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Stochastic Online Shortest Path Routing:
The Value of Feedback

M. Sadegh Talebi, Zhenhua Zou, Richard Combes, Alexandre Proutiere, and Mikael Johansson

Abstract—This paper studies online shortest path routing over
multi-hop networks. Link costs or delays are time-varying and
modeled by independent and identically distributed random
processes, whose parameters are initially unknown. The param-
eters, and hence the optimal path, can only be estimated by
routing packets through the network and observing the realized
delays. Our aim is to find a routing policy that minimizes the
regret (the cumulative difference of expected delay) between the
path chosen by the policy and the unknown optimal path. We
formulate the problem as a combinatorial bandit optimization
problem and consider several scenarios that differ in where
routing decisions are made and in the information available
when making the decisions. For each scenario, we derive a tight
asymptotic lower bound on the regret that has to be satisfied by
any online routing policy. These bounds help us to understand
the performance improvements we can expect when (i) taking
routing decisions at each hop rather than at the source only, and
(ii) observing per-link delays rather than end-to-end path delays.
In particular, we show that (i) is of no use while (ii) can have a
spectacular impact. Three algorithms, with a trade-off between
computational complexity and performance, are proposed. The
regret upper bounds of these algorithms improve over those of
the existing algorithms, and they significantly outperform state-
of-the-art algorithms in numerical experiments.

Index Terms—Shortest path routing, online combinatorial
optimization, stochastic multi-armed bandits.

I. INTRODUCTION

In most real-world networks, link delays vary stochastically
due to unreliable links and random access protocols (e.g. in
wireless networks), mobility (e.g. in mobile ad-hoc networks),
randomness of demand (e.g. in overlay networks for peer-to-
peer applications), etc. In many cases, the associated parame-
ters to links, e.g. the packet transmission success probabilities
in wireless sensor networks, are initially unknown and must be
estimated by transmitting packets and observing the outcomes.
When designing routing policies, we therefore need to address
a challenging trade-off between exploration and exploitation:
on the one hand, it is important to route packets on new or
poorly known links to explore the network and ensure that
the optimal path is eventually found; on the other hand, it is
critical that the accumulated knowledge on link parameters is
exploited so that paths with low expected delays are preferred.

A preliminary version of this work was presented at the 2014 American
Control Conference [1].
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When designing practical routing schemes, one is mostly
concerned about the finite-time behaviour of the system and
it is crucial to design algorithms that quickly learn link
parameters so as to efficiently track the optimal path.

The design of such routing policies is often referred to
as an online shortest path routing problem in the literature
[2]–[6], and is a particular instance of a combinatorial Multi-
Armed Bandit (combinatorial MAB) problem as introduced
in [7]. In this paper, we study the stochastic version of this
problem. More precisely, we consider a network, in which the
transmission of a packet on a given link is successful with an
unknown but fixed probability. A packet is sent on a given link
repeatedly until the transmission is successful; the number of
time slots to complete the transmission is referred to as the
delay on this link. We wish to route N packets from a given
source to a given destination in a minimum amount of time.
A routing policy selects a path to the destination on a packet-
by-packet basis. The path selection can be done at the source
(source routing), or in the network as the packet progresses
towards the destination (hop-by-hop routing). In the case of
source routing, some feedback is available when the packet
reaches the destination. This feedback can be either the end-
to-end delay, or the delays on each link on the path from
source to destination. In the MAB literature, the former type
of feedback is referred to as bandit feedback, whereas the latter
is called semi-bandit feedback. The routing policy then selects
the path for the next packet based on the feedback gathered
from previously transmitted packets. In the case of hop-by-hop
routing, routing decisions are taken for each transmission, and
the packet is sent over a link selected based on all transmission
successes and failures observed so far (for the current packet,
and all previously sent packets) on the various links.

The performance of a routing policy is assessed through its
expected total delay, i.e., the expected time required to send all
N packets to the destination. Equivalently, it can be measured
through the notion of regret, defined as the difference between
the expected total delay under the policy considered and the
expected total delay of an oracle policy that would be aware of
all link parameters, and would hence always send the packets
on the best path. Regret conveniently quantifies the loss in
performance due to the fact that link parameters are initially
unknown and need to be learnt.

In this paper, we first address two fundamental questions:
(i) what is the benefit of allowing routing decisions at every
node, rather than only at the source? and (ii) what is the
added value of feeding back the observed delay for every
link that a packet has traversed compared to only observing
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the end-to-end delay?1 To answer these questions, we derive
tight regret lower bounds satisfied by any routing policy in the
different scenarios, depending on where routing decisions are
made and what information is available to the decision-maker
when making these decisions. By comparing the different
lower bounds, we are able to quantify the value of having
semi-bandit feedback rather than bandit feedback, and the
improvements that can possibly be achieved by taking routing
decisions hop by hop. We then propose routing policies in
the semi-bandit feedback setting, and show that these policies
outperform state-of-the-art online shortest path routing algo-
rithms. More precisely, our contributions are the following:

1. Regret lower bounds. We derive tight asymptotic (when N
grows large) regret lower bounds. The two first bounds concern
source routing policies under bandit and semi-bandit feedback,
respectively, whereas the third bound is satisfied by any hop-
by-hop routing policy. As we shall see later, these bounds are
tight in the sense that there exist policies that achieve them. As
it turns out, the regret lower bounds for source routing policies
with semi-bandit feedback and that for hop-by-hop routing
policies are identical, indicating that taking routing decisions
hop by hop does not bring any advantage. On the contrary, the
regret lower bounds for source routing policies with bandit and
semi-bandit feedback can be significantly different, illustrating
the importance of having information about per-link delays.

2. Routing policies. In the case of semi-bandit feedback,
we propose three online source routing policies, namely
GEOCOMBUCB-1, GEOCOMBUCB-2, and KL-SR (KL-
based Source-Routing). GEO refers to the fact that the delay
on a given link is geometrically distributed, COMB stands for
combinatorial, and UCB (Upper Confidence Bound) indicates
that these policies are based on the same “optimism in face
of uncertainty” principle as the celebrated UCB algorithm
designed for classical MAB problems [8]. KL-SR already
appears in the conference version of this paper [1]. Here we
improve its regret analysis, and show that the latter scales at
most as O(|E|H∆−1

minθ
−2
min log(N)), 2 where H denotes the

length (number of links) of the longest path in the network
from the source to the destination, θmin is the success transmis-
sion probability of the link with the worst quality, and ∆min is
the minimal gap between the average end-to-end delays of the
optimal and of a sub-optimal path (formal definitions of θmin

and ∆min are provided in Section III-A). We further show that
the regret under GEOCOMBUCB-1 and GEOCOMBUCB-2
scales at most as O(|E|

√
H∆−1

minθ
−2
min log(N)). The tradeoff

between computational complexity and performance (regret)
of online routing policies is certainly hard to characterize,
but our policies provide a first insight into such a trade-off.
Furthermore, they exhibit better regret upper bounds than that
of the CUCB (Combinatorial UCB) algorithm [9], which is,
to our knowledge, the state-of-the-art algorithm for stochastic

1The effect of different feedback in the adversarial setting was studied in,
e.g., [3], [4].

2This improves over the regret upper bound scaling as
O(∆max|E|H3∆−1

minθ
−3
min log(N)) derived in [1], where ∆max denotes

the maximal gap between the average end-to-end delays of the optimal and
of a sub-optimal path.

Algorithm Regret Complexity

CUCB [9] O
(

|E|H
∆minθ

3
min

log(N)

)
O(|V ||E|)

GEOCOMBUCB-1 O
(
|E|
√
H

∆minθ
2
min

log(N)

)
O(|P|)

GEOCOMBUCB-2 O
(
|E|
√
H

∆minθ
2
min

log(N)

)
O(|P|)

KL-SR O
(

|E|H
∆minθ

2
min

log(N)

)
O(|V ||E|)

TABLE I
COMPARISON OF VARIOUS ALGORITHMS FOR SHORTEST PATH ROUTING

UNDER SEMI-BANDIT FEEDBACK.

online shortest path routing. Furthermore, we conduct numer-
ical experiments, showing that our routing policies perform
significantly better than CUCB. The Thompson Sampling (TS)
algorithm of [10] is applicable to the shortest path problem, but
its analysis for general topologies is an open problem. While
TS performs slightly better than our algorithms on average,
its regret sometimes has a large variance according to our
experiments. The regret guarantees of various algorithms, and
their computational complexity are summarized in Table I.

The remaining of the paper is organized as follows. In Sec-
tion II we review the literature related to MAB problems and
to online shortest path problems. In Section III, we introduce
the network model and formulate our online routing problem.
Fundamental performance limits (regret lower bounds) are de-
rived in Section IV. We propose online routing algorithms and
evaluate their performance in Section V. Finally, Section VI
concludes the paper and provides future research directions.
All the proofs are presented in the Appendix.

II. RELATED WORK

Stochastic MAB problems have been introduced by Robbins
[11]. In the classical setting, in each round, a decision maker
pulls an arm from a set of available arms and observes a
realization of the corresponding reward, whose distribution is
unknown. The performance of a policy is measured through
its regret, defined as the difference between its expected total
reward and the optimal reward the decision maker could
collect if she knew the reward distributions of all arms. The
goal is to find an optimal policy with the smallest regret.
This classical stochastic MAB problem was solved by Lai and
Robbins in their seminal paper [12], where they derived the
asymptotic (when the time horizon is large) lower bound of
regret satisfied by any algorithm, and proposed an optimal
algorithm that matches the lower bound.

Online shortest path routing problems fall into the class of
combinatorial MAB problems. In these MAB problems, arms
are subsets of a set of basic actions (in routing problems,
a basic action corresponds to a link), and most existing
studies concern the adversarial setting where the successive
rewards of each arm are arbitrary, see e.g. [7], [13]–[15]
for algorithms for generic combinatorial problems, and [2],
[4] for efficient algorithms for routing problems. Stochastic
combinatorial MAB problems have received little attention so
far. Usually they are investigated in the semi-bandit feedback
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setting [9], [16]–[18]. Some papers deal with problems where
the set of arms exhibits very specific structures, such as fixed-
size sets [19], matroid [20], and permutations [21].

In the case of online shortest path routing problems, as a
particular instance of a combinatorial MAB, one could think
of modeling each path as an arm, and applying sequential arm
selection policies as if arms would yield independent rewards.
Such policies would have a regret scaling as |P| log(N) where
|P| denotes the number of possible paths from the source
to the destination. However, since |P| grows exponentially
with the length H of the paths, treating paths as independent
arms would lead to a prohibitive regret. In contrast to classical
MAB in [12] where the random rewards from various arms
are independent, in online routing problems, the end-to-end
delays (i.e., the rewards) of the various paths are inherently
correlated, since paths may share the same links. It may then
be crucial to exploit these correlations, i.e., the structure of
the problem, to design efficient routing algorithms which in
turn may have a regret scaling as C log(N) where C is much
smaller than |P|.

Next we summarize existing results for generic stochastic
combinatorial bandits that could be applied to online shortest
path routing. In [9], the authors present CUCB, an algorithm
for generic stochastic combinatorial MAB problems under
semi-bandit feedback. When applied to the online routing
problem, the best regret upper bound for CUCB presented in
[9] scales as O( |E|H

∆minθ3min
log(N)) (see Appendix J for details).

