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We present hydrodynamic and magnetohydrodynamic (MHD) simulations of liquid sodium1

flows in the Von-Kármán-Sodium (VKS) setup. The counter-rotating impellers made of2

soft iron that were used in the successful 2006 experiment are realistically represented3

by means of a pseudo-penalty method. Hydrodynamic simulations are performed at high4

kinetic Reynolds numbers using a Large Eddy Simulation technique. The results compare5

well with the experimental data: the flow is laminar and steady or slightly fluctuating at6

small angular frequencies; small scales fill the bulk and a Kolmogorov-like spectrum is7

obtained at large angular frequencies. Near the tips of the blades the flow is expelled and8

takes the form of intense helical vortices. The equatorial shear layer acquires a wavy shape9

due to three coherent co-rotating radial vortices as observed in hydrodynamic experi-10

ments. MHD computations are performed: at fixed kinetic Reynolds number, increasing11

the magnetic permeability of the impellers reduces the critical magnetic Reynolds num-12

ber for dynamo action; at fixed magnetic permeability, increasing the kinetic Reynolds13

number also decreases the dynamo threshold. Our results support the conjecture that the14

critical magnetic Reynolds number tends to a constant as the kinetic Reynolds number15

tends to infinity. The resulting dynamo is a mostly axisymmetric axial dipole with an az-16

imuthal component concentrated near the impellers as observed in the VKS experiment.17

A speculative mechanism for dynamo action in the VKS experiment is proposed.18

1. Introduction19

Dynamo action, i.e. the self-amplification of a magnetic field by the flow of an elec-20

trically conducting fluid, is considered to be the main mechanism for the generation21

of the magnetic fields of stars and planets (Moffatt (1978)). In order to gain a better22

understanding of the processes at play, different experimental groups have investigated23

dynamo action (Peffley et al. (2000); Nornberg et al. (2006); Frick et al. (2010); Colgate24

et al. (2011)) but so far only three experiments have been succesful: Gailitis et al. (2000);25

Stieglitz and Müller (2001); Monchaux et al. (2007). These three experiments were all26

performed in liquid sodium. The first two experiments used optimized flows guided by27

pipes that intentionally limited the influence that turbulence could have on the dynamo28

process. The experimentalists found dynamo action with a magnetic field having a shape29

corresponding to the one predicted by using kinematic dynamo computations based on30
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analytical flows. The third dynamo has been observed in the Von-Kármán-Sodium exper-31

iment (VKS) located in Cadarache: in 2006 experimentalists observed a magnetic field32

generated by a turbulent flow produced by two counter-rotating impellers in a cylindrical33

vessel. It has been found that both the geometry and the material composing the im-34

pellers play a crucial role on the dynamo action threshold: for example, at fixed available35

mechanical power, dynamo action occurs only when at least one of the rotating impellers36

is made of soft iron (Miralles et al. (2013)). When the two soft iron impellers counter-37

rotate at the same angular velocity, another puzzling observation is that the generated38

magnetic field is statistically steady and mainly axisymmetric with an axial dipole and39

a strong azimuthal component located near the impellers (Boisson et al. (2012)). This40

magnetic field could not be predicted by using simplified axisymmetric geometries and41

velocity fields averaged in azimuth and time: kinematic dynamo simulations usually give42

an equatorial dipole superimposed with two anti-parallel vertical magnetic structures43

near the vessel axis (see e.g. Ravelet et al. (2005); Marié et al. (2006); Laguerre et al.44

(2006); Gissinger et al. (2008); Guermond et al. (2011a)).45

It is clear that the nature of the material composing the impellers greatly influences46

the transmission conditions enforced on the magnetic field, and that the geometry of the47

impellers controls the dynamics of the tip vortices generated between the blades (Ravelet48

et al. (2012); Kreuzahler et al. (2014)). But a precise experimental investigation of the49

influences of the material properties and the blade geometry is not feasible due to the50

lack of accurate techniques such as non-intrusive gaussmeters or PIV measurements in51

liquid metals. It is natural then to turn to computer simulations to gain some insight52

into the VKS experiment. After more than 15 years of algorithmic and code develop-53

ment in MHD, we announce in the present paper that we are now capable of simulating54

a realistic three-dimensional turbulent flow of liquid sodium that generates a magnetic55

field that is mainly axisymmetric and similar to the one observed in the experiment. In56

addition to massive parallelism, the key algorithmic factors that lead us to this result57

are the development of a robust Large Eddy Simulation technique (Guermond et al.58

(2011b)) and the use of pseudo-penalty method (Pasquetti et al. (2008)) to represent re-59

alistic counter-rotating impellers. Early results on the Von-Kármán-Sodium experiment60

obtained by direct numerical simulations of the incompressible, fully nonlinear, magneto-61

hydrodynamic equations were announced in Nore, C. et al. (2016). In the present paper62

we go far beyond the range of kinetic Reynolds numbers attained in the above reference.63

Our main result is that the critical magnetic Reynolds number decreases as the kinetic64

Reynolds number increases and this number seems to converge to a constant in the65

vanishing viscosity limit. We also confirm that, everything else being fixed, the critical66

magnetic Reynolds decreases as the magnetic permeability of the impellers increases.67

The paper is organized as follows. The setup of the 2006 VKS2 experiment together68

with the relevant parameters is shortly presented in section 2. The governing equa-69

tions and the numerical methods that are used to solve them are also briefly described.70

Section 3 presents hydrodynamical simulations performed for a large range of kinetic71

Reynolds numbers. Dynamo action is studied in section 4. The impact of the relative72

magnetic permeability of the impellers and of the boundary conditions is studied. The73

dynamo threshold is determined for a large range of kinetic Reynolds numbers; it de-74

creases as the kinetic Reynolds number increases and it seems to reach an asymptotic75

value in the vanishing viscosity limit. The structure of the generated magnetic field shows76

a striking similarity with the one observed in the VKS2 experiment in all of the cases77

investigated. Key ingredients for dynamo action in the VKS2 setup are identified in sec-78

tion 5. It is shown in particular in this section that kinematic dynamo computations79

using the time averaged velocity field computed at high fluid Reynolds number give a80
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non-axisymmetric magnetic field similar to the one obtained from simplified time aver-81

aged and azimuthally averaged velocity field, but this dynamo is very different from the82

one observed in VKS2 experiment. Concluding remarks are reported in section 6 and a83

tentative scenario is proposed.84

2. Technical preliminaries85

In the present paper we simulate numerically the VKS2 experiment with the flow driven86

by the TM73 impellers (for Turbine Métallique, meaning Metal Impeller in French) (see87

figure 2 and Monchaux et al. (2007)). We begin by describing the geometry. Then we88

present the governing equations and the algorithms that are used in our MHD code (Guer-89

mond et al. (2007, 2009, 2011a)).90

2.1. Experimental setup and data91

The VKS2 setup described in Monchaux et al. (2007) uses two concentric cylindrical92

containers: the first one has a very small thickness and is of radius Rcyl = 206 mm;93

the second one is thick and made of copper, its inner radius is Rin = 289 mm and its94

outer radius is Rout = 330 mm. Both containers have a total height H = 412 mm. The95

impellers are located at the two extremities of the inner container. There is some fluid96

behind the impellers in the experiment, but in the present simulations we neglect this97

fluid layer. The impellers are composed of two disks each supporting 8 blades. The disks98

have radius Rb = 155 mm and are 20 mm thick. The blades have height 41 mm, thickness99

5 mm, and the angle of curvature is equal to 24◦. The distance between the inner faces100

of the disks is set to 370 mm so that the aspect ratio of the cylindrical fluid domain is101

370/206 = 1.8. The fluid contained in the inner vessel is pushed by the convex side of the102

blades (called the unscooping sense of rotation or (+) sense). A schematic representation103

of the experimental setup is shown in figure 1 using Rcyl as reference lengthscale.104

The vessel contains about 150 liters of liquid sodium heated at 120 ◦C. The kine-105

matic viscosity is ν = 6.78×10−7m2s−1, the density is ρ = 932 kgm−3 and the electrical106

conductivity is σ = 9.6× 106 S m−1. The corresponding magnetic Prandtl number is107

Pm = µ0σν = 0.82×10−5. The impellers counter-rotate at a frequency f , the experimen-108

tal range of frequencies necessary for observing dynamo action is 16 Hz ≤ f ≤ 22 Hz,109

leading to kinetic Reynolds numbers in the range 6.3×106 ≤ Re =
2πfR2

cyl

ν ≤ 8.7×106
110

and magnetic Reynolds numbers in the range 52 ≤ Rcm = µ0σ2πfR2
cyl ≤ 71.111

At maximum available mechanical power, dynamo has been observed with soft iron112

impellers (made of ferromagnetic material of relative magnetic permeability of the order113

of 50, Verhille et al. (2010)) but not with stainless steel ones (Miralles et al. (2013)).114

