφ +K − 1) ≤
K
∑

k=1

P

[

max
t∈[[K,N+K−1]]

σkW (t)− rkC1t ≥ rkC2

]

.

with (W (t))t a standard Wiener process.
(iii)(a) If C1 = 0, we have:

lim sup
φ→∞

PN,φ(π, bφ +K − 1) ≤
K
∑

k=1

2Ψ

(

rkC2

σk

√
N +K − 1

)

(iii)(b) If C1 > 0, for all N :

lim sup
φ→∞

PN,φ(π, bφ +K − 1) ≤
K
∑

k=1

e
−2

r2
k
C1C2

σ2

k .
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Proof.
(i) We omit superscripts.φ for clarity. We defineHk(t) =

∫ t

0 r(Sk(φu))du, andGk(t) =
√
φ(Hk(t)−

rkt) andB = b +K − 1. Consider chunkn, to be read at timen + B, and requested on linkk, so that
πn = k. Chunkn does not arrive in time if and only if less thandk(n) chunks have been received on link
k at timen + B, so thatHk(n + B) ≤ dk(n) ≤ fk(n + K − 1) sinceπ is f -upper balanced. Hence
Hk(n+B)− (n+B)fk ≤ −fkb. Therefore the starvation probability can be upper boundedby:

P[∃k : min
n∈[[1,N ]]

Hk(n+B)− (n+B)fk ≤ −fkb].

Now, from lemma 1, we know that, for alln,

Hk(n+B)− (n+B)fk →
φ→∞

(n+B)(rk − fk) = (n+B)rk(1− 1/R) > 0,

sinceR > 1. We deduce that the starvation probability goes to0 whenφ → ∞ as announced.
(ii) It is noted thatR, fk andB = bφ+K − 1 depend onφ, and we omit the superscript.φ for clarity.

Assume that event{Hk(n+B)− (n+B)fk ≤ −fkb} occurs. Then:

Gk(n+B) +
√

φ(rk − fk)(n+B) ≤ −
√

φfkb

We have assumed thatfk = rk/R = rk(1− C1/
√
φ) andb = C2/

√
φ, so that replacing above yields:

Gk(n+B) + rkC1(n+B) ≤ −C2rk(1− C1/
√

φ).

So the starvation probability is upper bounded by:

P ≡ P[∃k : min
t∈[[K,N+K−1]]

Gk(t) + trkC1 ≤ −C2rk(1− C1/
√

φ)].

Lettingφ → ∞ and using lemma 1:

lim sup
φ→∞

P ≤ P[∃k : max
t∈[[K,N+K−1]]

σkWk(t)− trkC1 ≥ rkC2]

= 1−
K
∏

k=1

(

1− P

[

max
t∈[[K,N+K−1]]

σkW (t)− trkC1 ≥ rkC2

])

.

whereW1(.), ...,WK(.) are independent standard Wiener processes, and where we used independence to
obtain the last equality.

(iii)(a) ConsiderC1 = 0. We recall the reflexion principle.

Proposition 3 ConsiderW (t) a standard Brownian motion, then for allω > 0 andT ≥ 0:

P

(

sup
0≤t≤T

W (t) ≥ ω

)

= 2P(W (T ) ≥ ω).

Now using the reflexion principle:

P

[

max
t∈[[K,N+K−1]]

σkW (t) ≥ rkC2

]

≤ P

[

max
t∈[0,N+K−1]

σkW (t) ≥ rkC2

]

= 2P [W (N +K − 1) ≥ rkC2/σk]

= 2Ψ

(

rkC2

σk

√
N +K − 1

)

,

and replacing in (ii) gives the announced statement.
(iii)(b) ConsiderC1 > 0. We first recall a result on the probability that a Wiener process with negative

drift hits a positive level.
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Proposition 4 ConsiderW (t) a standard Brownian motion,σ > 0, µ > 0 andω > 0. Then:

P

(

sup
t≥0

(σW (t)− µt) ≥ ω

)

= e−
2µω

σ2 .

We apply the result above to yield:

P

[

max
t∈[[K,N+K−1]]

(σkW (t)− rkC1t) ≥ rkC2

]

≤ P

[

sup
t≥0

(σkW (t)− rkC1t) ≥ rkC2

]

= e
−2

r2
k
C1C2

σ2

k .

Replacing in (ii) gives the announced result.
The corollary is obtained by the same reasoning using a unionbound (which does not require assump-

tion 3):

P[∃k : min
n∈[[1,N ]]

Hk(n+B)− (n+B)fk ≤ −fkb] ≤
K
∑

k=1

P[ min
n∈[[1,N ]]

Hk(n+B)− (n+B)fk ≤ −fkb].