This upper bound constitutes the best existing result for
our problem, where the delay on each link is geometrically
distributed. It is important to note that most proposed algo-
rithms for combinatorial bandits [16]–[18] deal with bounded
rewards, i.e., here bounded delays, and are not applicable to
geometrically distributed delays. In [17], the authors consider
the case where the rewards of basic actions (here links) can
be arbitrarily correlated and bounded, and show that the regret
under CUCB is O( |E|H∆min

log(N)). They also prove that this
regret scaling has order-optimal regret in terms of |E| and H3.
In other words, the dependence of their regret upper bound
on |E| and H cannot be improved in general. This order-
optimality does not contradict our regret upper bound (scaling
as O( |E|

√
H

∆min
log(N))), because [17] considers possibly depen-

dent delays across links. Interestingly, to prove that a regret of
O( |E|H∆min

log(N)) cannot be beaten, they artificially create an
instance of the problem where the rewards of the basic actions
of the same arm are identical. In other words, they consider a
classical bandit problem where the rewards of the various arms
are either 0 or equal to H . This clearly highlights the fact that
the approach of [17] cannot be directly applied to our routing
problem where delays are unbounded. For bounded rewards,
the results of [17] have been recently improved in [18] when
the rewards are independent across basic actions (links). There,
the authors propose an algorithm whose regret scales at most

3 A policy π is order-optimal in terms of |E| and H , if it satisfies the
following: for all problem instances, Rπ(N) = O(C1g(|E|, H) log(N))
with C1 independent of |E|, H , and N , and there exists a problem
instance and a constant C2 > 0, independent of |E|, H , and N , such
that lim infN→∞Rπ

′
(N)/ log(N) ≥ C2g(|E|, H) for all uniformly good

algorithm π′.

as O( |E|
√
H

∆min
log(N)). Wen et al. [22] study combinatorial

problems under semi-bandit feedback and provide algorithms
with O(

√
N) regret. Gopalan et al. [10] study TS [23] for

learning problems with complex arms and provide implicit
regret upper bounds with O(log(N)) regret.

Stochastic online shortest path routing problems have been
addressed in [5], [24], [25]. Liu and Zhao [24] consider
routing with bandit (end-to-end) feedback and propose a
forced-exploration algorithm with O(|E|3H log(N)) regret
in which a random barycentric spanner4 path is chosen for
exploration. He et al. [5] consider routing under semi-bandit
feedback, where the source chooses a path for routing and
a possibly different path for probing. Our model coincides
with the coupled probing/routing case in their paper, for which
they derive an asymptotic lower bound on the regret growing
logarithmically with time. As we shall see later, their lower
bound is not tight.

Finally, it is worth noting that the papers cited above
considered source-routing only. To the best of our knowledge,
this paper is the first to consider online routing problems with
hop-by-hop decisions. Such a problem can be formulated as
a classical Markov Decision Process (MDP), in which the
states are the packet locations and the actions are the outgoing
links of each node. However, most studies consider MDP
problems under stricter assumptions than ours and/or targeted
different performance measures. Burnetas and Katehakis [26]
derive the asymptotic lower bound on the regret and propose
an optimal index policy. Their result can be applied only to
the so-called ergodic MDP [27], where the induced Markov
chain by any policy is irreducible and consists of a single
recurrent class. In hop-by-hop routing, however, the policy
that routes packets on a fixed path results in a Markov chain
with reducible states that are not in the chosen path. [28],
[29] study general MDPs and present algorithms with finite-
time regret upper bounds scaling as O(log(T )). Nevertheless,
these algorithms perform badly when applied to hop-by-hop
routing due to loose confidence intervals. [28] also presents
non-asymptotic, but problem independent (minimax) regret
lower bounds scaling as Ω(

√
T ). This latter bound does not

contradict our problem-dependent lower bounds that grow
logarithmically.

III. ONLINE SHORTEST PATH ROUTING PROBLEMS

A. Network Model

The network is modeled as a directed graph G = (V,E)
where V is the set of nodes and E is the set of links.
Each link i ∈ E may, for example, represent an unreliable
wireless link. Without loss of generality, we assume that time
is slotted and that one slot corresponds to the time to send
a packet over a single link. At time t, Xi(t) is a binary
random variable indicating whether a transmission on link
i at time t is successful. (Xi(t))t≥1 is a sequence of i.i.d.
Bernoulli variables with initially unknown mean θi. Hence if
a packet is sent on link i repeatedly until the transmission

4A barycentric spanner is a set of paths from which the delay of all other
paths can be computed as its linear combination with coefficients in [−1, 1]
[2].
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Policy Set Routing Type Feedback
Π1 Source-routing Bandit
Π2 Source-routing Semi-bandit
Π3 Hop-by-hop Semi-bandit

TABLE II
VARIOUS POLICY SETS FOR ONLINE SHORTEST PATH ROUTING.

is successful, the time to complete the transmission (referred
to as the delay on link i) is geometrically distributed with
mean 1/θi. Let θ = (θi, i ∈ E) be the vector representing
the packet successful transmission probabilities on the various
links. We consider a single source-destination pair (s, d) ∈ V 2,
and denote by P ⊆ {0, 1}|E| the set of loop-free paths from s
to d in G, where each path p ∈ P is a |E|-dimensional binary
vector; for any i ∈ E, pi = 1 if and only if i belongs to
p. Let H denote the maximum length of the paths in P , i.e.,
H = maxp∈P

∑
i∈E pi. For brevity, in what follows, for any

binary vector z, we write i ∈ z to denote zi = 1. Moreover,
we use the convention that z−1 = (z−1

i )i.
For any path p, Dθ(p) =

∑
i∈p

1
θi

is the average packet
delay through path p given link success rates θ. The path with
minimal delay is: p? ∈ arg minp∈P Dθ(p). Moreover, for any
path p ∈ P , we define ∆p = Dθ(p)−Dθ(p

?) = (p−p?)>θ−1.
Let ∆min = min∆p 6=0 ∆p. We let θmin = mini∈E θi and
assume that θmin > 0. Finally define D? = Dθ(p

?) and
D+ = maxp∈P Dθ(p) the delays of the shortest and longest
paths, respectively.

The analysis presented in this paper can be easily extended
to more general link models, provided that the (single-link)
delay distributions are taken within one-parameter exponential
families of distributions.

B. Online Routing Policies and Feedback

We assume that the source is fully backlogged (i.e., it always
has packets to send), and that the parameter θ is initially
unknown. Packets are sent successively from s to d over
various paths, and the outcome of each packet transmission
is used to estimate θ, and in turn to learn the path p? with the
minimum average delay. After a packet is sent, we assume
that the source gathers feedback from the network (essentially
per-link or end-to-end delays) before sending the next packet.

Our objective is to design and analyze online routing
policies, i.e., policies that take routing decisions based on the
feedback received for the packets previously sent.

We consider and compare three different types of online
routing policies, depending (i) on where routing decisions
are taken (at the source or at each node), and (ii) on the
received feedback (per-link or end-to-end path delay). Table II
lists different policy sets for the three types of online routing
policies considered.
• Policy Set Π1: The path used by a packet is determined

at the source based on the observed end-to-end delays for
previous packets. More precisely, for the n-th packet, let
pπ(n) be the path selected under policy π, and let Dπ(n)
denote the corresponding end-to-end delay. Then pπ(n)
depends on pπ(1), . . . , pπ(n−1), Dπ(1), . . . , Dπ(n−1).

• Policy Set Π2: The path used by a packet is determined
at the source based on the observed per-link delays
for previous packets. In other words, under policy π,
pπ(n) depends on pπ(1), . . . , pπ(n − 1), (dπi (1), i ∈
pπ(1)), . . . , (dπi (n − 1), i ∈ pπ(n − 1)), where dπi (k) is
the delay experienced on link i for the k-th packet (if this
packet uses link i at all).

• Policy Set Π3: Routing decisions are taken at each node
in an adaptive manner. At a given time t, the packet is sent
over a link selected based on all successes and failures
observed on the various links before time t.

In the case of source-routing policies (in Π1 ∪ Π2), if a
transmission on a given link fails, the packet is retransmitted
on the same link until it is successfully received (per-link
delays are geometric random variables). On the contrary, in
the case of hop-by-hop routing policies (in Π3), the routing
decisions at a given node can be adapted to the observed
failures on a given link. For example, if transmission attempts
on a given link failed, one may well decide to switch link and
select a different next-hop node.

C. Performance Metrics and Objectives

1) Regret: Under any reasonably smart routing policy, the
parameter θ will eventually be estimated accurately and the
minimum delay path will be discovered with high probability
after sending a large number of packets. Hence, to quantify
the performance of a routing policy, we examine its transient
behavior. More precisely, we use the notion of regret, a
performance metric often used in MAB literature [12]. The
regret Rπ(N) of policy π up to the N -th packet is the expected
difference of delays for the first N packets under π and under
the policy that always selects the best path p? for transmission:

Rπ(N) := E

[
N∑
n=1

Dπ(n)

]
−NDθ(p

?),

where Dπ(n) denotes the end-to-end delay of the n-th packet
under policy π and the expectation E[·] is taken with respect to
the random transmission outcomes and possible randomization
in the policy π. The regret quantifies the performance loss due
to the need to explore sub-optimal paths to learn the path with
minimum delay.

2) Objectives: The goal is to design online routing policies
in Π1, Π2, and Π3 that minimize regret over the first N pack-
ets. As it turns out, there are policies in any Πj , j = 1, 2, 3,
whose regrets scale as O(log(N)) when N grows large, and
no policy can have a regret scaling as o(log(N)).

Our objective is to derive, for each j = 1, 2, 3, an asymp-
totic regret lower bound cj(θ) log(N) for policies in Πj ,
and then propose simple policies whose regret upper bounds
asymptotically approach that of the optimal algorithm, i.e.,
an algorithm whose regret matches the lower bound in Πj .
As we shall discuss later, there exists an algorithm whose
regret asymptotically matches these lower bound. Therefore,
by comparing c1(θ), c2(θ), and c3(θ), we can quantify the
potential performance improvements taking routing decisions
at each hop rather than at the source only, and observing per-
link delays rather than end-to-end delays.



5

IV. FUNDAMENTAL PERFORMANCE LIMITS

In this section, we provide fundamental performance limits
satisfied by any online routing policy in Π1, Π2, or Π3.
Specifically, we derive asymptotic (when N grows large)
regret lower bounds for our three types of policies. These
bounds are obtained exploiting some results and techniques
used in the control of Markov chains [30], and they are
tight in the sense that there exist algorithms achieving these
performance limits.

A. Regret Lower Bounds

We restrict our attention to the so-called uniformly good
policies, under which the number of times sub-optimal paths
are selected until the transmission of the n-th packet is o(nα)
when n→∞ for any α > 0 and for all θ. We know from [30,
Theorem 2] that such policies exist.

1) Source-Routing with Bandit Feedback: Denote by ψpθ (k)
the probability that the delay of a packet sent on path p is k
slots, and by h(p) the length (or number of links) of path
p. The end-to-end delay is the sum of several independent
random geometric variables. If we assume that θi 6= θj for
i 6= j, we have [31], for all k ≥ h(p),

ψpθ (k) =
∑
i∈p

( ∏
j∈p,j 6=i

θj
θj − θi

)
θi(1− θi)k−1,

i.e., the path delay distribution is a weighted average of the
individual link delay distributions where the weights can be
negative but always sum to one.