2.2. SFEMaNS115

To investigate the hydrodynamic and magnetohydrodynamic regimes of the above ex-116

perimental setup, we use a MHD code called SFEMaNS. This code uses a hybrid spatial117

discretization combining spectral and finite elements. In a nutshell we use a Fourier118

decomposition in the azimuthal direction and the continuous Hood-Taylor Lagrange el-119

ements P1-P2 for the pressure and velocity fields in the meridian section. Modulo the120

computations of nonlinear terms with FFT, the linear problems for each Fourier mode121

in the meridian section are uncoupled and are thereby easily parallelized by using MPI.122

The solution of the linear problems in the meridian section is further parallelized by123

using METIS (Karypis and Kumar (1998)) for the domain decomposition, and PETSc124

(Portable, Extensible Toolkit for Scientific Computation, Balay et al. (2014)) for the lin-125

ear algebra. For the magnetic part, the algorithm solves the problem using the magnetic126
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(a) Vessel (b) Bottom impeller

Figure 1. Schematic of the VKS2 experimental device of Monchaux et al. (2007) in non-dimen-
sional units. The impellers counter-rotate as indicated in (a) and are fitted with 8 curved blades
(see b).

induction, B, in the conducting region (after standard elimination of the electric field)127

and the scalar magnetic potential in the insulating exterior. The fields in each region are128

approximated by using H1-conforming Lagrange elements with a penalty technique to129

control the divergence of B in a negative Sobolev norm that guarantees convergence un-130

der minimal regularity (see details in Bonito and Guermond (2011), Giesecke et al. (2010,131

§3.2), Bonito et al. (2013)). The coupling between conducting and insulating media is132

done by using an interior penalty method. SFEMaNS has been thoroughly validated on133

numerous manufactured solutions and against other MHD codes (see e.g. Guermond et al.134

(2009); Giesecke et al. (2012); Nore et al. (2016)). The reader who is familiar with the135

numerical details or is not interested in such details is now invited to jump to section 3.136

2.3. Governing equations137

Let us now go into some details about the equations that are actually solved in SFEMaNS.
The MHD equations are solved in non-dimensional form as follows:

∂tu = −(∇×u)× u + 1
Re

∆u−∇p+ f, (2.1a)

∂tB = ∇×(u×B)− 1
Rm

∇×
(

1
σr
∇×

(
1
µr

B
))

, (2.1b)

∇·u = 0, (2.1c)

∇·B = 0, (2.1d)

where u is the velocity field, B the magnetic induction field (with the magnetic field H =138

B/µ0µr), p the pressure field, and σr, µr are the relative conductivity and permeability139

of the various materials in presence. The Navier-Stokes and the Maxwell equations are140

coupled by the Lorentz force f = (∇×H)×B.141

In the present situation the reference length Lref is set to Rcyl. The computational142

domain for the hydrodynamic study is Ω = {(r, θ, z) ∈ [0, 1] × [0, 2π) × [−1, 1]}. The143

computational domain for the MHD study is the larger cylinder Ω ∪ Ωout with Ωout =144



Numerical simulation of the Von-Kármán-Sodium dynamo experiment 5

{(r, θ, z) ∈ [1, 1.6] × [0, 2π) × [−1, 1]}. Denoting by σ0 the electrical conductivity of the145

liquid sodium, ρ its density, and µ0 the magnetic permeability of vacuum, the magnetic146

induction is made non-dimensional by using the Alfvén scaling B = U
√
ρµ0, with U =147

ωRcyl where ω is the angular velocity of the impellers. The two governing parameters148

are Rm = µ0σ0R
2
cylω, the magnetic Reynolds number, and Re = R2

cylω/ν, the kinetic149

Reynolds number, with ν the kinematic viscosity of the fluid.150

Note that the parameters σr, µr are not constant since the walls and the impellers151

are made of different materials like copper, steel and soft iron. Specifically, we take σr =152

1, µr = 1 in the region {(r, θ, z) ∈ [1, 1.4]× [0, 2π)× [−1, 1]} to represent the lateral layer153

of stagnant liquid sodium, and σr = 4.5, µr = 1 in {(r, θ, z) ∈ [1.4, 1.6]× [0, 2π)× [−1, 1]}154

to model the lateral copper wall. In the induction equation (2.1b) we take u|Ωout
= 0. At155

the exception of section 4.3 where we study the impact of the so-called vacuum boundary156

condition, in the entire paper we impose the perfect ferromagnetic boundary condition157

H×n = 0 at the boundary of the computational domain. We shall also refer to this158

condition as the pseudo-vacuum boundary condition. This boundary condition allows us159

to save memory and CPU time.160

2.4. Moving domains161

To distinguish the liquid sodium from the impellers, the cylinder Ω is split into a solid162

domain Ωsolid(t) (composed of the rotating impellers) and a fluid domain Ωfluid(t), and163

we introduce the characteristic function χ defined in cylindrical coordinates by:164

χ(r, θ, z, t) =

{
1 if (r, θ, z) ∈ Ωfluid(t)
0 if (r, θ, z) ∈ Ωsolid(t).

(2.2)

In our case χ = 0 in the impellers (see figure 1). Note that both Ωsolid(t) and Ωfluid(t) are
time-dependent. It is not possible to find a frame of reference where these domains are
time-independent since the impellers move with opposite angular velocities. The ensuing
main difficulty is to approximate the Navier-Stokes equations in a time and θ-dependent
domain and to force the velocity in the solid domain Ωsolid(t) to be that of two solid bodies
in rotation. This is achieved by using a prediction-correction method of Guermond and
Shen (2004) and a pseudo-penalty technique of Pasquetti et al. (2008). Let τ be the time
step and let us generically denote by fn the approximation of f(nτ). The velocity is then
updated by using the following scheme:

3un+1

2τ
− 1

Re
∆un+1 = −∇pn + (1− χn+1)

3un+1
obst

2τ

+ χn+1

(
4un − un−1

2τ
−∇(

4ψn − ψn−1

3
)− (∇×u∗,n+1)× u∗,n+1 + fn+1

)
, (2.3)

where u∗,n+1 = 2un−un−1 and, using cylindrical coordinates, uobs is the velocity of the165

disks and blades defined for all n ≥ 0 by:166

unobs(r, θ, z) =

{
−reθ if z > 0,
reθ if z ≤ 0.

(2.4)

The pressure increment ψn+1 is obtained by solving the following Poisson problem:167

∆ψn+1 =
3

2τ
∇·un+1. (2.5)

The pressure is finally updated as follows:168

pn+1 = pn + ψn+1 − 1

Re
∇·un+1. (2.6)
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Note that the velocity and the pressure are solutions of the Navier-Stokes equations when169

χ = 1, i.e., in the fluid domain Ωfluid(t). When χ = 0, i.e., in Ωsolid(t), the momentum170

equation reduces to 3un+1

2τ −
1
Re

∆un+1 = −∇pn+
3un+1

obst

2τ ; to first order in τ , the solution is171

u = uobs +O
(
τ
Re

)
. Note that the higher the kinetic Reynolds number, the more accurate172

the method. There are two situations for the initialization of the above algorithm. Either173

we start from rest, and in this case all the quantities required at n = 0 are set to zero,174

or we restart from a previous computation, and in this case all the quantities required to175

restart are taken from the previous computation.176

The second difficulty we face is that the material properties in the computational frame177

depend on the azimuthal angle and time due to the presence of the rotating blades. This178

is not a serious issue for the conductivity σr since the conductivity of the impellers179

and the liquid sodium are not very different; for the sake of simplicity we take σr = 1180

in the impellers and in the liquid sodium. But to account for the heterogenities of the181

magnetic permeability, we allow µr to depend on all the space and time variables, i.e.,182

µr = µr(r, θ, z, t). More precisely, letting µimp
r be the relative permeability of the impellers183

and recalling that µr = 1 in the liquid sodium, we set184

µr(r, θ, z, t) = χ(r, θ, z, t) + (1− χ(r, θ, z, t))µimp
r . (2.7)

In order to make the linear algebra in the induction equation time-independent, and to
avoid the nonlinearity in θ induced by the product 1

µr
B, we split the diffusion term by set-

ting B
µr

= B
µ̃r

+
(

B
µr
− B
µ̃r

)
, where µ̃r(r, z) is defined by µ̃r(r, z) := min0≤θ<2π µr(r, θ, z, t).