�

The result is also valid whenR = 1 (critical case) sinceC1 can be null. IfC1 = C2 the bound still
holds but is not informative.

6 Case Studies

In this section we specialize our results to several simple models for wired and wireless links. We show
how to calculate relevant quantities such asGk(.) andσ2. We focus on a particular link and indexes.k
, .k are omitted for clarity. We consider simple models for tractability. It is noted that as far as CSMA
and opportunistic scheduling are concerned, one could consider rate adaptation (at the expense of more
complicated expressions) and still derive the cumulant generating function, since for reasonable models,
delays follow a phase-type distribution.

6.1 Wireless links with random access (CSMA-like)

We consider the following model for random access, which is Bianchi’s model [36] with one back-off
stage. A fixed number of flows compete for access to a link. Eachchunk is split intonf frames. Time
is slotted, withTs the time slot duration, and when the streaming flow attempts to access the link, it
is successful with probabilityp. If the attempt is successful, a frame is transmitted duringa slot. If
the attempt is unsucessful, then the streaming flow waits fora duration uniformly distributed between
0 andWTs, with W the window size. Given the number of competing flows and the window size,
p may be calculated using a fixed point equation as in [36]. The time required to transmit a frame is
Z = Ts(1+W

∑G
i=1 Ui) with G ∼Geo(p) and(Ui) i.i.d. uniform on[0, 1] and independent ofG. Define

a′ = aTsW . We haveE[ea
′Ui ] =

∫ 1

0
ea

′udu = h(a′). (Ui)i are i.i.d and independent fromG so:

E[ea
′
∑G

i=1
Ui ] =

∑

g≥0

P[G = g]

(

g
∏

i=1

E[ea
′Ui ]

)

=
∑

g≥0

p(1− p)gh(a′)g =
p

1− (1− p)h(a′)
,

if (1− p)h(a′) < 1 and= ∞ otherwise. We deduce:

log(E[eaZ ]) = Tsa+ log

(

p

1− (1− p)h(aWTs)

)

.
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The time to transmit a chunk is the sum ofnf i.i.d copies ofZ, and we deduce the cumulant generating
function:

G(a) = nf

(

Tsa+ log

(

p

1− (1 − p)h(aWTs)

))

, h(a) = (ea − 1)/a.

with a such that(1 − p)h(aWTs) < 1.

6.2 Wireless links using channel-aware scheduling

We consider channel-aware scheduling with a large number offlows. Once again chunks are divided innf

frames. In each time slot (durationTs), a scheduler chooses the flow whose ratio between instantaneous
data rate and expected data rate is maximal and the chosen flowtransmits a frame. Definep the inverse
of the number of competing flows, the time required to transmit a frame isZ = Ts(1 + G) whereG ∼
Geo(p), and the time required to transmit a chunk is a sum ofnf i.i.d copies ofZ. We deduce the cumulant
generating function:

G(a) = nf

(

aTs + log

(

p

1− (1 − p)eaTs

))

.

with a < − log(1 − p)/Ts. This model is reasonable if the number of flows is large, so that the instanta-
neous data rate of the chosen user equals the peak rate (the rate achieved with maximal modulation and
coding scheme).

6.3 Wireless ON-OFF channels

We consider a typical model used in cognitive radio. A link isshared between a primary user and the
streaming flow acting as a secondary user. The primary user’sactivity follows a two-states Markov
process, which is independent of the secondary user activity. The streaming flow transmits only when the
primary user is not transmitting. The link has two states: state0 when the primary user is active and no
data is transmitted so thatr(0) = 0 and state1, when the link is available and data is transmitted at rate

r(1) = 1. The transition rate matrix isQ =

(

−β β
α −α

)

. The stationary distribution ism = ( α
α+β ,

β
α+β )

and the expected data rate isr = β
α+β . The Poisson equation reads(−r, 1− r) = (gk1 − gk0 )(β,−α) and

a solution is:gk = (0, −1
α+β ). The asymptotic variance is:

σ2 =
2βα

(α+ β)3
.

As expected,σ2 is large whenα + β is small, since in that case the channel state has a strong time
correlation.

6.4 Sharing links with small flows

The last model we consider is a link shared between the streaming flow and small exponential flows
arriving as a Poisson process. Some form of resource sharingis used (for instance fair rate sharing) and
when there aren small flows, the streaming flow transmits data at rater(n). For fair rate sharing we have
r(n) = 1/(1+n). The state of the linkS(t) is the number of small flows at timet, and follows an M/M/1
process with arrival rateλ and service rateµ. Define the loadρ = λ/µ < 1. The stationary distribution
ism(n) = ρn(1− ρ). The expected data rate isr =

∑

n≥0 r(n)ρ
n(1− ρ). DefineR(n) = r(n)− r. We

now solve the Poisson equation.
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Proposition 5 The asymptotic varianceσ2 is:

σ2 =
2

µ

∑

n≥0

n−1
∑

i=0

R(n)R(i)(ρn − ρi).