The next theorem provides the fundamental performance
limit of online routing policies in Π1.

Theorem 4.1: For all θ and for any uniformly good policy
π ∈ Π1, lim infN→∞

Rπ(N)
log(N) ≥ c1(θ), where c1(θ) is the

infimum of the following optimization problem:

inf
x≥0

∑
p∈P

xp∆p (1)

subject to: inf
λ∈B1(θ)

∑
p 6=p?

xp

∞∑
k=h(p)

ψpθ (k) log
ψpθ (k)

ψpλ(k)
≥ 1,

with

B1(θ) =
{
λ : {λi, i ∈ p?} = {θi, i ∈ p?}, min

p∈P
Dλ(p) < Dλ(p?)

}
.

The variables xp, p ∈ P solving (1) have the following
interpretation: for p 6= p?, xp log(N) is the asymptotic number
of packets that needs to be sent (up to the N -th packet) on
sub-optimal path p under optimal routing strategies in Π1.
Hence, xp determines the optimal rate of exploration of sub-
optimal path p. B1(θ) is the set of bad network parameters:
if λ ∈ B1(θ), then the end-to-end delay distribution along the
optimal path p? is the same under θ or λ (hence by observing
the end-to-end delay on path p?, we cannot distinguish λ or
θ), and p? is not optimal under λ.

It is important to observe that in the definition of B1(θ),
the equality {λi, i ∈ p?} = {θi, i ∈ p?} is a set equality, i.e.,
order does not matter (e.g., if p? = {1, 2}, the equality means
that either λ1 = θ1, λ2 = θ2 or λ1 = θ2, λ2 = θ1).

2) Source-Routing with Semi-Bandit (Per-Link) Feedback:
We now consider routing policies in Π2 that make decisions at
the source, but have information on the individual link delays.
Let KLG(u, v) denote the KL divergence number between two
geometric random variables with parameters u and v:

KLG(u, v) :=
∑
k≥1

u(1− u)k−1 log
u(1− u)k−1

v(1− v)k−1
.

Theorem 4.2: For all θ and for any uniformly good policy
π ∈ Π2, lim infN→∞

Rπ(N)
log(N) ≥ c2(θ), where c2(θ) is the

infimum of the following optimization problem:

inf
x≥0

∑
p∈P

xp∆p (2)

subject to: inf
λ∈B2(θ)

∑
p 6=p?

xp
∑
i∈p

KLG(θi, λi) ≥ 1,

with

B2(θ) = {λ : λi = θi, ∀i ∈ p?,min
p∈P

Dλ(p) < Dλ(p?)}.

The variables xp, p ∈ P solving (2) have the same in-
terpretation as that given previously in the case of bandit
feedback. Again B2(θ) is the set of parameters λ such that
the distributions of link delays along the optimal path are the
same under θ and λ, and p? is not the optimal path under
λ. The slight difference between the definitions of B1(θ) and
B2(θ) comes from the difference of feedback (bandit vs. semi-
bandit). It is also noted that B2(θ) ⊂ B1(θ). We stress that
by [30, Theorem 2], the asymptotic regret lower bounds of
Theorems 4.1-4.2 are tight, namely there exists policies that
achieve these regret bounds.

Remark 4.1: Of course, we know that c1(θ) ≥ c2(θ), since
the lower bounds we derive are tight and getting per-link delay
feedback can be exploited to design smarter routing policies
than those we can devise using end-to-end delay feedback (i.e.,
Π1 ⊂ Π2).

Remark 4.2: The asymptotic lower bound proposed in [5]
has a similar expression to ours, but the set B2(θ) is replaced
by B′2(θ) =

⋃
i∈E{λ : λj = θj ,∀j 6= i,minp∈P Dλ(p) <

Dλ(p?)}. Note that B′2(θ) ⊂ B2(θ), which implies that the
lower bound derived in [5] is smaller than ours. In other
words, we propose a regret lower bound that improves that
in [5]. Furthermore, our bound is tight (it cannot be improved
further).

The proof of Theorems 4.1 and 4.2 leverage techniques
from [30] developed for the control of Markov chains, and
are presented in Appendix A. Theorem 4.2 can be seen as a
direct consequence of [30, Theorem 1] (the problem can be
easily mapped to a controlled Markov chain). In contrast, the
proof of Theorem 4.1 requires a more clever mapping due to
the different nature of feedback. To prove Theorem 4.1, we
establish Lemma 2, a property for geometric random variables.

3) Hop-by-hop Routing: Finally, we consider routing poli-
cies in Π3. These policies are more involved to analyze as
the routing choices may change at any intermediate node in
the network, and they are also more complex to implement.
Surprisingly, the next theorem states that the regret lower
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bound for hop-by-hop routing policies is the same as that
derived for strategies in Π2 (source-routing with semi-bandit
feedback). In other words, we cannot improve the performance
by taking routing decisions at each hop.

Theorem 4.3: For all θ and for any uniformly good rule
π ∈ Π3, lim infN→∞

Rπ(N)
log(N) ≥ c3(θ) = c2(θ).

The proof of Theorem 4.3 is more involved than those of
previous theorems, since in the hop-by-hop case, the chosen
path could change at intermediate nodes. To overcome this
difficulty, we introduce another notion of regret corresponding
to the achieved throughput (i.e., the number of packets suc-
cessfully received by the destination per unit time), which we
refer to as the throughput regret. The proof uses the results of
[30] for throughput regret, but also relies on Lemma 4, which
provides an asymptotic relationship between Rπ(N) and the
throughput regret.

As shown in [30, Theorem 2], the asymptotic regret lower
bounds derived in Theorems 4.1-4.2-4.3 are tight in the sense
that one can design actual routing policies achieving these
regret bounds (although these policies might well be extremely
complex to compute and impractical to implement). Hence
from the fact that c1(θ) ≥ c2(θ) = c3(θ), we conclude that:
• The optimal source-routing policy with semi-bandit feed-

back asymptotically achieves a lower regret than the
optimal source-routing policy with bandit feedback;

• The optimal hop-by-hop routing policy asymptotically
obtains the same regret as the optimal source-routing
policy with semi-bandit feedback.

B. Numerical Example

There are examples of network topologies where the above
asymptotic regret lower bounds can be explicitly computed.
One such example is the line network; see e.g. Figure 1(a).
Notice that in line networks, the optimal routing policy con-
sists in selecting the best link in each hop. The following
lemma is immediate:

Lemma 1: For any line network with H hops, we have:

c1(θ) ≥
∑
i/∈p?

1
θi
− 1

θζ(i)

maxp:i∈p
∑∞
k=H ψ

p
θ (k) log

ψpθ (k)

ψp
ϑi

(k)

,

c2(θ) = c3(θ) =
∑
i/∈p?

1
θi
− 1

θζ(i)

KLG(θi, θζ(i))
,

where ζ(i) is the best link on the same hop as link i and ϑi

is a vector of link parameters defined as ϑij = θj if j 6= i, and
ϑii = θζ(i).

Proposition 4.4: There exist problem instances in line net-
works, for which the regret of any uniformly good policy in
Π2 ∪Π3 is Ω

(
|E|−H

∆minθ2min
log(N)

)
.

For line networks, both c1(θ) and c2(θ) scale linearly with
the number of links in the network. In Figure 1(b), we plot the
lower bound of the ratio c1(θ)

c2(θ) (based on the previous lemma)
averaged over various values of θ (we randomly generated 106

link parameters θ) as a function of the network size H in a

(a)
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2000

3000

4000

5000

path length H

C
1
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C

2
(θ
)

(b)

Fig. 1. The line network: (a) Topology, (b) Semi-bandit vs. bandit feedback:
lower bound on the average ratio between the two corresponding asymptotic
regret lower bounds (c1(θ)/c2(θ)).

simple line network, which has two links in the first hop and
one link in the rest of hops and hence |E| = H + 1. These
results suggest that collecting semi-bandit feedback (per-link
delays) can significantly improve the performance of routing
policies. The gain is significant even for fairly small networks
– the regret is reduced by at least a factor 1500 on average in
6-hop networks when collecting per-link delays.

V. ROUTING POLICIES FOR SEMI-BANDIT FEEDBACK

Theorems 4.1-4.2-4.3 indicate that within the first N pack-
ets, the total amount of packets routed on a sub-optimal path
p should be of the order of x?p log(N) where x?p is the optimal
solution of the optimization problems in (1) and (2). In [30],
the authors present policies that achieve the regret bounds of
Theorems 4.1-4.2-4.3 (see [30, Theorem 2]). These policies
suffer from two problems: firstly, they are computationally in-
feasible for large problems since their implementation involves
solving in each round a semi-infinite linear program [32]
similar to those providing the regret lower bounds (defined
in (1) and (2)). Secondly, these policies have no finite-time
performance guarantees, and numerical experiments suggest
that their finite-time performance on typical problems is rather
poor.

In this section, we present online routing policies for semi-
bandit feedback, which are simple to implement, yet approach
the performance limits identified in the previous section. We
further analyze their regret, and show that they outperform
existing algorithms. To present our policies, we introduce addi-
tional notations. Under a given policy, we let ti(n) be the total
number of transmission attempts (including retransmissions)
on link i before the n-th packet is sent. We define θ̂i(n) the
empirical success rate of link i estimated over the transmis-
sions of the first (n−1) packets. We define the corresponding
vectors t(n) = (ti(n))i∈E and θ̂(n) = (θ̂i(n))i∈E .

Note that the proposed policies and regret analysis presented
in this section directly apply for generic combinatorial opti-
mization problems with linear objective function and geomet-
rically distributed rewards.
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Index Type Computation Algorithm
bp Path Line search GEOCOMBUCB-1
cp Path Explicit GEOCOMBUCB-2
ωi Edge Line search KL-SR

TABLE III
SUMMARY OF INDEXES.

A. Path and Link Indexes

The proposed policies rely on indexes attached either to
individual links or paths. Next we introduce three indexes used
in our policies. They depend on the round, i.e., on the number
n of packets already sent, and on the estimated link parameters
θ̂(n). The three indexes and their properties (i.e., in which
policy they are used, and how one can compute them) are
summarized in Table III. Let n ≥ 1 and assume that the n-th
packet is to be sent. The indexes are defined as follows.

1) Path Indexes: Let λ ∈ (0, 1]|E|, t ∈ N|E|, and n ∈ N.
The first path index, denoted by bp(n, λ, t) for path p ∈ P , is
motivated by the index defined in [18]. bp(n, λ, t) is defined
as the infimum of the following optimization problem:

inf
u∈(0,1]|E|

p>u−1

subject to:
∑
i∈p

tiKL(λi, ui) ≤ f1(n),

ui ≥ λi, ∀i ∈ E,

where f1(n) = log(n) + 4H log(log(n)), and for all a, b ∈
[0, 1], KL(a, b) is the KL-divergence number between two
Bernoulli distributions with respective means a and b, i.e.,
KL(a, b) = a log(a/b) + (1− a) log((1− a)/(1− b)).

The second index is denoted by cp(n, λ, t) and defined for
path p ∈ P as:

cp(n, λ, t) = p>λ−1 −

√√√√∑
i∈p

2f1(n)

tiλ3
i

.

The next theorem provides generic properties of the two
indexes bp and cp.

Theorem 5.1: (i) For all n ≥ 1, p ∈ P , λ ∈ (0, 1]|E|, and
t ∈ N|E|, we have bp(n, λ, t) ≥ cp(n, λ, t).