The first part of the decomposition, B
µ̃r

, is made implicit while the second part,
(

B
µr
− B
µ̃r

)
,

is made explicit by using B∗,n+1 = 2Bn−Bn−1 and µr = µn+1
r . The magnetic induction

field is therefore updated as follows:

3Bn+1

2τ
+

1

Rm
∇×

(
1

σr
∇×

(Bn+1

µ̃r

))
=

4Bn −Bn−1

2τ

+ ∇×(un+1×B∗,n+1)− 1

Rm
∇×

(
1

σr
∇×

(
B∗,n+1

( 1

µr
− 1

µ̃r

)))
. (2.8)

The function µ̃r being independent of the azimuth, implicit FFT convolutions are com-185

pletely avoided. Note also that for each Fourier mode, the linear problem in (2.8) is de-186

coupled from the other Fourier modes. The scheme (2.8) is stable, owing to the condition187

µ̃r ≤ µr, and it can be shown to be second-order accurate in time, see Castanon Quiroz188

(2015) for details. Finally, the solenoidal constraint (2.1d) is enforced as in Guermond189

et al. (2011a).190

2.5. Entropy viscosity stabilization191

When Re is moderate, it is possible to resolve all the scales by refining the grid and192

by enriching the Fourier space, i.e., it is possible to perform Direct Numerical Simula-193

tions (DNS, see table 1), but, given that computer resources are finite, this is no longer194

feasible when Re becomes large. More specifically, given a fixed computational budget,195

large gradients induced by the turbulence cascade can no longer be correctly represented196

numerically for Reynolds numbers beyond a few thousands. The energy that should have197

been dissipated at the Kolmogorov scale accumulates at the grid scale. A stabilization198

method that handles this problem has been implemented in SFEMaNS. This method,199

called entropy viscosity and denoted LES in table 1, was developed in Guermond et al.200

(2011b) and Guermond et al. (2011c). It consists of adding a local artificial viscosity201

made proportional to the residual of the kinetic energy balance. This artificial viscosity202
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Re 1.5×103 1.5×103 1.5×103 2.5×103 104 105

Rm [50, 300] [50, 300] [50, 300] [50, 150] [50, 150] [50, 100]
Model DNS – – LES – –
µimp
r 1 5 50 50 50 50
τ 1.25×10−3 1.25×10−3 10−3 10−3 1.25×10−3 1.25×10−3

hmin 2.5×10−3 – – 5×10−3 – –
hmax 10−2 – – – – –

modes 128 128 128 144 168 or 256 168 or 256
nprocs 64 64 192 360 336 or 512 336 or 512

Table 1. Numerical parameters for the MHD computations: kinetic Reynolds number Re, mag-
netic Reynolds number Rm, numerical model DNS or LES, maximum relative magnetic perme-
ability for impellers µimp

r , timestep, mesh size in the blade region hmin, mesh size at the outer
boundary hmax (the meridian mesh is non-uniform), number of real Fourier modes, number of
processors.

is added on the right-hand side of (2.1a) in the form ∇·(νE∇u). This induces a nonlinear203

diffusion proportional to the local energy imbalance that in turn allows the unresolved204

scales to be better accounted for.205

Let us now give some technical details on the computation of the entropy viscosity. We
consider a mesh Kh of the computational domain composed of a collection of cells K with
local mesh-size hK . Assuming that n ≥ 2 (or u−2, u−1, and p−1 have been initialized
appropriately), we define the residual of the momentum equation as follows:

ResnNS =
un − un−2

2τ
+ (un−1 ·∇)un−1 − 1

Re
∆un−1 + ∇pn−1 − fn−1. (2.9)

This residual is computed at each time step and over every mesh cell. The local artificial
viscosity is defined on each cell K by:

νnR|K =
h2
K‖ResnNS · un‖L∞(DK)

‖un‖2L∞(DK)

. (2.10)

where DK is the patch composed of the cells sharing one face with the cell K. The
quantity νnR|K is expected to be as small as the consistency error in smooth regions and
to be large in the regions where the Navier-Stokes equations are not resolved well. To be
able to run with CFL numbers of order O(1), we finally define the entropy viscosity as
follows:

νnE|K = min
(
cmaxhK‖un‖L∞(DK), ceν

n
R|K

)
, (2.11)

where cmax = 1
8 (for P2 approximation on the velocity) and ce is a tunable constant206

O(1). Thus defined, and given that we use P2 polynomials to approximate the velocity,207

the entropy viscosity scales like O(h3
K) in smooth regions and scales like O(hK) in regions208

with very large gradients.209

No artificial viscosity is added in the induction equation (2.1b) because the magnetic210

Reynolds number Rm is always far smaller than the kinetic Reynolds number, therefore211

the magnetic field is always correctly represented by the finite element mesh.212

2.6. Summary of the numerical parameters213

The numerical parameters that have been used in the various simulations reported in214

the paper are listed in table 1. The spatial resolution of a typical DNS run in the merid-215

ian plane is hmin = 2.5×10−3 in the blade region and hmax = 10−2 close to the outer216
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(a) Re = 104 (b) Re = 105

Figure 2. Navier-Stokes simulations in the TM73 VKS2 configuration in the cylinder of radius
r = 1: (a) at Re = 104, partial scale for the vorticity field ∇×u (between 10 and 25 for a total
scale between 0 and 56) and (b) at Re = 105 partial scale for the vorticity field ∇×u (between
10 and 25 for a total scale between 0 and 99). Impellers are represented in light grey.

boundary and slightly coarser for a typical LES run. Between 128 to 256 real Fourier217

modes are used. The parallelization is done with one complex Fourier mode per proces-218

sor, and the meridian plane is further divided among the processors by using a domain219

decomposition technique, the graph partitioning being done by METIS. The linear alge-220

bra in the meridian section is handled by PETSc and the FFTs are done with FFT3W.221

One rotation period (one turn) requires between 5 to 8 wall-clock hours on a medium222

capacity parallel machine called Brazos at Texas A&M University with quad core Intel223

Xeon, AMD Opteron and 8-core AMD Opteron, and it takes between 2 to 4 wall-clock224

hours on the cluster IBM x3750-M4 from GENCI-IDRIS. Each run does between 15 to225

60 turns. The cumulated computing time for the runs presented in this article is about226

5×105 CPU hours on one processor.227

3. Hydrodynamic study228

We first perform hydrodynamic computations by solving the equations {(2.1a)-(2.1c)}229

with Re in the range {2×102, 5×102, 103, 1.5×103, 2.5×102, 104, 105}. We characterize the230

structures of the flow through three-dimensional visualizations and by computing vari-231

ous time-averaged physical quantities. The visualizations, the global quantities, and the232

spatial spectra are in agreement with the experimental observations and the Kolmogorov233

scenario. All the simulations done at Re = 2500 and beyond have been done with the234

entropy viscosity technique presented previously.235

3.1. Turbulent flow at high Reynolds numbers236

We start by investigating the qualitative behavior of the flow at high Reynolds numbers.237

Figure 2 shows instantaneous vorticity fields at Re = 104 and Re = 105 characterized by238

small-scale structures with a clustering near the symmetry axis. The numerous vorticity239

tubes are characteristic of fully developed turbulence. Elongated vortical structures are240

attached to the concave side of the impeller blades.241

We show in figure 3 one snapshot of the velocity field computed at Re = 105. The242

flow is clearly turbulent as small scales have invaded the entire fluid domain. In the yOz243

plane the instantaneous velocity components {ux, uy} show ejection motions near the244

tip of the impellers. Close to the symmetry axis, the uz-component shows strong axial245

motions that are oriented toward the center of the cylinder and which are characteristics246

of the Ekman suction induced by the impellers (see figure 3 a-c). The representation of247
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(a) Instantaneous ux (b) Instantaneous uy (c) Instantaneous uz

(d) at r = 0.8, −π
2
≤ θ ≤ π

2
(e) at r = 0.8, π

2
≤ θ ≤ 3π

2

Figure 3. Navier-Stokes simulations in the TM73 VKS2 configuration at Re = 105. Instanta-
neous velocity field in the plane yOz (−1 ≤ y ≤ 1,−1 ≤ z ≤ 1): (a) ux (scale between −0.94
(blue) and 0.85 (red)); (b) uy (scale between −0.83 (blue) and 0.77 (red)); (c) uz (scale be-
tween −0.66 (blue) and 0.69 (red). Instantaneous velocity vector field on the cylindrical surface
{r = 0.8}: (d) for −π

2
≤ θ ≤ π

2
; (e) for π

2
≤ θ ≤ 3π

2
.

the velocity vector field on the cylindrical surface {r = 0.8} reveals two counter-rotating248

zonal flows at the top and bottom of the vessel which are induced by the impellers. We249

also observe large scale structures in the equatorial plane where the {uθ, uz}-components250

are significantly larger than the radial component ur (see figure 3(d-e)).251

The overall structure is made more visible by inspecting the time-average of the velocity252

field (see figure 4(a-g)). We observe two counter-rotating recirculation tori separated by253

an active azimuthal shear layer localized at the equator. Kinetic energy is injected by the254

impellers, the flow spirals up or down along the sidewall and is driven radially inward at255

mid-plane. The two resulting inward flows meet at the equator and form a shear layer256

that dissipates energy. Note that the components of the time-averaged velocity shown257

in figure 4(a-c) are not fully symmetric with respect to the Oz and Oy axes due to the258

presence of the azimuthal Fourier mode m = 3. The spectra reported in figure 9 show259

that the azimuthal Fourier mode m = 3 is persistent over a wide range of Reynolds260

numbers. This energy peak at m = 3 corresponds to three radial co-rotating vortices261

seen in figure 4(d-e). These cat’s-eye structures are the manifestation of the Kelvin-262