Proof. By homogeneity, for a fixed value ofρ, it sufficient to solve the Poisson equation forλ = 1, and
divide the obtained solution byλ. Forλ = 1 the Poisson equation reads:

R(0) = g(1)− g(0)

R(n) = g(n+ 1) + ρ−1g(n− 1)− (1 + ρ−1)g(n) , n ≥ 1.

If g is a solution then for allx ∈ R, g′ = g + x is also a solution, which can be checked by inspection.
Hence we look for a solution that verifiesg(0) = 0. We deduce thatg(1) = R(0). Define g̃(n) =
g(n)ρn(1− ρ). Multiplying the previous equation byρn+1(1− ρ) we get:

g̃(n+ 1)− g̃(n) = ρn+1(1 − ρ)R(n) + ρ(g̃(n)− g̃(n− 1)).

One may readily check that̃g(n+ 1)− g̃(n) = ρn(1− ρ)
∑n

k=0 R(k) satisfies the above recursion, and
we deducẽg by summing its increments:

g̃(n) = g̃(0) +

n−1
∑

i=0

g̃(i+ 1)− g̃(i) = ρ

n−1
∑

i=0

R(i)(ρi − ρn).

Replacing̃g, we obtain the asymptotic variance forλ = 1:

σ2 = −2
∑

n≥0

R(n)g̃(n) = 2ρ
∑

n≥0

n−1
∑

i=0

R(n)R(i)(ρn − ρi).

and dividing byλ yields the result. �

7 Numerical Experiments

We evaluate the numerical performance of the proposed schemes and the accuracy of the various bounds
derived above. Throughout this section we considerN = 3600 (a video file of 1 hour with chunks
of 1 second). We simply simulate the model described in section III, we do not simulate the actual
transmission and decoding of chunks. To calculate the starvation probability, we simulate the successive
delays on each link(Xk(ℓ))k,ℓ, calculate whether or not starvation occurs and average theresult over106

independent runs.

7.1 I.i.d. delays

We first consider i.i.d delays. On Figure 1(a) we consider twolinks with i.i.d exponential delays, and we
plot the starvation probability as a function of the pre-buffering time, for various values ofR. Figure 1(b)
shows the same for Gaussian delays with variances0.5. In both cases our upper bounds are close to the
true starvation probabilities, and their accuracy improves when we approach the critical regimeR ≈ 1.
The critical regime is the most interesting in practice, since rate adaptation selects a video data rate close
toR to ensure maximal quality while avoiding overload.

On Figure 2 we consider two heterogeneous links. The first link is a CSMA-type link (subsection 6.1)
with access probabilitypw and window size of4 time slots. The second link uses opportunistic scheduling
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Figure 1: I.i.d. delays,R > 1, starvation probability vs upper bound.

(subsection 6.2) with access probabilitypc. For both links, the slot size isTs = 10ms and each chunk is
made ofnf = 100 frames. The video data rate is chosen to ensure that we haveR > 1 and close to1.
This scenario represents a streaming flow split between cellular and WiFi links. We present the starvation
probability as a function of the pre-buffering times calculated by simulation, our upper bound, and an
approximation obtained by replacing the delays by Gaussiandelays with the same mean and variance. In
the legend, ”S.” stands for simulation, ”U.” for Upper Boundand ”G.” for Gaussian Approximation. The
Gaussian approximation is fair, due to the fact that the delay of a chunk is the sum of a large number of
independent random variables (central limit theorem).

7.2 Markovian delays

We turn to Markovian delays. On Figure 3(a) we consider an ON-OFF link (subsection 6.3). We represent
the ratio between the asymptotic varianceσ2

k and the variance of the amount of data received during a unit
of time

∫ 1

0
r(Sk(u))du, as a function of the transition rateα. As expected, whenα grows, the Markov

chainSk(u) moves faster, and we approach the asymptotic regime where
∫ 1

0 r(Sk(u))du becomes nor-
mally distributed with meanrk and varianceσ2

k. Further, this happens for reasonably small values of
α.

Figure 3(b) shows the same for a link shared with small flows using fair rate sharing (subsection 6.4).
The same conclusions hold, so that the variance of

∫ 1

0 r(Sk(u))du approachesσ2
k whenλ grows (the

chain moves faster). Furthermore, we see that the convergence is faster for small loads. This is logical
since the mixing time of the chain grows withρ: the processSk(t) has a stronger time correlation for
high loads.