(ii) There exists a constant KH > 0 depending on H only
such that, for all p ∈ P and n ≥ 2:

P[bp(n, θ̂(n), t(n)) ≥ p>θ] ≤ KHn
−1(log(n))−2.

Corollary 5.2: We have:∑
n≥1

P[bp?(n, θ̂(n), t(n)) ≥ p?>θ−1]

≤ 1 +KH

∑
n≥2

n−1(log(n))−2 <∞.

2) Link Index: Our third index is a link index. For n, t ∈ N
and λ ∈ (0, 1], the index ωi(n, λ, t) of link i ∈ E is defined
as:

ωi(n, λ, t) = min
{ 1

u
: u ∈ [λ, 1], tKL

(
λ, u

)
≤ f2(n)

}
,

where f2(n) = log(n) + 4 log(log(n)).

Algorithm 1 GEOCOMBUCB

for n ≥ 1 do
Select path p(n) ∈ arg minp∈P ξp(n) (ties are broken
arbitrarily), where ξp(n) = bp(n) for GEOCOMBUCB-
1, and ξp(n) = cp(n) for GEOCOMBUCB-2.

Collect feedback on links i ∈ p(n), and update θ̂i(n) for
i ∈ p(n).

Algorithm 2 KL-SR

for n ≥ 1 do
Select path p(n) ∈ arg minp∈P p

>ω(n) (ties are broken
arbitrarily).
Collect feedback on links i ∈ p(n), and update θ̂i(n) for
i ∈ p(n).

B. Routing policies

We present three routing policies, referred to as
GEOCOMBUCB-1, GEOCOMBUCB-2 and KL-SR, re-
spectively. For the transmission on the n-th packet,
GEOCOMBUCB-1 (resp. GEOCOMBUCB-2) selects the path
p with the lowest index bp(n) := bp(n, θ̂(n), t(n)) (resp.
cp(n) := cp(n, θ̂(n), t(n))). KL-SR was initially proposed in
[1] and for the transmission of the n-th packet, it selects the
path p(n) ∈ arg minp∈P p

>ω(n), where ω(n) = (ωi(n), i ∈
E) and ωi(n) := ωi(n, θ̂i(n), ti(n)). The pseudo-code of
GEOCOMBUCB and KL-SR are presented in Algorithm 1
and Algorithm 2, respectively.

In the following theorems, we provide a finite time analysis
of the GEOCOMBUCB and KL-SR policies and show the
optimality of KL-SR in line networks. Define ε = (1 −
2−

1
4 )∆min

D+ .
Theorem 5.3: For all N ≥ 1, under policies

π ∈ {GEOCOMBUCB-1,GEOCOMBUCB-2} we have:

Rπ(N) ≤ 16|E|
√
Hf1(N)

∆minθ2
min

+ 2D+

(
2KH +

∑
i∈E

1

ε2θ2
i

)
.

Hence Rπ(N) = O
(
|E|
√
H

∆minθ2min
log(N)

)
when N →∞.

Theorem 5.4: For all N ≥ 1, under policy π = KL-SR we
have:

Rπ(N) ≤ 360|E|Hf2(N)

∆minθ2
min

+ 2D+

(
4H +

∑
i∈E

1

ε2θ2
i

)
.

Hence Rπ(N) = O
(
|E|H

∆minθ2min
log(N)

)
when N →∞.

The index bp is an extension of the KL-based index of [18]
to the case of geometrically distributed rewards. However the
proof of Theorem 5.3 is novel and uses the link between bp
and cp established in Theorem 5.1. The proof of Theorem 5.3
uses some of ideas from [18]. The proof of Theorem 5.4 is
completely different from the regret analysis of KL-SR in [1];
it relies on Lemma 8, which provides a tight lower bound for
the index ωi, and borrows some ideas from [17, Theorem 5].
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Remark 5.1: Theorem 5.4 holds even when the delays on
the various links are not independent as in [17].

The proposed policies have better performance guarantees
than existing routing algorithms. Indeed, as shown in Ap-
pendix J, the best regret upper bound for the CUCB algorithm
[9] is RCUCB(N) = O

(
|E|H

∆minθ3min
log(N)

)
, which constitutes

a weaker performance guarantee than those of our routing
policies. The numerical experiments presented in the next
section will confirm the superiority of GEOCOMBUCB and
KL-SR over CUCB. The next proposition states that KL-SR
is asymptotically optimal in line networks.

Proposition 5.5: In line networks, the regret under π =

KL-SR satisfies lim supN→∞
Rπ(N)

log(N)
≤ c2(θ). Hence,

Rπ(N) = O
(
|E|−H

∆minθ2min
log(N)

)
when N →∞.

Remark 5.2: When the link parameters smoothly evolve
over time, we can modify the proposed routing policies so that
routing decisions are based on past choices and observations
over a sliding window consisting of a fixed number of packets,
as considered in [33] and [34].

C. Implementation
Next we discuss the implementation of our routing policies,

and give simple methods to compute bp(n, λ, t), cp(n, λ, t),
ωi(n, λ, t) given p, i, n, λ and t. The path index cp is explicit
and easy to compute. The link index ωi is also straightforward
as it amounts to finding the roots of a strictly convex and
increasing function in one variable (note that v 7→ KL(u, v)
is strictly convex and increasing for v ≥ u). Hence, the index
ωi can be computed by a simple line search. The path index
bp(n, λ, t) can also be computed using simple line search, as
shown below.

Define Ip(λ) = {i ∈ p : λi 6= 1}, and for γ > 0, define:

F (γ, λ, n, t) =
∑

i∈Ip(λ)

tiKL(λi(n), g(γ, λi, ti)), with

g(γ, λi, ti) =
1

2γti

(
γλiti − 1 +

√
(1− γλiti)2 + 4γti

)
.

Proposition 5.6: (i) γ 7→ F (γ, λ, n, t) is strictly in-
creasing, and F (R+, λ, n, t) = R+. (ii) If Ip(λ) = ∅,
bp(n, λ, t) =

∑
i∈E pi. Otherwise, let γ? is the unique solution

to F (γ, λ, n, t) = f1(n). Then,

bp(n, λ, t) =
∑
i∈E

pi − |Ip(λ)|+
∑

i∈Ip(λ)

g(γ?, λi, ti).

As stated in Proposition 5.6, proven in Appendix I, γ? can
be computed efficiently by a simple line search, and bp is
easily deduced. We thus have efficient methods to compute
the three indexes. To implement our policies, we then need
to find in each round, the path maximizing the index (or the
sum of link indexes along the path for KL-SR). KL-SR can
be implemented (in a distributed fashion) using the Bellman-
Ford algorithm, and its complexity is O(|V ||E|) in each
round. GEOCOMBUCB-1 and GEOCOMBUCB-2 are more
computationally involved than KL-SR and have complexity
O(|P|) in each round.

D. Numerical Experiments

In this section, we conduct numerical experiments to com-
pare the performance of the proposed source-routing policies
to that of the CUCB algorithm [9] and TS applied to our
online routing problem. The CUCB algorithm is an index
policy in Π2 (the set of source-routing policies with semi-
bandit feedback), and selects path p(n) for the transmission
of the n-th packet:

p(n) ∈ arg min
p∈P

∑
i∈p

1

θ̂i(n) +
√

1.5 log(n)/ti(n)
.

We consider a grid network whose topology is depicted in
Figure 2(a), where the node in red (resp. blue) is the source
(resp. the destination). In this network, there are

(
6
3

)
= 20 pos-

sible paths from the source to the destination. Let us compare
these algorithms in terms of their per-packet complexity. The
complexity of GEOCOMBUCB-1 and GEOCOMBUCB-2 is
O(|P|), whereas that of KL-SR, CUCB, and TS is O(|V ||E|).

In Figures 2(b)-(c), we plot the regret against the number of
the packets N under the various routing policies, and for two
sets of link parameters θ. For each set, we choose a value of
θmin and generate the values of θi independently, uniformly
at random in [θmin, 1]. The results are averaged over 100
independent runs, and the 95% confidence intervals are shown
using the grey area around curves. The three proposed policies
outperform CUCB, and GEOCOMBUCB-1 attains the smallest
regret amongst the proposed policies. The comparison between
GEOCOMBUCB-2 and KL-SR is more subtle and depends on
the link parameters: while in Figure 2(b) KL-SR significantly
outperforms GEOCOMBUCB-2, they attain regrets growing
similarly for the link parameter of Figure 2(c). Yet there
are some parameters for which KL-SR is significantly out-
performed by GEOCOMBUCB-2. KL-SR seems to perform
better than GEOCOMBUCB-2 in scenarios where ∆min is
large. TS performs slightly better than GEOCOMBUCB-1 on
average. Its regret, however may not be well concentrated
around the mean for some link parameters, as in Figure 2(c).
Furthermore, the regret analysis of TS for shortest-path routing
with general topologies is an open problem.

E. A distributed hop-by-hop routing policy

Motivated by the Bellman-Ford implementation of KL-
SR algorithm, we propose KL-HHR, a distributed routing
policy which is a hop-by-hop version of KL-SR algorithm and
hence belongs to the set of policies Π3. We first introduce the
necessary notations. For any node v ∈ V , we let Pv denote
the set of loop-free paths from node v to the destination. For
any time slot τ , we denote by n(τ) the packet number that is
about to be sent or already in the network. For any edge i, let
θ̃i(τ) be the empirical success rate of edge i up to time slot τ ,
that is θ̃i(τ) = si(n(τ))/t′i(τ), where t′i(τ) denotes the total
number of transmission attempts on link i up to time slot τ .
Moreover, with slight abuse of notation, we denote the index
of link i at time τ by ωi(τ, θ̃i(τ)). Note that by definition
t′i(τ) ≥ ti(n) and θ̃i(τ) is a more accurate estimate of θi than
θ̂i(n(τ)). We define Jv(τ) as the minimum cumulative index
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(a) A grid network
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(c) θmin = 0.1, ∆min = 0.08

Fig. 2. Network topology, and regret versus number of received packets.

from node v to the destination:

Jv(τ) = min
p∈Pv

∑
i∈p

ωi(τ, θ̃i(τ)).

We note that Jv(τ) can be computed using Bellman-Ford
algorithm. KL-HHR works based on the following idea: at
time τ if the current packet is at node v, it will be sent to
node v′ with (v, v′) ∈ E such that ω(v,v′)(τ, θ̃v(τ)) + Jv′(τ)
is minimal over all outgoing edges of node v. The pseudo-code
of KL-HHR is given in Algorithm 3.

Algorithm 3 KL-HHR for node v
for τ ≥ 1 do

Select link (v, v′) ∈ E, where

v′ ∈ arg min
w∈V :(v,w)∈E

(
ω(v,w)(τ, θ̃v(τ)) + Jw(τ)

)
.

Update index of the link (v, v′).

We compare the performance of KL-HHR and KL-SR
through numerical experiments. We consider a grid network
whose topology is depicted in Figure 3(a), in which there are
40 links and 413 possible paths from the source (in red) to the
destination (in blue). Figures 3(b)-(c) display the regret against
the number of the packets N under KL-SR and KL-HHR for
two sets of link parameters θ. The values of θi are generated
similarly to the previous experiments and the results are
averaged over 100 independent runs. As expected, KL-HHR
outperforms KL-SR in both scenarios, and the difference is
significant when θmin is small. The reason is that KL-HHR can
change routing decisions dynamically at intermediate nodes,
and does not waste transmissions on bad links when they are
discovered. It is noted, however that, irrespective of the value
of θmin, the regret of both KL-HHR and KL-SR grow similarly
when the number of received packets grows large.