Helmholtz instability of the equatorial shear layer (Nore et al. (2003)). These vortices are263

localized near the equator and form a complex 3D structure inside the bulk as evidenced264

in figure 4(f-g). The cat’s-eye vortices have been experimentally observed by Cortet et al.265

(2009) at even higher Reynolds numbers.266

As seen in figure 5a, the global kinetic helicity HelK(t) :=
∫

Ω
u(r, t)·∇×u(r, t)dΩ is267
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(a) Time-averaged ux (b) Time-averaged uy (c) Time-averaged uz

(d) r = 0.8, −π
2
≤ θ≤π

2
(e) r = 0.8, π

2
≤ θ≤ 3π

2
(f) in the bulk r ≤ 1 (g) top view

Figure 4. Same as figure 3 for the time-averaged velocity field. Velocity field in the plane
yOz (−1 ≤ y ≤ 1,−1 ≤ z ≤ 1): (a) ux (scale between −0.75 (blue) and 0.75 (red)); (b)
uy (scale between −0.34 (blue) and 0.39 (red)); (c) uz (scale between −0.37 (blue) and 0.33
(red)). Velocity vector field on the cylindrical surface {r = 0.8}: (d) for −π

2
≤ θ ≤ π

2
; (e) for

π
2
≤ θ ≤ 3π

2
. Isosurface of 10% of the velocity magnitude (purple) with streamlines (colored by

velocity magnitude): (f) from a perspective; (g) top view; the cylinder {r = 1} is in light grey.

negative during the entire time evolution. This is not a surprise since the Ekman suction268

creates a strong vertical velocity field moving toward each impeller and the product of this269

velocity field with the angular velocity of the impellers is dominantly negative. However270

the spatial distribution of the instantaneous local helicity u(r, t)·∇×u(r, t) is complex271

and exhibits fine scales (see figure 5b-c). The instantaneous maxima are always localized272

near the impellers whereas the minima are dispersed over the whole fluid domain. This is273

well illustrated in figure 5c where we show the helicity field of the time-averaged velocity.274

As first numerically evidenced by Ravelet et al. (2012); Kreuzahler et al. (2014) and seen275

in figure 2, the positive maxima are associated with the right-handed swirling vortices276

attached to each blade and occupying the space between the blades. These vortices277

are thought to be a key ingredient of the dynamo mechanism (Laguerre et al. (2008);278

Gissinger (2009); Varela et al. (2015)).279

3.2. Global quantities280

We now make quantitative diagnostics to get a better understanding of the dynamics.281

Given a finite time series f1, . . . , fq, we define the time average f as follows:282

f :=
1

q

∑
1≤n≤q

fn. (3.1)
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Figure 5. Navier-Stokes simulations in the TM73 VKS2 configuration at Re = 105: (a) time
evolution of the total helicity HelK(t); (b) instantaneous local helicity in the yOz plane at time
t = 125; (c) local helicity of the time-averaged velocity in the yOz plane.

The first quantities of interest are the kinetic energy E, the root mean square velocity,283

and an indicator of the fluctuation level δ defined by:284

E(t) :=
1

2

∫
Ω

|u(r, t)|2dΩ, URMS :=

√
2E

|Ω|
, δ(u)(t) :=

‖u‖2L2(Ω)

‖u‖2L2(Ω)

. (3.2)

We also introduce the poloidal and the toroidal components of the velocity field which285

we denote by P (u) and T (u), respectively. Using the same notation and convention as286

in Ravelet (2005), we set:287

P (u) :=
1

|Ω|

∫
Ω

√
u2
r,0 + u2

z,0dΩ, T (u) :=
1

|Ω|

∫
Ω

|uθ,0|dΩ, Γ(u) :=
P (u)

T (u)
, (3.3)

where ur,0, uθ,0, and uz,0 are the radial, azimuthal, and vertical components of the Fourier288

mode m = 0 of the velocity u. We finally consider the dimensionless torque Kp defined289

by:290

Kp =
1

2

∫
Ωsolid

|(r×fs) · ez|dΩ, (3.4)

where fs is the non-dimensional body force that induces the solid rotation of the impellers.291

Using the notation from (2.2)–(2.4), we deduce from the expression of the discrete mo-292

mentum balance (2.3) that the torque at time tn+1 is given by293

Kp =
1

2

∫
Ω

r(1− χ)sign(z)
1

2τ
(4un − un−1 − 3uobs)·eθdΩ, (3.5)

with sign(z) equal to 1 if z > 0 and −1 otherwise.294

We have reported in Table 2 the quantities E, δ(u), P (u), T (u), Γ(u), URMS, and Kp295

for all the runs we have done with Re ∈ {2×102, 5×102, 103, 1.5×103, 2.5×102, 104, 105}.296

With the exception of Kp and δ(u), all the quantities increase with Re. In particular the297

ratio Γ increases with Re and reaches the value 0.57 at Re = 105. Using TM73 impellers,298

Ravelet et al. (2005) measured Γ ≈ 0.8 at Re > 105. The ratio Γ is expected to play a299

major role in the generation of a magnetic field by the flow; in particular, values around300

0.7 are thought to be near-optimal (see figure 5 of Ravelet et al. (2005)).301

Upon inspection of figure 6, where we have reported the time-averaged torque as a302

function of the Reynolds number, we observe that Kp has a non-monotonic behavior303

with respect to Re that is similar to the drag crisis of a sphere or a cylinder. We also304

note that Kp seems to be converging to a nonzero asymptotic limit in the vanishing305

viscosity limit. Note that δ(u) has the same behavior. The behavior of Kp and δ(u) is306
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Re E δ(u) P (u) T (u) Γ(u) URMS Kp

2×102 0.2287 1.0122 0.0753 0.1936 0.3892 0.2698 0.06311
5×102 0.2983 1.0201 0.0933 0.2005 0.4653 0.3082 0.05313

103 0.3893 1.1172 0.1145 0.2460 0.4651 0.3520 0.05047
1.5×103 0.4078 1.2123 0.1157 0.2263 0.5113 0.3603 0.05078
2.5×103 0.4427 1.3461 0.1244 0.2193 0.5671 0.3754 0.05198

104 0.4908 1.5429 0.1313 0.2321 0.5655 0.3952 0.0479
105 0.5190 1.4884 0.1343 0.2352 0.5710 0.4064 0.0470

Table 2. Global quantities as defined in the text for hydrodynamic computations in the TM73
setup.
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0.065

 100  1000  10000  100000

K
p

Re

Figure 6. Time-averaged Kp vs Re in log-lin showing a crisis around Re = 2.5×103.

coherent with the theoretical arguments and the experimental observations from Cortet307

et al. (2009).308

In conclusion, even though our computations are performed at smaller Re than in the309

experiment, the trend followed by the global quantities compares well with the experi-310

mental results of Ravelet et al. (2008).311

3.3. Kinetic energy vs. Reynolds number312

We investigate in this section the behavior of the kinetic energy as the kinetic Reynolds313

number increases.314

We show in figure 7(a) the time evolution of the kinetic energy E(t) for the Reynolds315

numbers in the range {2×102, 5×102, 103, 1.5×103, 2.5×102, 104, 105}. There is a unique316

time series since we have used the final state from the previous run as the initial condition317

for the next run with a higher Reynolds number. We observe that the flow is steady at318

Re = 2×102. It is marginally unsteady at Re = 5×102, and increasing further Re leads319

to a turbulent regime. The time averaged kinetic energy E increases with Re as reported320

in table 2.321

Letting û(r,m, z, t) be the m-th complex Fourier component of the velocity field322

u(r, θ, z, t), we define the kinetic energy of the m-th Fourier mode by323

Em =

∫
Ω2D

fluid

π|û(r,m, z, t)|2rdr dz. (3.6)

Figure 7(b-c) shows Em as a function of m for m ∈ {0, . . . , 63}. The maximum at m = 0324

corresponds to the large scale forcing induced by the rotating disk. The maximum at325

m = 8 and the maxima at the corresponding harmonics are induced by the 8 rotating326

blades. As expected, only the Fourier mode m = 0 and the mode m = 8 together with327
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Figure 7. (a) Time evolution of the total kinetic energy E(t) vs. Re. Modal kinetic energy Em
as a function of the azimuthal Fourier mode: (b) Re = 2×102; (c) Re = 5×102.