On Figure 4 we plot the starvation probability as a function of the pre-buffering time for two sym-
metrical ON-OFF links (resp. links with fair rate sharing and loadρ = 0.7). We compare the starvation
probability to the diffusion approximation suggested in theorem 3. In both cases the diffusion approx-
imation is surprisingly accurate, and gives a tractable approximation to an otherwise intractable (to the
best of our knowledge) problem.
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Figure 2: Wifi + cellular links,R > 1, starvation probability vs upper bound.

7.3 Real world data

Finally we present some experiments on real world traces. Westore a file of32 MB on an HTTP server
and, using HTTP byte range requests, we successively request chunks of100 kB of this file and measure
the corresponding delay. This gives us a trace with320 succesive chunk delays. We repeat this20
times to obtain20 traces. We go through this process twice: first for a wired link (a laptop connected to
the Internet through Ethernet, labelled “Link 1”), and a wireless link (the same laptop connected to the
Internet through a WiFi router, labelled “Link 2”). Links are heterogenous, and we haver1

r2
≈ 2.

In table 1 we present the absolute value of the autocorrelation of delays|E[(Xk(ℓ)−µk)(Xk(ℓ+L)−µk)]|
σ2

k

estimated from our traces for both links, whereL denotes the lag. Given linkk we estimate this quantity
and average the result over traces. Delays are only weakly correlated, so that assuming i.i.d. delays
(Assumption 1) seems adequate.

In Figure 5 we present the starvation probability calculated on four arbitrairly chosen traces. Given
a trace, for each link we calculate the empirical distribution of delays, then drawN samples with re-
placement from this distribution and check whether or not starvation has occured. We then estimate the
starvation probability by averaging the result over104 independent trials (curve ’Trace’). Then we com-
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Figure 3: Solution to the Poisson equation vs variance of data rates.
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Figure 4: Starvation probability vs diffusion approximation.
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pute(µ̂k, σ̂
2
k) the empirical mean and variance of the delays and we compute the starvation probability

when delays are i.i.d. Gaussian with mean and variance(µ̂k, σ̂
2
k) (curve ’Gaussian’). Finally we calculate

the analytic formula obtained in Theorem 2, statement (ii),when delays are i.i.d. Gaussian with mean
and variance(µ̂k, σ̂

2
k) (curve ’Analytic’). The three curves are close to each otherso that: i.i.d. Gaussian

delays provide a simple and robust model, our analytical formulas predict the starvation probability accu-
rately and provide simple, efficient rules to set the prebuffering time. Delays cannot strictly be Gaussian
since they are always positive, but the obtained predictions are accurate across all the considered traces.

Lag 0 1 2 3 4 5 6 7
Link 1 1.00 0.04 0.04 0.06 0.06 0.06 0.05 0.05
Link 2 1.00 0.03 0.04 0.04 0.04 0.05 0.05 0.06

Table 1: Real-world data: autocorrelation of delays

8 Conclusion

We have investigated streaming over multiple links. We haveprovided lower bounds on the starvation
probability of any policy and proposed simple schemes that approach those limits. For general delay
distributions, we have provided tractable upper bounds forthe starvation probability of the proposed
policies. Our results cover several models of practical interest such as links that employ CSMA or op-
portunistic scheduling at the packet level, on-off channels and links that use fair rate sharing at the flow
level. Numerical experiments demonstrate the accuracy of the proposed bounds and approximations.
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General
N number of chunks per file
K number of links
B pre-buffering time
dk(n) number of chunks≤ n requested on linkk
Xk(ℓ) delay of theℓ-th chunk requested on linkk
P starvation probability
π chunk request policy
µk expected delay of linkk
rk expected data rate of linkk
R sum rate of links
fk frequency of linkk
Ψ c.c.d.f. of the standard normal distribution
I.i.d. delays
σ2
k variance of delays of linkk

Gk cumulant generating function of delays of linkk
v2k variance upper bound for sub-Gaussian delays
Fk(a) Gk(a)− a/fk
a⋆k largest zero ofFk

Markovian delays
Sk(t) state of linkk at timet
Qk transition rate matrix of linkk
mk stationary distribution of linkk
S link state space
r(.) instantaneous data rate
φ speed
gk solution to the Poisson equation
σ̄2
k asymptotic variance (from the Poisson equation)

Wireless links with random access / scheduling
Ts time slot duration
W window size
p success probability
nf number of frames per chunk
Wireless ON-OFF channels
α, β transition probabilities
Sharing links with small flows
λ arrival rate
µ service rate
ρ load
r̄ expected data rate

Table 2: Used Notation: Index
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