The regret analysis of KL-HHR is beyond the scope of this
paper, and is left for future work.

VI. CONCLUSIONS AND FUTURE WORK

We have studied online shortest path routing problems in
networks with stochastic link delays. The distributions of these

delays are initially unknown, and have to be estimated by
actual packet transmissions. Three types of routing policies are
analyzed: source-routing with semi-bandit feedback, source-
routing with bandit feedback, and hop-by-hop routing. Tight
asymptotic lower bounds on the regret for the three types of
policies are derived. By comparing these bounds, we observed
that semi-bandit feedback significantly improves performance
while hop-by-hop decisions do not. Finally, we proposed
several simple routing policies for semi-bandit feedback that
outperform alternatives from the literature both in theory and
in numerical experiments. As future work, we plan to propose
practical algorithms with provable performance bounds for
hop-by-hop routing and source-routing with bandit feedback.
Furthermore, we would like to study the effect of delayed
feedback on the performance as studied in, e.g., [35].
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[15] G. Neu and G. Bartók, “An efficient algorithm for learning with semi-
bandit feedback,” in Algorithmic Learning Theory (ALT). Springer,
2013, pp. 234–248.

[16] Y. Gai, B. Krishnamachari, and R. Jain, “Combinatorial network op-
timization with unknown variables: Multi-armed bandits with linear
rewards and individual observations,” IEEE/ACM Transactions on Net-
working, vol. 20, no. 5, pp. 1466–1478, 2012.

[17] B. Kveton, Z. Wen, A. Ashkan, and C. Szepesvari, “Tight regret
bounds for stochastic combinatorial semi-bandits,” in Proceedings of
the 18th International Conference on Artificial Intelligence and Statistics
(AISTATS), 2015.

[18] R. Combes, M. S. Talebi, A. Proutiere, and M. Lelarge, “Combinato-
rial bandits revisited,” in Advances in Neural Information Processing
Systems (NIPS), 2015.

[19] V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically efficient
allocation rules for the multiarmed bandit problem with multiple plays-
Part I: IID rewards,” IEEE Transactions on Automatic Control, vol. 32,
no. 11, pp. 968–976, 1987.

[20] B. Kveton, Z. Wen, A. Ashkan, H. Eydgahi, and B. Eriksson, “Matroid
bandits: Fast combinatorial optimization with learning,” in Proceedings
of the 30th Conference on Uncertainty in Artificial Intelligence (UAI),
2014.

[21] Y. Gai, B. Krishnamachari, and R. Jain, “Learning multiuser channel
allocations in cognitive radio networks: A combinatorial multi-armed
bandit formulation,” in Proceedings of Symposium on New Frontiers in
Dynamic Spectrum (DySPAN), 2010.

[22] Z. Wen, B. Kveton, and A. Ashkan, “Efficient learning in large-scale
combinatorial semi-bandits,” in Proceedings of the 32nd International
Conference on Machine Learning (ICML), 2015, pp. 1113–1122.

[23] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, no. 3/4, pp. 285–294, 1933.

[24] K. Liu and Q. Zhao, “Adaptive shortest-path routing under unknown
and stochastically varying link states,” in Proceedings of the 10th
International Symposium on Modeling and Optimization in Mobile, Ad
Hoc and Wireless Networks (WiOpt), 2012, pp. 232–237.

[25] P. Tehrani and Q. Zhao, “Distributed online learning of the shortest
path under unknown random edge weights.” in Proceedings of the 38th
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2013, pp. 3138–3142.

[26] A. N. Burnetas and M. N. Katehakis, “Optimal adaptive policies
for Markov decision processes,” Mathematics of Operations Research,
vol. 22, no. 1, pp. 222–255, 1997.

[27] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley-Interscience, 2005.

[28] T. Jaksch, R. Ortner, and P. Auer, “Near-optimal regret bounds for
reinforcement learning,” The Journal of Machine Learning Research,
vol. 99, pp. 1563–1600, 2010.
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APPENDIX A
PROOFS OF THEOREMS 4.1, 4.2 AND 4.3

To derive the asymptotic regret lower bounds, we apply the
techniques used by Graves and Lai [30] to investigate efficient
adaptive decision rules in controlled Markov chains. We recall
here their general framework. Consider a controlled Markov
chain (Xt)t≥0 on a countable state space S with a control
set U . The transition probabilities given control u ∈ U are
parameterized by θ taking values in a compact metric space
Θ: the probability to move from state x to state y given the
control u and the parameter θ is P (x, y;u, θ). The parameter
θ is not known. The decision maker is provided with a finite
set of stationary control laws G = {g1, . . . , gK} where each
control law gj is a mapping from S to U : when control law
gj is applied in state x, the applied control is u = gj(x). It
is assumed that if the decision maker always selects the same
control law g, the Markov chain is irreducible with respect
to some maximum irreducibility measure and has stationary
distribution πgθ . The reward obtained when applying control u
in state x is denoted by r(x, u), so that the expected reward
achieved under control law g is µθ(g) =

∑
x r(x, g(x))πgθ (x).

There is an optimal control law given θ whose expected
reward is denoted by µ?θ = maxg∈G µθ(g). Now the objective
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of the decision maker is to sequentially apply control laws
so as to maximize the expected reward up to a given time
horizon N . The performance of the decision making scheme
can be quantified through the notion of regret which compares
the expected reward to that obtained by always applying the
optimal control law.

A. Source Routing with Bandit Feedback – Theorem 4.1
To prove Theorem 4.1, we construct a controlled Markov

chain as follows. The state space is N, the control set is the
set of paths P , and the parameter θ = (θi, i ∈ E) defines
the success rates on the various links. The parameter θ takes
value in the compact space Θ = [ε, 1]|E| for ε arbitrarily close
to zero. The set of control laws are stationary and each of
them corresponds to a given path, i.e., G = P . A transition
in the Markov chain occurs at time epochs where a new
packet is sent. The state after a transition records the end-to-
end delay of the packet. Hence the transition probabilities are
P (k, l; p, θ) = ψpθ (l), and do not depend on the starting state.
The cost (the opposite of reward) at state l is simply equal to
the delay l. Let us fix θ, and denote by p? the corresponding
optimal path. For any two sets of parameters θ and λ, we
define the KL information number under path (or control law)
p as:

Ip(θ, λ) =

∞∑
l=h(p)

ψpθ (l) log
ψpθ (l)

ψpλ(l)
. (3)

We have that Ip(θ, λ) = 0 if and only if the delays over
path p under parameters θ and λ have the same distribution.
By Lemma 2, proven at the end of this subsection, this occurs
if and only if the two following sets are identical: {θi, i ∈
p}, {λi, i ∈ p}. We further define B1(θ) as the set of bad
parameters λ such that under λ, p? is not the optimal path,
and such that θ and λ are statistically not distinguishable (they
lead to the same delay distribution along path p?). Then:

B1(θ) =
{
λ : {λi, i ∈ p?} = {θi, i ∈ p?}, min

p∈P
Dλ(p) < Dλ(p?)

}
.

By [30, Theorem 1], we conclude that the delay regret scales
at least as c1(θ) log(N) where

c1(θ) = inf
{∑
p∈P

xp∆p : x ≥ 0, inf
λ∈B1(θ)

∑
p 6=p?

xpI
p(θ, λ) ≥ 1

}
,

where Ip(θ, λ) is given in (3). �

Lemma 2: Consider (Xi)i independent with Xi ∼ Geo(θi)
and 0 < θi ≤ 1. Consider (Yi)i independent with Yi ∼
Geo(λi) and 0 < λi ≤ 1. Define X =

∑
iXi and Y =

∑
i Yi.

Then X d
=Y if and only if (θi)i = (λi)i up to a permutation5.

Proof. If (θi)i = (λi)i, up to a permutation then X d
=Y by in-

spection. Assume that X d
=Y . Define zm = mini(min(1/(1−

θi), 1/(1 − λi)). For all z such that |z| < zm we have
E[zX ] = E[zY ] so that∏

i

θi
1− (1− θi)z

=
∏
i

λi
1− (1− λi)z

.

5The symbol d
= denotes equality in distribution.

Hence:

PX(z) :=
∏
i

θi(1−(1−λi)z) =
∏
i

λi(1−(1−θi)z) := PY (z).

Both PX(z) and PX(z) are polynomials and are equal on
an open set. So they are equal everywhere, and the sets of
their roots are equal {1/(1 − θi), i} = {1/(1 − λi), i}. So
(θi)i = (λi)i up to a permutation as announced. �

B. Source Routing with Semi-bandit Feedback – Theorem 4.2

The proof of Theorem 4.2 is similar to that of Theorem 4.1,
except that here we have to account for the fact that the source
gets feedback on per-link basis. To this end, we construct a
Markov chain that records the delay on each link of a path.
The state space is N|E|. Transitions occur when a new packet
is sent from the source, and the corresponding state records
the observed delays on each link of the chosen path, and the
components of the state corresponding to links not involved in
the path are set equal to 0. For example, the state (0, 1, 4, 0, 7)
indicates that the path consisting of links 2, 3, and 5 has been
used, and that the per-links delays are 1, 4, and 7, respectively.
The cost of a given state is equal to the sum of its components
(total delay). Now assume that path p = (i1, . . . , ih(p)) is
used to send a packet, then the transition probability to a state
whose ik-th component is equal to dk, k = 1, . . . , h(p) (the
other components are 0) is

∏h(p)
k=1 qθ(ik, dk), where qθ(i,m) =

θi(1 − θi)m−1 for any link i and any delay m. Now the KL
information number of (θ, λ) under path p is given by

Ip(θ, λ) =
∑
i∈p

KLG(θi, λi), (4)

since KL divergence is additive for independent random vari-
ables. Hence, under semi-bandit feedback, we have Ip(θ, λ) =
0 if and only if θi = λi for all i ∈ p. The set B2(θ) of bad
parameters is defined as:

B2(θ) =
{
λ : λi = θi ∀i ∈ p?,min

p∈P
Dλ(p) < Dλ(p?)

}
.

Applying [30, Theorem 1] gives:

c2(θ) = inf
{∑
p∈P

xp∆p : x ≥ 0, inf
λ∈B2(θ)

∑
p 6=p?

xpI
p(θ, λ) ≥ 1

}
,

where Ip(θ, λ) is given in (4). �

C. Hop-by-hop Routing – Theorem 4.3

This case is more involved. We first define another notion
of regret corresponding to the achieved throughput (i.e., the
number of packets successfully received by the destination
per unit time). The throughput regret is introduced to ease the
analysis, since computing the throughput regret is easier in
the hop-by-hop case. Define µθ(p) as the average throughput
on path p given link success rates θ: µθ(p) = 1/Dθ(p).
The throughput regret Sπ(T ) of π over time horizon T is:
Sπ(T ) := Tµθ(p

?)−E [Nπ(T )] , where Nπ(T ) is the number
of packets received up to time T under policy π. Lemma 4,
stated at the end of the proof, provides the relation between
asymptotic bound on Rπ(N) and Sπ(N).
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Now we are ready to prove Theorem 4.3. We let the state
of the Markov chain be the packet location. The action is the
selected outgoing link. The transitions between two states take
one time slot – the time to make a transmission attempt. Hence,
the transition probability between state x and y with the action
of using link i is denoted by (where y 6= x) P iθ(x, y) = θi
if link i connects node x and y and is zero otherwise. On
the other hand, the probability of staying at the same state
is the transmission failure probability on link i if link i is an
outgoing link, that is P iθ(x, x) = 1−θi if link i is an outgoing
link, and is zero otherwise.