(a) on r = 0.8, −π/2 ≤ θ ≤ π/2 (b) top view

Figure 8. Navier-Stokes simulations in the TM73 VKS2 configuration at Re = 5×102: (a)
instantaneous velocity vector field on a cylindrical surface at r = 0.8 for −π/2 ≤ θ ≤ π/2;
(b) isosurface of 6% of the maximum velocity magnitude (purple) with streamlines (colored by
velocity magnitude) from a top view; the cylinder {r = 1} is in light grey.

its harmonics are populated at Re = 2×102. This scenario changes when the Reynolds328

number is slightly increased since all the even Fourier modes are active at Re = 5×102.329

At Re = 5×102 the flow is dominated by the Fourier modes m = 0 and m = 2330

as illustrated in Figure 8. The left panel in the figure shows that the azimuthal shear331

layer near the equator acquires a wavy structure with two co-rotating radial vortices.332

This phenomenon has also been observed in Ravelet et al. (2008). The dominance of333

the Fourier mode m = 2 and its harmonics is clearly seen when inspecting the velocity334

streamlines in figure 8(b). The spectrum in figure 7(c) shows that all the even modes are335

populated by nonlinearity.336

As Re increases further, the axisymmetric mode m = 0 and the Fourier mode m = 8337

together with its harmonics are still energetic, but the dynamics becomes richer as the338

mode m = 3 starts to be active and eventually becomes the second largest after the339

axisymmetric mode (see figure 4). This m = 3 structure has been visualized in the exper-340

iment at very high Reynolds numbers as reported in Cortet et al. (2009). The structure341

consists of three radial co-rotating vortices located nearby the equatorial shear layer. The342

Fourier modes m ∈ {0, 3, 8} eventually populate the entire spectrum by nonlinearity, and343

the spectrum has a more continuous appearance as Re grows (see figure 9). The quantity344

Em decreases like a negative power of m when m is large. For instance Em ∼ m−5 for345
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Figure 9. Spectra of the kinetic energy Em as a function of the azimuthal mode at final time
for Re = 1.5×103, 2.5×103, 104, 105: (a) in lin-log scale, (b) in log-log scale with a fit in m−5

and in m−1.7 for guiding the eye.

Re = 1.5×103 and Em ∼ m−1.7 for Re = 105. The scaling Em ∼ m−1.7 at Re = 105 is346

close to m−5/3 and thereby reminiscent of the Kolmogorov 1941 turbulent scaling for a347

one-dimensional kinetic energy spectrum (Frisch (1995)).348

Let us finish this section by noting that a bifurcation similar to the one discussed349

above, from even modes to odd modes, has been observed and reported in Herbert et al.350

(2014) for TM60 impellers at Re = 700. The TM60 configuration is slightly different from351

the TM73 though; the blades in the TM60 setup are more curved and the impellers are352

equipped with 16 blades instead of 8. The bifurcation was attributed to a (m = 1) bifur-353

cation. However the use of planar S-PIV data made uneasy the discrimination between354

odd modes like m = 1 and m = 3. Also the shape and the number of the blades can355

play a role in selecting the successive azimuthal dominating modes. In this reference the356

authors have shown that increasing Re from 102 to 106 leads to non-axisymmetric mod-357

ulations of the axisymmetric (laminar or time-averaged) flow with successive azimuthal358

changes in parity (even-odd-even-odd).359

4. MHD results360

In this section we solve the full MHD system (2.1a)–(2.1d) using as initial velocity field361

the velocity computed during the Navier-Stokes runs at the different Re. The magnetic362

field H = B/µ0µr is initialized to a very small value which we call seed. Unless specified363

otherwise, the seed is H0 = 10−3(ez + ex). We also add a random noise of amplitude364

5×10−5 on all the Fourier modes m ≥ 1 of H0. We first explain how we determine the365

threshold for dynamo action on an illustrative case. Next we study the influence of the366

relative magnetic permeability of the impellers and the boundary conditions imposed on367

the outer boundaries of the domain Ω ∪ Ωout. We then fix the relative magnetic perme-368

ability of the impellers and use the pseudo-vacuum boundary conditions to investigate369

the variation of the critical magnetic Reynolds number with Re.370

4.1. Summary of our previous results371

We have shown in Nore, C. et al. (2016) that two distinct dynamo families compete372

at small Reynolds numbers (typically for Re < 700) and that these two families merge373

at larger kinetic Reynolds numbers. In the first family, the magnetic field is essentially374

supported on the even Fourier modes, whereas in the second family the magnetic field is375



Numerical simulation of the Von-Kármán-Sodium dynamo experiment 15

essentially supported on the odd modes; these are called the 0-family and the 1-family376

in Nore, C. et al. (2016), respectively. In the entire section we focus on Re ≥ 1.5×103;377

hence all the Fourier modes of the magnetic field are coupled and vary in time with the378

same (growth or decay) rate in the linear dynamo regime.379

4.2. Dynamo threshold and saturation380

In this section we fix Re = 104 and explain how we estimate the dynamo threshold381

with µimp
r = 50 and the pseudo-vacuum boundary condition. We are going to use382

the same methodology for all the other cases. The onset of dynamo action is moni-383

tored by recording the time evolution of the magnetic energy in the conducting domain,384

M(t) = 1
2

∫
Ω∪Ωout

H(r, t)·B(r, t) dr = 1
2

∫
Ω∪Ωout

µ0µr|H(r, t)|2 dr, and the modal energies385

Mm(t) =
∫

Ω2D∪Ω2D
out
π|Ĥ(r,m, z, t)|2r dr dz. Linear dynamo action occurs when Mm(t) in-386

creases exponentially in time (non oscillating dynamo here) and nonlinear dynamo action387

takes place when M(t) saturates. Various MHD runs are performed with different values388

of the magnetic Reynolds number Rm. The threshold for dynamo action is obtained by389

interpolation on the growth rate between the largest magnetic Reynolds number with a390

negative growth rate and the smallest magnetic Reynolds number with a positive growth391

rate. The interpolation is done once the bracketing interval of the threshold is small392

enough to yield a reasonable estimate.393

4.2.1. Linear regime394

The time evolution of the modal magnetic energies for the Fourier modes m ∈ {0 . . . 4}395

reported in figure 10 for Rm = 50 and Rm = 150 shows that the modes m = 0 and396

m = 3 of the magnetic field are coupled; this coupling is a consequence of the pre-397

dominance of the mode m = 3 in the velocity field (see figure 9). Due to the strong398

hydrodynamical nonlinearities at this Reynolds number, Re = 104, all the Fourier modes399

of the magnetic field have the same decay or growth-rate. After estimating the de-400

cay rate at Rm = 50 and the growth rate at Rm = 150, linear interpolation shows401

that the threshold in the considered conditions is Rcm = 75 ± 5. All the thresholds on402

Rm for dynamo action with µimp
r = 50, the pseudo-vacuum boundary condition, and403

Re ∈ {2×102, 5×102, 103, 1.5×103, 2.5×102, 104, 105} are reported in table 4.404

We show in figure 11 the distribution of the modal energies Em and Mm at two different405

times for Rm = 150. Note that there is dynamo action at this magnetic Reynolds number.406

The graphs in the left panel (figure 11(a)) have been done during the linear growth of the407

magnetic field. Those in the right panel (figure 11(b)) have been obtained at saturation.408

Note that the spectrum of the magnetic energy during the linear growth resembles that of409

the kinetic energy; the Fourier modes m ∈ {0, 3} and the mode m = 8 with its harmonics410

are dominant.411

4.2.2. Nonlinear regime412

At Rm = 150 we have Rm ≈ 2×75 = 2Rcm; hence the simulation done at Rm = 150 is413

far from the threshold, and the Lorentz force is therefore strong enough to retroact on the414

velocity field in the saturated phase. Figure 11(b) shows that the small azimuthal modes415

(m ∈ {0 . . . 4}) of the velocity field and the magnetic field are indeed in competition416

at saturation (t = 1300); this can be seen also in figure 10(b) in the time interval t ∈417

[1210, 1300]. The dominant Fourier modes of the velocity in the saturated regime are now418

m ∈ {0, 1, 2} as seen in figure 12(a). The kinetic energy decreases while the magnetic419

energy increases during the time interval t ∈ [1100, 1240] as shown in figure 12(b); at420

t = 1250 both quantities have reached asymptotic values about which they fluctuate.421

The retroaction of the Lorentz force makes the torque decrease by 40%; hence driving422



16 C. Nore1, D. Castanon Quiroz2, L. Cappanera3 and J.-L. Guermond4

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

 1100  1150  1200

M
m

(t
)

t

m=0
m=1
m=2
m=3
m=4

(a) Rm = 50

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 1100  1150  1200  1250  1300