We assume that the packet is injected at the source im-
mediately after the previous packet is successfully delivered,
and we are interested in counting the number of successfully
delivered packets. In order not to count the extra time slot we
will spend at the destination, we use a single Markov chain
state to represent both the source and the destination.

We give a reward of 1 whenever the packet is successfully
delivered to the destination. Let r(x, y, i) be the immediate
reward after the transition from node x to node y under the
action i, i.e., r(x, y, i) = 1 if y is the destination node and is
zero otherwise (see Figure 4 for an example). Hence r(x, i)
(i.e., the reward at state x with action i) is

r(x, i) =

{
θi if link i connects node x and the destination;

0 otherwise.

The stationary control law prescribes the action at each state,
i.e., the outgoing link at each node. A stationary control law
of this Markov chain is then a path p in the network, and
we assign arbitrary actions to the nodes that are not on the
path p. The maximal irreducibility measure is then to assign
measure zero to the nodes that are not on the path p, and a
counting measure to the nodes on the path p. The Markov
chain is irreducible with respect to this maximal irreducibility
measure, and the stationary distribution of the Markov chain
under path p is,

πpθ (x) =

1
θp(x)∑
i∈p

1
θi

1{if node x is on the path p},

where p(x) denotes the link we choose at node x. The long-
run average reward of the Markov chain under control law

p is
∑
x π

p
θ (x)r(x, p(x)) =

1∑
i∈p

1
θi

= µθ(p). The optimal

control law is then p? with long run average reward µθ(p?).

src/dst b c d

(θa,0)
(θb,0)

(1-θb,0)(1-θa,0) (1-θc,0)

(θc,0)

(1-θd,0)

(θd,1)

Fig. 4. A Markov chain example under a control law p where the values in
the parenthesis respectively denote the transition probability and the reward.

The throughput regret of a policy π ∈ Π3 for this controlled
Markov chain at time T is

Sπ(T ) = Tµθ(p
?)− Eθ[

T∑
t=1

r(xt, π(t, xt))], (5)

where xt is the state at time t and π(t, xt) is the corresponding
action for state xt at time t. To this end, we construct
a controlled Markov chain that corresponds to the hop-by-
hop routing in the network. Now define Ip(θ, λ) as the KL
information number for a control law p:

Ip(θ, λ) =
∑
x

πpθ (x)
∑
y

P
p(x)
θ (x, y) log

P
p(x)
θ (x, y)

P
p(x)
λ (x, y)

=
∑
x

πpθ (x)
(
θp(x) log

θp(x)

λp(x)
+ (1− θp(x)) log

1− θp(x)

1− λp(x)

)
= µθ(p)

∑
i∈p

KL(θi, λi)

θi
= µθ(p)

∑
i∈p

KLG(θi, λi), (6)

where we used Lemma 3 in the last equality. Since Ip(θ, λ) =
0 if and only if θi = λi for all i ∈ p, the set B2(θ) of bad
parameters is:

B2(θ) =

{
λ : λi = θi ∀i ∈ p?, max

p∈P
µλ(p) > µλ(p?)

}
=

{
λ : λi = θi,∀i ∈ p?,min

p∈P
Dλ(p) < Dλ(p?)

}
.

Applying [30, Theorem 1], we get:
lim infT→∞ Sπ(T )/ log(T ) ≥ c′3(θ), where

c′3(θ) = inf
{∑
p∈P

xp∆p : x ≥ 0; inf
λ∈B2(θ)

∑
p6=p?

xpµθ(p)I
p(θ, λ) ≥ 1

}
,

where Ip(θ, λ) is given in (6). By Lemma
4, c3(θ) ≥ c′3(θ)/µθ(p

?). Lastly, observe that
µθ(p

?) − µθ(p) = µθ(p
?)µθ(p)(Dθ(p) − Dθ(p

?)). It
then follows that c′3(θ)/µθ(p

?) = c2(θ) and therefore
c3(θ) ≥ c2(θ). On the other hand, c3(θ) ≤ c2(θ) since
Π2 ⊂ Π3. As a result, c3(θ) = c2(θ) and the proof is
completed. �

The following two lemmas prove useful in the proof of
Theorem 4.3. Lemma 3 follows from a straightforward calcu-
lation, and relates the KL-divergence between two geometric
distributions to that of corresponding Bernoulli distributions.
Lemma 4 provides the connection between the throughput
regret Sπ(T ) and delay regret Rπ(N) and its proof is provided
in the next section.

Lemma 3: For any u, v ∈ (0, 1], we have:

KLG(u, v) =
KL(u, v)

u
. (7)

Proof. We have:

KLG(u, v) =

∞∑
i=1

[
log

u(1− u)i−1

v(1− v)i−1

]
u(1− u)i−1

=

∞∑
i=1

(log
u

v
)u(1− u)i−1

+

∞∑
i=1

(i− 1)(log
1− u
1− v

)u(1− u)i−1

= log
u

v
+ (log

1− u
1− v

)
1− u
u

=
KL(u, v)

u
.

�
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Lemma 4: For any π ∈ Πi, i = 1, 2, 3, and any β > 0 we
have:

lim inf
T→∞

Sπ(T )

log(T )
≥ β =⇒ µθ(p

?) lim inf
N→∞

Rπ(N)

log(N)
≥ β.

APPENDIX B
PROOF OF LEMMA 4

Proof. Define µ? = µθ(p
?) and rt =

∑t
n=1(Dπ(n) − D?).

Since T ≤
∑Nπ(T )+1
n=1 Dπ(n) and µ? = 1

D? :

Tµ?−Nπ(T ) ≤ 1+

Nπ(T )+1∑
n=1

(µ?Dπ(n)−1) = 1+µ?rNπ(T )+1.

Since rt is a submartingale, Nπ(T ) is a stopping time and
Nπ(T ) ≤ T a.s., Doob’s optional stopping theorem gives:

E(rNπ(T )+1) ≤ E(rT+1) = Rπ(T + 1).

Taking expectations above yields:

Sπ(T )

log(T )
≤ 1

log(T )
+ µ?

Rπ(T + 1)

log(T )
,

and letting T →∞ proves the result since log(T )
log(T+1) → 1. �

APPENDIX C
PROOF OF LEMMA 1

A. Lower bound for c1(θ)

Let us first decompose the set B1(θ). Observe that
minp∈P Dλ(p) < Dλ(p?), implies that at least one sub-
optimal link i should have a higher success probability than
the link ζ(i) under the parameter λ. Hence, we decompose
B1(θ) into sets where the link i is better than the link ζ(i)
under parameter λ. For any i /∈ p?, define

Ai(θ) =
{
λ : {λj , j ∈ p?} = {θj , j ∈ p?}, λi > θζ(i)

}
.

Then, B1(θ) =
⋃
i 6=ζ(i)Ai(θ) and Eq. (1) reads

c1(θ) = inf
x≥0

∑
p∈P

xp∆p

subject to: inf
λ∈Ai(θ)

∑
p 6=p?

xpI
p(θ, λ) ≥ 1, ∀i /∈ p?.

Let i /∈ p?. Consider ϑi with ϑii = θζ(i) and ϑij = θj for
j 6= i. Since ϑi ∈ Ai(θ), we have

inf
λ∈Ai(θ)

∑
p 6=p?

xpI
p(θ, λ) ≤

∑
p:i∈p

xpI
p(θ, ϑi)

≤ max
p:i∈p

Ip(θ, ϑi)
∑
p:i∈p

xp.

Moreover, we have that∑
p∈P

xp∆p =
∑
p∈P

xp
∑
i∈p

(
1

θi
− 1

θζ(i)

)
=
∑
i/∈p?

(
1

θi
− 1

θζ(i)

) ∑
p:i∈p

xp.

Putting these together yields

c1(θ) ≥ inf
x≥0

∑
i/∈p?

(
1

θi
− 1

θζ(i)

) ∑
p:i∈p

xp

subject to: (max
p:i∈p

Ip(θ, ϑi))
∑
p:i∈p

xp ≥ 1, ∀i /∈ p?.

Introducing zi =
∑
p:i∈p xp for any i, we rewrite the above

problem as:

c1(θ) ≥ inf
z≥0

∑
i/∈p?

(
1

θi
− 1

θζ(i)

)
zi

subject to: zi ≥ (max
p:i∈p

Ip(θ, ϑi))−1, ∀i /∈ p?,

thus giving:

c1(θ) ≥
∑
i/∈p?

1
θi
− 1

θζ(i)

maxp:i∈p Ip(θ, ϑi)
,

where Ip(·, ·) is given by (3).

B. Derivation of c2(θ)

Let us first decompose the set B2(θ). We argue that
minp∈P Dλ(p) < Dλ(p?) implies that at least one sub-
optimal link i should have a higher success probability than
the link ζ(i) under parameter λ.

We let Ai(θ) be the set where link i is better than the link
ζ(i) under parameter λ:

Ai(θ) =
{
λ : (λj = θj , ∀j ∈ p?), λi > θζ(i)

}
.

Hence, B2(θ) =
⋃
i/∈p? Ai(θ). Note KLG(u, v) = 0 if and

only if u = v and it is monotone increasing in v in the range
v > u. Thus, for any λ ∈ Ai(θ), the infimum is obtained when
λi = θζ(i) and λj = θj ∀j 6= i, so that

inf
λ∈Ai(θ)

∑
p 6=p?

xp
∑
i∈p

KLG(θi, λi) ≥ 1

⇐⇒ KLG(θi, θζ(i))
∑
p:i∈p

xp ≥ 1.

Defining zi =
∑
p:i∈p xp for any i and recalling that∑

p∈P xp∆p =
∑
i/∈p?

(
1
θi
− 1

θζ(i)

)∑
p:i∈p xp, we rewrite

problem (2) as

inf
z≥0

∑
i/∈p?

(
1

θi
− 1

θζ(i)

)
zi

subject to: KLG(θi, θζ(i))zi ≥ 1, ∀i /∈ p?,

which gives

c2(θ) =
∑
i/∈p?

1
θi
− 1

θζ(i)

KLG(θi, θζ(i))

and concludes the proof. �
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APPENDIX D
PROOF OF PROPOSITION 4.4

Proof. Consider a problem instance with line topology in
which θi = α for all i /∈ p?, and θi = α+α2 for all i ∈ p? for
some α ∈ (0, 0.36]. Hence, θi < 0.5 for all i ∈ p?. For any
uniformly good policy π ∈ Π2 ∪ Π3, by Lemma 1 we have
that:

lim inf
N→∞

Rπ(N)

log(N)
≥
∑
i/∈p?

1

KLG(θi, θζ(i))

( 1

θi
− 1

θζ(i)

)
≥
∑
i/∈p?

1

2(θζ(i) − θi)
=
∑
i/∈p?