M
m

(t
)

t

m=0
m=1
m=2
m=3
m=4

(b) Rm = 150

Figure 10. Time evolution of the modal magnetic energies Mm(t) at Re = 104 with µimp
r = 50

for m ∈ {0 . . . 4}: (a) Rm = 50; (b) Rm = 150.
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mode for Re = 104 and Rm = 150: (a) in the linear phase at t = 1142; (b) in the saturation
regime at t = 1300.
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the dynamo saturated flow requires less mechanical power than driving the hydrodynamic423

base flow (see figure 12(c)).424

While the retroaction of the Lorentz force on the velocity field in turbulent flows has425

been studied in various experiments involving applied magnetic fields (see e.g. Sisan426

et al. (2003); Miralles et al. (2015)), very little is known in this respect when dynamo427
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action occurs. In the Riga experiment, an increase of about 10% of the power consump-428

tion has been measured at saturation, and a modification of the swirling profile together429

with a deceleration of the axial motion has been observed (Gailitis et al. (2003)). In430

the Karlsruhe experiment, a slow down of the axial flow has been recorded in the non-431

linear regime (Müller et al. (2004)). In the VKS2 experiment, the modification of the432

flow in the saturation regime has been too weak to be measured. Note that the range433

of magnetic Reynolds numbers that can be explored experimentally is limited by the434

mechanical power that is available; in the above three experiments dynamo action has435

been investigated only in a small neighborhood beyond the threshold.436

Although very interesting, the study of the nonlinear regime over a large range of437

parameters is numerically expensive and therefore postponed for future work.438

4.3. Impact of the magnetic permeability and boundary conditions on the threshold439

We focus in this section on the influence of various parameters on the threshold and we440

investigate the structure of the growing magnetic field.441

4.3.1. Influence of the magnetic permeability442

In this section we work with the pseudo-vacuum boundary condition enforced at the443

outer boundary of the domain Ω ∪ Ωout; this boundary condition corresponds to setting444

H×n = 0, and it is also called perfect ferromagnetic boundary condition in the litera-445

ture. We also fix the Reynolds number to Re = 1.5×103. Figures 13(a-e) show the time446

evolution of Mm(t) for the azimuthal modes m ∈ {0 . . . 4} for µimp
r = 1 and µimp

r = 5.447

When µimp
r = 1 and near criticality, the behavior of the magnetic field shows a compe-448

tition between the modes m = 0 and m = 1 (Rm = 100, 200 in figures 13(a-b)). Well449

above the threshold, say at Rm = 300 and beyond, we recover the same dynamics as that450

obtained when µimp
r is larger; that is, the axisymmetric magnetic field is dominant and it451

is preferentially coupled to the mode m = 3 through the velocity field. The threshold for452

µimp
r = 1 is estimated to be Rcm = 190±10. The threshold for µimp

r = 5 is estimated to be453

Rcm = 170±5. This value is slightly higher than the value Rcm ≈ 130 reported in Nore, C.454

et al. (2016). The likely origin of the discrepancy is that for the present simulations the455

initial seed for the magnetic field is H0 = 10−6(ez+ex) plus a random noise of amplitude456

5×10−7 on all the Fourier modes m ≥ 1 of H0 and the integration time is longer. Hence457

the present estimation is probably more accurate. It seems that for small values of µimp
r ,458

typically µimp
r ≤ 5, the dynamics is more complicated and involves interactions between459

modes that depend on the level of the nonlinearities implicated. The key observation460

here is that the axisymmetric mode is reinforced when µr is large. This in turn gives a461

clearer decay or growth rate and consequently makes it easier to estimate the threshold.462

The largest value of the relative permeability used in the present paper is µimp
r = 50.463

4.3.2. Influence of the boundary conditions464

To test the influence of boundary conditions, we now enlarge the computational domain465

by adding an insulator around the VKS2 container (air or vacuum). The outer boundary466

of the computational domain is now a sphere centered at the origin and of radius 10. The467

magnetic field in the insulator is represented as the gradient of a scalar potential like468

in Guermond et al. (2009) and this potential is enforced to be zero on the outer sphere.469

This configuration is a better representation of the actual experiment than that with the470

pseudo-vacuum boundary condition, but it is computationally more expensive.471

We show in figure 14 the time evolution of the magnetic energy at Re = 1.5×103 for the472

Fourier modes m ∈ {0 . . . 4} with µimp
r = 1 (panels (a-b)) and with µimp

r = 50 (panels (c-473

d)). These computations have been done with the vacuum boundary condition. The seed474



18 C. Nore1, D. Castanon Quiroz2, L. Cappanera3 and J.-L. Guermond4

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

 750  800  850  900  950

M
m

(t
)

t

m=0
m=1
m=2
m=3
m=4

(a) Rm = 100, µimp
r = 1

10
-13

10
-12

10
-11

10
-10

 750  800  850  900  950  1000

M
m

(t
)

t

m=0
m=1
m=2
m=3
m=4

(b) Rm = 200, µimp
r = 1

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

 750  800  850  900  950  1000

M
m

(t
)

t

m=0
m=1
m=2
m=3
m=4

(c) Rm = 300, µimp
r = 1

10
-13

10
-12

10
-11

10
-10

10
-9

 700  800  900  1000  1100  1200  1300

M
m

(t
)

t

m=0
m=1
m=2
m=3
m=4

(d) Rm = 150, µimp
r = 5
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Figure 13. Time evolution of Mm(t) at Re = 1.5×103 with pseudo-vacuum BC for
m ∈ {0 . . . 4}: (a-c) Rm ∈ {100, 200, 300} and µimp

r = 1; (d-e) Rm ∈ {150, 200} and µimp
r = 5.
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(d) Rm = 150, µimp
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Figure 14. Time evolution of Mm(t) at Re = 1.5×103 with vacuum BC for m ∈ {0 . . . 4}:
(a-b) Rm ∈ {150, 300} and µimp

r = 1; (c-d) Rm ∈ {50, 150} and µimp
r = 50.

for the magnetic field is H0 = 10−6ex plus a random noise of amplitude 5×10−7. We475

removed the axial component of the seed to convince ourselves unequivocally that the476

axial component of the axisymmetric mode grows above the dynamo threshold.477

For µimp
r = 1, the two Fourier modes m = 1 and m = 2 compete below and above the478

threshold. The threshold in this case is larger than when the pseudo-vacuum boundary479

condition is imposed. We obtain here Rcm = 310 ± 30 whereas we had Rcm = 190 ± 10480

with the pseudo-vacuum boundary condition. The increase is roughly 60%. The magnetic481
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B.C. µimp
r Rcm Dominant mode Figure

H×n = 0 1 190± 10 0, 1 fig. 13(a-c)
H×n = 0 5 170± 5 0, 1 fig. 13(d-e)
H×n = 0 50 90± 5 0 fig. 6 in Nore, C. et al. (2016)
vacuum 1 310± 30 1 figs 14(a-b) & 15(a-b)
vacuum 50 130 ±10 0 figs 14(c-d) & 15(c-d)

Table 3. Magnetic thresholds Rcm for Re = 1.5×103. “H×n = 0” means pseudo-vacuum bound-
ary condition and “vacuum” means that a larger integration domain with a non-conducting
domain around the outer cylinder is used.

field is mainly supported on the Fourier modes m = 1 and m = 2 with a complex three-482

dimensional structure as shown on figure 15(a-c).483

For µimp
r = 50 the threshold is estimated to be at Rcm = 130 ± 10 (figure 14(c-d)).484

Inspection of figure 14(d) reveals that at Rm = 150 the Fourier mode m = 1 decreases485

in time, while the modes m = 0 and m = 3 increase and pull in their wake the other486

modes for t ≥ 850. This scenario is reminiscent of the crossing of the modes m = 1 and487

m = 0 discussed in Boisson and Dubrulle (2011). The present simulations show that488

the magnetic field is not purely axisymmetric since a significant portion of the magnetic489

energy is carried by the Fourier mode m = 3. We will examine the relative importance490

of the non-axisymmetric modes in section 4.5. As shown in figure 15(d-f) the growing491

magnetic field is mainly an axial dipole with an azimuthal component approximately492

even in z. The structure of the instantaneous and average magnetic field (fig. 15(d-e)) is493

similar to the one obtained with the pseudo-vacuum boundary condition (see fig. 17(a-494

b)). This structure is also compatible with the measurements of the magnetic field made495

at saturation during the dynamo regime obtained in the VKS2 configuration with soft496

iron impellers and a copper container (see figure 6b in Boisson et al. (2012)).497

When one compares the estimations of the threshold using µimp
r = 50 and the pseudo-498

vacuum boundary condition, Rcm = 90 ± 5, with that obtained with µimp
r = 50 and the499

vacuum boundary condition, Rcm = 130±10, we observe a 40% increase. This dependence500

of the dynamo threshold on the boundary condition is compatible with the observation501

made in Guermond et al. (2011a); Gissinger et al. (2008) using kinematic dynamo simu-502

lations. It is shown in these references that the perfect ferromagnetic boundary condition503

decreases the dynamo threshold, the minimum being achieved when this boundary condi-504

tion is enforced over the entire boundary of the container. This is explained by a screening505

mechanism of the walls. The present full MHD simulations show the same trend.506

The data collected in table 3 lead to the conclusion that using the ferromagnetic bound-507

ary condition on the external boundary of the container and using ferromagnetic material508

for the impeller with a large value of the magnetic permeability decreases the dynamo509

threshold and enhances the axisymmetric component of the magnetic field produced by510

the dynamo effect.511

4.4. Threshold at µimp
r = 50 vs. Re512

We put ourselves in this section in the most favorable configuration for dynamo action513

to occur: we enforce the ferromagnetic boundary condition on the external boundary of514

the container and we use µimp
r = 50. We now investigate the evolution of the critical515

magnetic Reynolds number as a function of the kinetic Reynolds number.516

We have reported in Figure 16(a) the estimated value of Rcm for Re ∈ {5×102, 1.5×103,517

2.5×103, 104, 105}. The critical magnetic Reynolds number seems to tend to an asymp-518
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(a) H(t), Rm=300, µimp
r =1 (b) H, Rm=300, µimp

r =1 (c) Mag. lines, Rm=300, µimp
r =1

(d) H(t), Rm=150, µimp
r =50 (e) H, Rm=150, µimp

r =50 (f) Mag. lines, Rm=150, µimp
r =50

Figure 15. Magnetic field from full MHD simulations in the TM73 VKS2 configuration at
Re = 1.5×103 with vacuum BC: (a-b) Rm = 300, µimp

r = 1, instantaneous and time averaged
magnetic field in Ωc; (c) Rm = 300, µimp

r = 1, magnetic field lines in the whole domain; (d-e)
Rm = 150, µimp

r = 50, instantaneous and time averaged magnetic field in Ωc; (f) Rm = 150,
µimp
r = 50, magnetic field lines in the whole domain. In (a,b,d,e) arrows represent in-plane
{Hy, Hz} vectors and color represents the out-of-plane component Hx.

Re 5×102 1.5×103 2.5×103 104 105

Rcm 135∗ ± 5 90∗ ± 5 85± 5 75± 5 70± 5
P cm ≈ 0.27∗ ≈ 0.06∗ ≈ 0.034 7.5×10−3 7×10−4

Table 4. Magnetic thresholds Rcm and critical magnetic Prandtl numbers Pm
c for µimp

r = 50
versus fluid Reynolds number Re. Asterisk designates values from Nore, C. et al. (2016).

totic value Rcm∞ as the kinetic Reynolds number tends to infinity. To better quantify519

this observation we represent in figure 16(b) in log-log scale the difference Rcm−Rcm∞ as520

a function of Re, with Rcm∞ = 68.8, and we compare our numerical estimations with the521

ansatz Rcm−Rcm∞ = 4100/R0.7
e . The match is excellent. But we must stay realistic since522

we have fitted five points with three somewhat ad hoc constants: 0.7, 68.8, and 4100. Nev-523

ertheless, recalling the definition Rm := µ0σ2πfR2
cyl, it is remarkable that Rcm∞ = 68.8524

is in the range [52, 71] where dynamo action has been observed in the VKS2 experiment,525

as explained in section 2.1.526
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Figure 16. (a) Rcm vs. Re in log-lin; (b) Rcm −Rcm∞ vs. Re in log-log using the fit 4100/R0.7
e .

Assuming, as suggested by the results reported in table 3, that going from µimp
r ≈ 50527

to µimp
r = 1 doubles the threshold for dynamo action (uniformly in Re), we conjecture528

that the asymptotic limit Rcm∞ for µimp
r = 1 is roughly 68.8×2 ≈ 138. The estimate529

of the threshold obtained experimentally by measurements of the decay time in this530

configuration (run O in figure 6 of Miralles et al. (2013), Table I, and definition of Rm531

at line -12, page 8) gives Rcm ' 110, which is in good agreement with our conjecture532

considering that the ferromagnetic walls in run O are closer to the impellers than in our533

computations.534

4.5. Shape of the magnetic field vs Re535

We continue with the pseudo-vacuum boundary conditions and µimp
r = 50. Figures 17536

and 18 show the instantaneous and the time averaged magnetic fields obtained at sat-537

uration in the dynamo regime at Re = 1.5×103 and Re = 105, respectively. Note that538

the instantaneous magnetic field at Re = 105 shows bursts near the impellers, although539

the time averaged magnetic field for Re = 1.5×103 and Re = 105 are similar. Note also540

that the time averaged magnetic vector field in the yOz plane is not strictly symmetric541

with respect to the Oz axis. The ratio of the non-axisymmetric magnetic energy to the542

total magnetic energy is about 11% for Re = 1.5×103, Rm = 150, and it is about 18%543

for Re = 105, Rm = 100. This little departure from axisymmetry gives a wavy shape to544

the magnetic field streamlines as shown in figure 17(c) and figure 18(c). The dominant545

non-axisymmetric Fourier mode of the magnetic field is m = 3 as shown in figures 17(d-e)546

and 18(d-e).547

Although the flows at Re = 1.5×103 and Re = 105 are quite different, the time aver-548

aged magnetic fields produced by dynamo action are very similar: compare figure 17(b)549

and figure 18(b). This observation leads us to conjecture that the time averaged mag-550

netic field should have the same shape for the actual Reynolds number Re ≈ 5×106.551

At least the axisymmetric shape in figure 17(b) and figure 18(b) is similar to the one552

reconstructed in fig. 6(b) in Boisson et al. (2012). Of course, the scarcity of experimen-553

tal data (gaussmeters on a few lines) gives little information on the non-axisymmetric554

components.555

5. Simplified models556

Upon observing that the spectrum of the growing magnetic field is dominated by the557

azimuthal Fourier modes m = 0 and m = 3 (see figure 11(a)), one may wonder if the558

dynamo effect is associated with the 3 co-rotating vortices localized in the equatorial559
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(a) Instantaneous magnetic field (b) Time averaged magnetic field

(c) Magnetic field lines (d) Isosurface of ‖H‖ magnitude (e) Slice at z = 0 of Hz

Figure 17. Magnetic field from full MHD simulations in the TM73 VKS2 configuration in the
saturated regime at Re = 1.5×103, Rm = 150 and µimp

r = 50, pseudo-vacuum BC: (a)-(b)
Arrows represent in-plane {Hy, Hz} vectors, color represents the out-of-plane component Hx,

the cylinder axis is in the middle. (From Nore, C. et al. (2016)); (c) Magnetic field lines of H

colored by Hz; (d) Isosurface of 50% of the maximum amplitude of ‖H‖ and cut at z = 0 for

{r ≤ 1.6}; (e) Cut at z = 0 from top view colored by Hz (the inner cylinder of radius r = 1 is
indicated in light grey, the outer radius is 1.6).

shear layer or if the ferromagnetic impeller is the key ingredient as discussed in Pétrélis560

et al. (2007); Laguerre et al. (2008); Gissinger et al. (2008). To try to answer this question,561

we first perform kinematic dynamo computations using the time average of the velocity562

field obtained at Re = 105 and shown in figure 4. Then, we take a closer look at the563

structure of the electrical current that is generated by dynamo action in the full MHD564

simulations.565

5.1. Kinematic dynamo using the time averaged velocity field at Re = 105
566

A kinematic dynamo simulation is done by solving only the induction equation (2.1b)567

and by using the time averaged velocity field obtained at Re = 105; this field is shown in568

figure 4. The time averaged velocity field is not axisymmetric and therefore may sustain569

an axisymmetric magnetic field since Cowling’s theorem does not apply. We also use flat570

ferromagnetic disks with µimp
r = 50 and we impose the boundary condition H×n = 0 on571

the outer wall of the container.572

We perform simulations with Rm ∈ [50, 200] and find that the Fourier modes m ∈573

{1, 2, 4} can grow while the modes m ∈ {0, 3} always decrease. The dynamo threshold is574

Rcm ≈ 120± 5 and the growing magnetic field has a strong Fourier component supported575

on the mode m = 1. This unstable eigenmode has the shape of an equatorial dipole576

with two opposite axial structures (see figure 19). This magnetic field is similar to the577
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(a) Instantaneous magnetic field (b) Time averaged magnetic field

(c) Magnetic field lines (d) Isosurface of ‖H‖ magnitude (e) Slice at z = 0 of Hz

Figure 18. Same as figure 17 with Re = 105, Rm = 100 and µimp
r = 50.

one obtained using the time and azimuth averaged flow measured in a von Kármán578

experiment done in water (see e.g. Ravelet et al. (2005); Guermond et al. (2011a)).579