1

2θiθζ(i)(θ
−1
i − θ

−1
ζ(i))

=
|E| −H

2α(α+ α2)(α−1 − (α+ α2)−1)

=
|E| −H

2α(α+ α2)∆min
≥ |E| −H

4α2∆min
=
|E| −H

4θ2
min∆min

,

where in the second inequality we used Lemma 3 and
KL(u, v) ≤ (u−v)2

v(1−v) ≤
2(u−v)2

v for v ≤ 0.5. This implies
that the regret of any uniformly good policy π ∈ Π2 ∪Π3 for
this problem instance is at least Ω

(
|E|−H

∆minθ2min
log(N)

)
. �

APPENDIX E
PROOF OF THEOREM 5.1

We first recall two results. Lemma 5 is a concentration
inequality derived in [36, Theorem 2]. Lemma 6, proven in
[37, Lemma 6], is a local version of Pinsker’s inequality for
the KL-divergence between two Bernoulli distributions.

Lemma 5: There exists a number KH > 0 that only
depends on H such that for all p and n ≥ 2:

P[
∑
i∈p

ti(n)KL(θ̂i(n), θi) ≥ f1(n)] ≤ KHn
−1(log(n))−2.

Lemma 6 ( [37, Lemma 2]): For 0 ≤ u < v ≤ 1 we have:

KL(u, v) ≥ 1

2v
(u− v)2.

Next we prove the theorem.
Statement (i): Let p ∈ P , n ∈ N, t ∈ N|E|, and u, λ ∈
(0, 1]|E| with ui ≥ λi for all i. By Cauchy-Schwarz inequality
we have:

p>λ−1 − p>u−1 =
∑
i∈p

ui − λi
uiλi

=
∑
i∈p

√
ti(ui − λi)√

ui

1

λi
√
tiui

≤

√√√√∑
i∈p

ti(ui − λi)2

ui

√∑
i∈p

1

tiuiλ2
i

≤

√√√√∑
i∈p

ti(ui − λi)2

ui

√∑
i∈p

1

tiλ3
i

,

where we used ui ≥ λi for all i in the last step. Using
Lemma 6, it then follows that

p>λ−1 − p>u−1 ≤
√∑

i∈p
2tiKL(λi, ui)

√∑
i∈p

1

tiλ3
i

.

Thus,
∑
i∈p tiKL(λi, ui) ≤ f1(n) implies:

p>λ−1 − p>u−1 ≤

√√√√∑
i∈p

2f1(n)

tiλ3
i

,

or equivalently, p>u−1 ≥ cp(n, λ, t). Hence, by definition of
bp(n, λ, t), we have bp(n, λ, t) ≥ cp(n, λ, t).

Statement (ii): If
∑
i∈p ti(n)KL(θ̂i(n), θi) ≤ f1(n), then we

have bp(n, θ̂(n), t(n)) ≤ p>θ−1 by definition of bp. Therefore,
using Lemma 5, there exists KH such that for all n ≥ 2 we
have:

P[bp(n, θ̂(n), t(n)) > p>θ−1]

≤ P[
∑
i∈p

ti(n)KL(θ̂i(n), θi) ≥ f1(n)]

≤ KHn
−1(log(n))−2,

which concludes the proof. �

APPENDIX F
PROOF OF THEOREM 5.3

A. Preliminary

Define a = (1 − 2−
1
4 ) and ε = a∆min

D+ < a. For s ∈ N|E|
and p ∈ P define h(s) =

∑
i∈p

1
si

. Define si(n) = ti(n)θ̂i(n)
the number of packets routed through link i before the n-th
packet is sent and s(n) = (si(n))i∈E . To ease notation define
h(n) = h(s(n)). We will use the following technical lemma.

Lemma 7: Consider S ⊂ N, (s(n))n an integer sequence
such that s(n) 6= s(n′) for all (n, n′) ∈ S, n 6= n′. Consider
a constant C > 0, and a positive function δ, such that
minn∈S δ(s(n)) ≥ δmin. Then:

Z :=
∑
n∈S

δ(s(n))1{s(n) ≤ Cδ(s(n))−2} ≤ 2C

δmin
.

Proof. If s(n) ≤ Cδ(s(n))−2, we have δ(s(n)) ≤
√
C/s(n),

and s(n) ≤ Cδ−2
min. So:

Z ≤
∑
n∈S

Cδ−2
min∑

t=1

1{s(n) = t}
√
C

t
≤
Cδ−2

min∑
t=1

√
C

t
,

using the fact that
∑
n∈S 1{s(n) = t} ≤ 1. Using the

inequality
∑T
t=1 t

− 1
2 ≤

∫ T
1
t−

1
2 dt ≤ 2

√
T yields the result. �

B. Proof of the Theorem

For any n, introduce the following events:

An =
{∑
i∈p?

ti(n)KL(θ̂i(n), θi) > f1(n)
}
,

Bn,i = {pi(n) = 1, |θ̂i(n)− θi| ≥ εθi}, Bn =
⋃
i∈E

Bn,i,

Fn = {∆p(n) ≤ (1− a)−2θ−1
min

√
2f1(N)h(n)}.

We first prove that p(n) 6= p? implies: n ∈ An ∪ Bn ∪ Fn.
Consider n such that p(n) 6= p? and An ∩ Bn does not
occur. By design of the algorithm, ξp(n)(n) ≤ ξp?(n), and
ξp?(n) ≤ D? since An does not occur. By Theorem 5.1
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we have cp(n)(n) ≤ ξp(n)(n). Hence cp(n)(n) ≤ D?. This
implies:

p(n)>θ̂(n)−1 −

√√√√∑
i∈p

2f1(n)

si(n)θ̂i(n)2
≤ D?,

so that:

∆p(n) ≤ p(n)>θ−1 − p(n)>θ̂(n)−1 +

√√√√ ∑
i∈p(n)

2f1(n)

si(n)θ̂i(n)2
.

Since Bn does not occur θ̂(n)−1 ≥ θ−1/(1 + ε) and:

p(n)>θ−1 − p(n)>θ̂(n)−1 ≤ p(n)>θ−1ε

(1 + ε)
≤ D+ε

= a∆min ≤ a∆p(n).

Also θ̂i(n) ≥ θmin(1− a), and f1(n) ≤ f1(N) so:∑
i∈p(n)

2f1(n)

si(n)θ̂i(n)2
≤ 2f1(N)h(n)

(1− a)2θ2
min

.

Hence:

∆p(n) ≤ a∆p(n) +

√
2f1(N)h(n)

(1− a)θmin
,

and ∆p(n) ≤ (1− a)−2θ−1
min

√
2f1(N)h(n) and n ∈ Fn.

The regret Rπ(N) is upper bounded by:

E

(
N∑
n=1

∆p(n)

)
≤ E

(
N∑
n=1

∆p(n)(1{An}+ 1{Bn}+ 1{Fn})

)
.

Set A: Using corollary 5.2, and KH ≥ 1 we have:∑
n≥1

P(An) ≤ 1 +KH

∑
n≥2

n−1(log(n))−2 ≤ 4KH . (8)

Set B: Define τi(n) =
∑n
n′=1 1{Bn′,i}. Since Bn′,i im-

plies pi(n
′) = 1, we have si(n) ≥ τi(n). Applying [34,

Lemma B.1], we have
∑N
n=1 P(Bn,i) ≤ 2(εθi)

−2. A union
bound yields:

N∑
n=1

P(Bn) ≤ 2ε−2
∑
i∈E

θ−2
i . (9)

Set F : Define U = 4f1(N)
(1−a)4θ2min

. Define the set

Sn = {i ∈ p(n) : si(n) ≤ HU∆−2
p(n)}

and events:

Gn = {|Sn| ≥
√
H},

Ln = {|Sn| <
√
H, min

i∈p(n)
si(n) ≤

√
HU∆−2

p(n)]}.

Assume that neither Gn nor Ln occurs, then:

h(n) =
∑

i∈p(n),i∈Sn

1

si(n)
+

∑
i∈p(n),i/∈Sn

1

si(n)

≤
|Sn|∆2

p(n)√
HU

+
(H − |Sn|)∆2

p(n)

HU
<

2∆2
p(n)

U
,

since |Sn| <
√
H . Hence ∆2

p(n) > Uh(n)/2 and Fn does not
occur. So Fn ⊂ Gn ∪ Ln. Further decompose Gn and Ln as:

Gi,n = Gn ∩ {i ∈ p(n), si(n) ≤ HU∆−2
p(n)},

Li,n = Ln ∩ {i ∈ p(n), si(n) ≤
√
HU∆−2

p(n)}.

Applying Lemma 7 twice, we get:
N∑
n=1

∆p(n)1{Gi,n} ≤
HU

∆min
,

N∑
n=1

∆p(n)1{Li,n} ≤
√
HU

∆min
.

We have ∑
i∈E

1{Gi,n} = |Sn|1{Gn} ≥
√
H1{Gn}.

So:
N∑
n=1

∆p(n)1{Gn} ≤
1√
H

N∑
n=1

∑
i∈E

∆p(n)1{Gi,n} ≤
|E|
√
HU

∆min
.

Further:
N∑
n=1

∆p(n)1{Ln} ≤
N∑
n=1

∑
i∈E

∆p(n)1{Li,n} ≤
|E|
√
HU

∆min
.

Since 1{Fn} ≤ 1{Gn}+ 1{Ln} we get:

E

(
N∑
n=1

∆p(n)1{Fn}

)
≤ 2|E|

√
HU

∆min
. (10)

Combining (8), (9) and (10) with ∆p(n) ≤ D+, yields the
announced result:

Rπ(N) ≤ 2|E|
√
HU

∆min
+D+

(
4KH + 2ε−2

∑
i∈E

θ−2
i

)
.

�

APPENDIX G
PROOF OF THEOREM 5.4

The proof technique is similar to the analysis of [17,
Theorem 5].

A. Preliminary
For s ∈ N|E| and p ∈ P define h′(s) = (

∑
i∈p

1√
si

)2, and

as before si(n) = ti(n)θ̂i(n) and s(n) = (si(n))i∈E , and
h′(n) = h′(s(n)). We will use the following technical lemma.

Lemma 8: For all n, t ∈ N, λ ∈ (0, 1], and i ∈ E:

ωi(n, λ, t) ≥
1

λ
−
√

2f2(n)

tλ3
.

Proof. Let i ∈ E, n, t ∈ N and u, λ ∈ (0, 1] with u ≥ λ. We
have:

1

λ
− 1

u
=

√
t(u− λ)2

u
· 1√

tuλ2
≤
√

2tKL(λ, u) · 1√
tλ3

,

where the second inequality follows from Lemma 6 and u ≥ λ.

Hence, tKL(λ, u) ≤ f2(n) implies: 1
u ≥

1
λ −

√
2f2(n)
tλ3 . The

above holds for all u ∈ [λ, 1], and by definition of ωi(n, λ, t):

ωi(n, λ, t) ≥
1

λ
−
√

2f2(n)

tλ3
.

�
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B. Proof of the theorem

For any n, we define the following events:

An,i =
{
ti(n)KL(θ̂i(n), θi) > f2(n)

}
, An =

⋃
i∈p?

An,i,

Bn,i = {pi(n) = 1, |θ̂i(n)− θi| ≥ εθi}, Bn =
⋃
i∈E

Bn,i,

Fn = {∆p(n) ≤ (1− a)−2θ−1
min

√
2f2(N)h′(n)}.