Once we take into account a velocity factor that has been applied to the dimensionless580

maximum value of the velocity (between 0.6 and 0.75), the threshold Rcm ≈ 120 is in the581

range of those published in the above references; for instance 43/0.75 ≤ Rcm ≤ 180/0.6582

in Ravelet et al. (2005) and 40/0.75 ≤ Rcm ≤ 82/0.6 in Guermond et al. (2011a).583

The main point of the present discussion is that the kinematic dynamo computation584

realized with the time-averaged velocity field obtained at Re = 105 gives a dynamo that585

is totally different from the one obtained with the full velocity field since it is mainly586

supported on the Fourier mode m = 1. Therefore the mainly axisymmetric magnetic field587

shown in figure 18 cannot be attributed to the time averaged velocity field only.588

5.2. Shape of the electric current vs. Re589

We now focus our attention on the electric current produced by the full MHD dynamo.590

Figures 20(a-b) show the electric current associated to the time averaged magnetic field591

computed at Re = 1.5×103 with Rm = 150; figures 20(c-d) show the electric current592

associated to the time averaged magnetic field computed at Re = 105 with Rm = 100. In593

both cases we use µimp
r = 50. The current distribution shows large scale meridian loops.594

The current lines close to the axis have the shape of a left-handed helix going downwards;595

the current is mainly radial in the disks (flowing outwards in the bottom disk and inwards596

in the top disk); it is mainly vertical and flows upwards in the copper wall (jz is positive in597

fig. 20(b-d) in the ring {1.4 ≤ r ≤ 1.6; z = 0}). It also forms smaller meridian loops near598

the blades. The poloidal component of the current ({jr, jz} in the copper wall and near599

the blades) generates the toroidal Hθ field, while the toroidal jθ component of the twisted600

helical current lines near the axis creates the axial Hz magnetic field. This organization601
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(a) Plane yOz (b) Isosurface of ‖H‖ magnitude

Figure 19. Magnetic field from kinematic dynamo simulations using the time averaged velocity
field at Re = 105 with Rm = 150 and µimp

r = 50: (a) arrows represent in-plane {Hy, Hz} vectors,
color represents the out-of-plane component Hx, the cylinder axis is in the middle; (b) isosurface
of the magnetic magnitude (colored by the Hz component: red for upward direction and green
for downward direction) at 30% of the maximum with magnetic vector fields.

of the current evokes the disk-dynamo of Bullard (1955) with two disks (instead of one602

only). The radial current in the bottom disk is collected in the copper walls, injected in603

the top disk, and flows from the top disk to the bottom disk in a left-handed helix. The604

left-hand twist of the current lines in the bulk near the cylinder axis is induced by the605

flow of liquid sodium. Figure 21(a) shows the current lines colored by ‖j‖. The current606

amplitude is strong near the axis. A schematic representation of the double-disk Bullard607

dynamo is shown in Figure 21(b).608

6. Summary and discussion609

The main outcomes of the present paper are the following points:610

(a) The hydrodynamic computations using the entropy-viscosity-based LES technique611

give results in agreement with the experimental data at high Reynolds numbers. The612

global experimental and numerical kinetic quantities behave similarly when Re increases.613

The modal spectrum of the kinetic energy is dominated by the azimuthal Fourier modes614

m ∈ {0, 2} for Re < 700 and m ∈ {0, 3} for larger Re. At Re = 105, the modal spectrum615

behaves like m−5/3 when m is large. In the physical space, the leading Fourier mode616

m = 2 found at Re = 5×102 corresponds to the wavy bifurcation reported in Ravelet617

et al. (2008). At larger Re, the Fourier mode m = 3 is related to the three radial co-618

rotating vortices localized near the equatorial shear layer as observed by Cortet et al.619

(2009) in a von Kármán experiment using water.620

(b) The full MHD computations show that, at fixed Re, increasing the relative mag-621

netic permeability of the impellers and/or using ferromagnetic material at the outer622

boundaries of Ω∪Ωout decreases the threshold (using the pseudo-vacuum B.C. is equiva-623

lent to adding a material with infinite permeability at the boundary). The ferromagnetic624

impellers enhance the axisymmetric magnetic field (Giesecke et al. (2012)) and ferro-625

magnetic outer walls confine the magnetic field inside the vessel. At fixed µr, increasing626

the kinetic Reynolds number also reduces the threshold. Moreover, the overall shape of627

the critical magnetic field averaged in time barely changes between Re = 1.5×103 and628

Re = 105 as shown in figures 17 and 18. This robustness with respect to the kinetic629

Reynolds number may explain why the magnetic field that we computed is in very good630

agreement with the mainly axisymmetric magnetic field that has been experimentally ob-631
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(a) Current lines, Re = 1.5×103, Rm = 150 (b) jz over {z = 0}, Re = 1.5×103, Rm = 150

(c) Current lines, Re = 105, Rm = 100 (d) jz over {z = 0}, Re = 105, Rm = 100

Figure 20. Electric current field from time averaged magnetic field, µimp
r = 50: (a-b)

Re = 1.5×103, Rm = 150; (c-d) Re = 105, Rm = 100; (a-c) Streamlines of the current j = ∇×H
colored by the magnitude of ‖H‖; (b-d) Current streamlines colored by the magnitude of ‖H‖
and slice at {z = 0} colored by jz.

(a) Current field lines (b) Schematic

Figure 21. Current streamlines colored by the magnitude of ‖j‖ and schematic of the dominant
current field lines giving rise to the predominant axisymmetric time-averaged magnetic field of
figure 18.

served at much higher Reynolds numbers (compare fig. 17(b) and fig.18(b) with fig. 6(b)632

in Boisson et al. (2012)).633

(c) Using ferromagnetic boundary conditions and µimp
r = 50, we have found that the634

critical magnetic Reynolds number scales like Rcm−Rcm∞ ≈ 4100/R0.7
e with Rcm∞ = 68.8.635

This value is in the range 46 ≤ Rcm ≤ 74 where dynamo action has been observed in the636

VKS2 setup (see Table I in Miralles et al. (2013)). This scaling suggests that the small637
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scales of turbulence do not seem to intervene in the dynamo mechanism at high Re638

numbers. The behavior of Rcm with respect to Re that we observed is somewhat at odd639

with other computations using simplistic forcings like Iskakov et al. (2007); Ponty et al.640

(2007); Reuter et al. (2011); Ponty and Plunian (2011). In all these simulations the641

critical magnetic Reynolds number has a non monotonic behavior with respect to Re. It642

first increases with Re, then either reaches a plateau or decreases after some intermediate643

value of Re in the range [200, 1500]. Finally, it is suggested in Ponty and Plunian (2011)644

that “it is the mean flow which plays the most important role in the field generation even645

though it is 40% less intense than the fluctuations”. As shown in figure 9, the azimuthal646

Fourier modes m ∈ {0, 3} of the velocity contain most of the total kinetic energy at all the647

kinetic Reynolds numbers we have explored (the smallest being Re = 500). For instance648

these two modes contain about 75% of the total kinetic energy at Re = 105. However649

the kinematic computations of section 5.1 have proved that the mean flow (averaged in650

time but not in space, therefore with non-axisymmetric features) gives a dynamo with651

a magnetic field mainly supported by the Fourier mode m = 1 as already reported in652

the literature by us and others using an experimental time and azimuthally averaged653

velocity field. Therefore the VKS2 dynamo cannot be attributed to the mean flow. This654

argument shows that the disks play a major role.655

To conclude, our simulations at high Re numbers confirm that the ferromagnetic im-656

pellers are crucial to reduce the dynamo threshold and to obtain the predominantly657

axisymmetric dynamo mode observed in the VKS2 experimental setup. Looking at Fig-658

ure 21, where a schematic representation of the path followed by the electrical current is659

shown, let us imagine a vertical magnetic seed pointing upwards near one rotating im-660

peller. By Ω-effect, the differential rotation of the impeller generates a toroidal magnetic661

field nearby the disk. This toroidal field is associated with a radial current (jr ≈ −∂zHθ)662

flowing outward in the bottom impeller and inward in the top one. The current circulates663

from the bottom impeller to the top one through a large scale loop inside the copper664

wall. Near the axis of the vessel the current flows downwards and the current lines are665

twisted by the flow in a way that regenerates the initial vertical field. This is the Bullard666

dynamo loop (Bullard (1955)) with the Ω-effect due to the disks and the twisting-effect667

due to the flow.668
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L. Marié, C. Normand, and F. Daviaud. Galerkin analysis of kinematic dynamos in the von757
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dynamo: saturation, energy balance and subcriticality. Journal of Fluid Mechanics, 775:763

501523, 2015.764

H. Moffatt. Magnetic Field Generation in Electrically Conducting Fluids. Cambridge Mono-765

graphs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge,766

UK, 1978.767

R. Monchaux, M. Berhanu, M. Bourgoin, P. Odier, M. Moulin, J.-F. Pinton, R. Volk, S. Fauve,768
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