We show that p(n) 6= p? implies: n ∈ An ∪ Bn ∪ Fn.
Consider n such that p(n) 6= p? and An ∪ Bn does not
occur. By design of the algorithm, p(n)>ω(n) ≤ (p?)>ω(n),
and (p?)>ω(n) ≤ D? since An does not occur. Hence
p(n)>ω(n) ≤ D?. By Lemma 8, for all i:

ωi(n) ≥ 1

θ̂i(n)
−

√
2f2(n)

si(n)θ̂i(n)2
.

Summing over i ∈ p(n) we get:

∆p(n) ≤ p(n)>θ−1 − p(n)>θ̂(n)−1 +
∑
i∈p(n)

√
2f2(n)

si(n)θ̂i(n)2
.

As before, when Bn does not occur we have

p(n)>θ−1 − p(n)>θ̂(n)−1 ≤ a∆p(n).

Furthermore θ̂i(n) ≥ θmin(1−a) and f2(n) ≤ f2(N) so that:∑
i∈p(n)

√
2f2(n)

si(n)θ̂i(n)2
≤
∑
i∈p(n)

√
f2(N)

si(n)θ2
min(1− a)2

,

Hence:

∆p(n) ≤ a∆p(n) +

√
2f2(N)h′(n)

(1− a)θmin

and ∆p(n) ≤ (1− a)−2θ−1
min

√
2f2(N)h′(n) so that n ∈ Fn.

The regret Rπ(N) is upper bounded by:

E
( N∑
n=1

∆p(n)

)
≤ E

( N∑
n=1

∆p(n)(1{An}+ 1{Bn}+ 1{Fn})
)
.

Set A: By [38, Theorem 10] and a union bound:

P(An) ≤
∑
i∈p?

P(An,i) ≤ Hdf2(n) log(n)ee1−f2(n).

Hence:
N∑
n=1

P(An) ≤ H
(

1 + e
∑
n≥2

df2(n) log(n)ee−f2(n)
)
≤ 8|H|.

(11)
Set B: As in the proof of Theorem 5.3:

N∑
n=1

P(Bn) ≤ 2ε−2
∑
i∈E

θ−2
i . (12)

Set F : Define U ′ = 2H2f2(N)(1− a)−4θ−2
min. Similarly to

the proof of [17, Theorem 5], consider α, β > 0, for ` ∈ N
define α` =

(
1−β√
α−β

)2

α` and β` = β`. Introduce set S`,n and
events G`,n:

S`,n = {i ∈ p(n), si(n) ≤ U ′α`∆−2
p(n)},

G`,n = {|S`,n| ≥ β`H} ∩ {|Sj,n| < βjH, j = 1, ..., `− 1}.

If ∪`≥1G`,n = {|S`,n| < Hβ`, ` ≥ 1} then:

∑
`≥1

|S`−1,n| − |S`,n|√
α`

=
|S0,n|√
α1

+
∑
`≥1

|S`,n|
( 1
√
α`+1

− 1
√
α`

)
<
Hβ0√
α1

+
∑
`≥1

Hβ`

( 1
√
α`+1

− 1
√
α`

)
= H

∑
`≥1

β` − β`−1√
α`

≤ H,

since 1√
α`+1

− 1√
α`
≥ 0. Now:

|{i : si(n) ∈ U ′∆−2
p(n)[α`, α`−1]}| = |S`−1,n| − |S`,n|

so that:√
h′(n) ≤

∑
`≥1

(|S`−1,n| − |S`,n|)√
α`

∆p(n)√
U ′

< H
∆p(n)√
U ′

.

Hence ∆2
p(n) > h′(n)U ′H−2, and Fn does not occur. There-

fore Fn ⊂ ∪`≥1G`,n and:

N∑
n=1

∆p(n)1{Fn} ≤
N∑
n=1

∑
`≥1

∆p(n)1{G`,n}.

Further decompose Gi,` as:

Gi,`,n = G`,n ∩ {i ∈ p(n), si(n) ≤ U ′α`∆−2
p(n)}.

Observe that:

1{G`,n} ≤
|S`,n|
Hβ`

1{G`,n} =
1

Hβ`

∑
i∈E

1{Gi,`,n}.

Applying Lemma 7, we get:

N∑
n=1

∆p(n)1{Gi,`,n} ≤
N∑
n=1

∆p(n)1

{
si(n) ≤ U ′α`

∆2
p(n)

}

≤ 2U ′α`
∆min

.

Putting it together:

N∑
n=1

∆p(n)1{Fn} ≤
2|E|U ′

H∆min

∑
`≥1

α`
β`
≤ 90|E|U ′

H∆min
, (13)

by choosing α = 0.15 and β = 0.24 so that
∑
`≥1

α`
β`
≤ 45.

Combining (11), (12) and (13) with ∆p(n) ≤ D+, yields
the result:

Rπ(N) ≤ 90|E|U ′

H∆min
+D+

(
8H + 2ε−2

∑
i∈E

θ−2
i

)
.

�
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APPENDIX H
PROOF OF PROPOSITION 5.5

In the line network, KL-SR simply chooses the link with
the smallest index on each hop. Hence, on each hop, KL-
SR is equivalent to the KL-UCB algorithm for a classical
MAB with geometrically distributed rewards. By [38, Theo-
rem 1 and Lemma 6], the regret of KL-SR on the m-th hop
asymptotically grows as:∑

i∈Em\p?

log(N)

KLG(θi, θζ(i))

(
1

θi
− 1

θζ(i)

)
,

where Em denotes the set of links in the m-th hop. Since
decisions at various hops are decoupled, the regret due to all
hops satisfies

lim sup
N→∞

RKL-SR(N)

log(N)
≤

H∑
m=1

∑
i∈Em\p?

1
θi
− 1

θζ(i)

KLG(θi, θζ(i))

=
∑
i/∈p?

1
θi
− 1

θζ(i)

KLG(θi, θζ(i))
= c2(θ).

Furthermore, using Lemma 3 and Lemma 6 we have for
any i /∈ p?:

1
θi
− 1

θζ(i)

KLG(θi, θζ(i))
=

θζ(i) − θi
θζ(i)KL(θi, θζ(i))

≤ 2

θζ(i) − θi
.

Moreover, in line networks ∆min = mini/∈p?(θ−1
i − θ−1

ζ(i)).
Thus,

c2(θ) ≤
∑
i/∈p?

2

θζ(i) − θi
=
∑
i/∈p?

2

θiθζ(i)(θ
−1
i − θ

−1
ζ(i))

≤ |E| −H
∆min

· 2

mini/∈p? θiθζ(i)
≤ 2(|E| −H)

∆minθ2
min

,

which completes the proof.
�

APPENDIX I
PROOF OF PROPOSITION 5.6

The proof is similar to that of [18, Theorem 4]. Note that
if i /∈ Ip(λ), then the optimal solution satisfies ui = 1 since
KL(1, v) = ∞ unless v = 1. Thus, if Ip(λ) = ∅, then ui =
1,∀i ∈ E, and bp(n, λ, t) =

∑
i∈p pi.

If Ip(λ) 6= ∅, let i ∈ Ip(λ). Computing bp involves solving
a convex optimization problem with one inequality constraint
which must hold with equality since ui 7→ KL(λi, ui) is
monotone increasing for ui ≥ λi. Since d

dui
KL(λi, ui) =

u−λ
u(1−u) , the Karush-Kuhn-Tucker conditions are:

1

ui2
− γti

ui − λi
ui(1− ui)

= 0,∑
i∈Ip(λ)

tiKL(λi, ui)− f1(n) = 0.

with γ > 0 the Lagrange multiplier. The first equation is the
quadratic equation:

u2
i + ui

(
1

γti
− λi

)
− 1

γti
= 0.

Solving for ui, we obtain ui(γ) = g(γ, λi, ti) and replacing
in the second equation, we obtain F (γ, n, λ, t) = f1(n). The
results then follow directly. �

APPENDIX J
REGRET UPPER BOUND FOR CUCB

CUCB (see [9]) uses the following link index:

γi(n) =
1

θ̂i(n) +
√

1.5 log(n)/ti(n)
, ∀i ∈ E

Define a = (1− 2−
1
4 ) and ε = a∆min

D+ < a. For any s ∈ N|E|
and p ∈ P define h′(s) = (

∑
i∈p

1√
si

)2, and as in the proof

of Theorem 5.4, si(n) = ti(n)θ̂i(n) and s(n) = (si(n))i∈E ,
and h′(n) = h′(s(n)). We have that:

p(n)>γ(n) =
∑
i∈p(n)

1

θ̂i(n) +

√
1.5θ̂i(n) log(n)/si(n)

=
∑
i∈p(n)

1

θ̂i(n)
−
∑
i∈p(n)

√
1.5 log(n)/(si(n)θ̂i(n)3)

1 + θ̂i(n)−
1
2

√
1.5 log(n)/si(n)

≥ p(n)>θ̂(n)−1 −
∑
i∈p(n)

√
1.5 log(n)

si(n)θ̂i(n)3
. (14)

For any n, introduce the following events:

An,i =
{
|θ̂i(n)− θi| >

√
1.5 log(n)/ti(n)

}
, An =

⋃
i∈p?

An,i,

Bn,i = {pi(n) = 1, |θ̂i(n)− θi| ≥ εθi}, Bn =
⋃
i∈E

Bn,i,

Fn = {∆p(n) ≤ (1− a)−
5
2 θ
− 3

2

min

√
2 log(N)h′(n)}.

We show that if p(n) 6= p? then An ∪ Bn ∪ Fn occurs.
Consider n such that p(n) 6= p? and An ∪ Bn does not
occur. By design of the algorithm, p(n)>γ(n) ≤ (p?)>γ(n),
and (p?)>γ(n) ≤ D? since An does not occur. Hence
p(n)>γ(n) ≤ D?.

When Bn does not occur, (1− a)θmin ≤ θ̂i(n) ≤ (1 + ε)θi
and p(n)>θ−1 − p(n)>θ̂(n)−1 ≤ a∆p(n). Hence, using (14),
we get

∆p(n) = p(n)>θ−1 −D? ≤ p(n)>θ−1 − p(n)>γ(n)

≤ a∆p(n) + (1− a)−
3
2 θ
− 3

2

min

√
1.5 log(N)h′(n)

so that

∆p(n) ≤ (1− a)−
5
2 θ
− 3

2

min

√
1.5 log(N)h′(n)

and thus n ∈ Fn.
The regret Rπ(N) is upper bounded by:

E
( N∑
n=1

∆p(n)

)
≤ E

( N∑
n=1

∆p(n)(1{An}+ 1{Bn}+ 1{Fn})
)
.

Set A: Using a Chernoff bound and a union bound, we have
that P(An) ≤ 2Hn−2 (see, e.g., [9, Lemma 3]). Hence

N∑
n=1

P(An) ≤
N∑
n=1

2H

n2
≤ 2π2H

3
. (15)
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Set B: As in the proof of Theorem 5.3:
N∑
n=1

P(Bn) ≤ 2ε−2
∑
i∈E

θ−2
i . (16)

Set F : Define U ′ = 2H2f2(N)(1−a)−
5
2 θ−3

min. By the same
technique as the proof of Theorem 5.4 we get

N∑
n=1

∆p(n)1{Fn} ≤
278H|E| log(N)

∆minθ3
min

. (17)

Putting (15), (16), and (17) together, we obtain

Rπ(N) ≤ 278H|E| log(N)

∆minθ3
min

+ 2D+

(
π2H

3
+
∑
i∈E

1

(εθi)2

)
.

�
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