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Introduction

Dynamo action, i.e. the self-amplification of a magnetic field by the flow of an electrically conducting fluid, is considered to be the main mechanism for the generation of the magnetic fields of stars and planets [START_REF] Moffatt | Magnetic Field Generation in Electrically Conducting Fluids[END_REF]). In order to gain a better understanding of the processes at play, different experimental groups have investigated dynamo action [START_REF] Peffley | Toward a self-generating magnetic dynamo: The role of turbulence[END_REF]; [START_REF] Nornberg | Measurements of the magnetic field induced by a turbulent flow of liquid metal[END_REF]; [START_REF] Frick | Direct measurement of effective magnetic diffusivity in turbulent flow of liquid sodium[END_REF]; [START_REF] Colgate | High magnetic shear gain in a liquid sodium stable couette flow experiment: A prelude to an α -Ω dynamo[END_REF]) but so far only three experiments have been succesful: [START_REF] Gailitis | Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility[END_REF]; [START_REF] Sisan | Experimental demonstration of a homogeneous two-scale dynamo[END_REF]; [START_REF] Monchaux | Generation of magnetic field by a turbulent flow of liquid sodium[END_REF]. These three experiments were all performed in liquid sodium. The first two experiments used optimized flows guided by pipes that intentionally limited the influence that turbulence could have on the dynamo process. The experimentalists found dynamo action with a magnetic field having a shape corresponding to the one predicted by using kinematic dynamo computations based on analytical flows. The third dynamo has been observed in the Von-Kármán-Sodium experiment (VKS) located in Cadarache: in 2006 experimentalists observed a magnetic field generated by a turbulent flow produced by two counter-rotating impellers in a cylindrical vessel. It has been found that both the geometry and the material composing the impellers play a crucial role on the dynamo action threshold: for example, at fixed available mechanical power, dynamo action occurs only when at least one of the rotating impellers is made of soft iron [START_REF] Miralles | Dynamo threshold detection in the von Kármán sodium experiment[END_REF]). When the two soft iron impellers counterrotate at the same angular velocity, another puzzling observation is that the generated magnetic field is statistically steady and mainly axisymmetric with an axial dipole and a strong azimuthal component located near the impellers [START_REF] Boisson | Symmetry and couplings in stationary von Kármán sodium dynamos[END_REF]). This magnetic field could not be predicted by using simplified axisymmetric geometries and velocity fields averaged in azimuth and time: kinematic dynamo simulations usually give an equatorial dipole superimposed with two anti-parallel vertical magnetic structures near the vessel axis (see e.g. [START_REF] Ravelet | Towards an experimental von Kármán dynamo : numerical studies for an optimized design[END_REF]; [START_REF] Marié | Galerkin analysis of kinematic dynamos in the von Kármán geometry[END_REF]; [START_REF] Laguerre | Effects of conductivity jumps in the envelope of a kinematic dynamo flow[END_REF]; [START_REF] Gissinger | Effect of magnetic boundary conditions on the dynamo threshold of von Kármán swirling flows[END_REF]; Guermond et al. (2011a)).

It is clear that the nature of the material composing the impellers greatly influences the transmission conditions enforced on the magnetic field, and that the geometry of the impellers controls the dynamics of the tip vortices generated between the blades [START_REF] Ravelet | Kinematic alpha tensors and dynamo mechanisms in a von Kármán swirling flow[END_REF]; [START_REF] Kreuzahler | Numerical study of impellerdriven von Kármán flows via a volume penalization method[END_REF]). But a precise experimental investigation of the influences of the material properties and the blade geometry is not feasible due to the lack of accurate techniques such as non-intrusive gaussmeters or PIV measurements in liquid metals. It is natural then to turn to computer simulations to gain some insight into the VKS experiment. After more than 15 years of algorithmic and code development in MHD, we announce in the present paper that we are now capable of simulating a realistic three-dimensional turbulent flow of liquid sodium that generates a magnetic field that is mainly axisymmetric and similar to the one observed in the experiment. In addition to massive parallelism, the key algorithmic factors that lead us to this result are the development of a robust Large Eddy Simulation technique (Guermond et al. (2011b)) and the use of pseudo-penalty method [START_REF] Pasquetti | A pseudo-penalization method for high Reynolds number unsteady flows[END_REF]) to represent realistic counter-rotating impellers. Early results on the Von-Kármán-Sodium experiment obtained by direct numerical simulations of the incompressible, fully nonlinear, magnetohydrodynamic equations were announced in [START_REF] Nore | Direct numerical simulation of the axial dipolar dynamo in the von krmn sodium experiment[END_REF]. In the present paper we go far beyond the range of kinetic Reynolds numbers attained in the above reference.

Our main result is that the critical magnetic Reynolds number decreases as the kinetic Reynolds number increases and this number seems to converge to a constant in the vanishing viscosity limit. We also confirm that, everything else being fixed, the critical magnetic Reynolds decreases as the magnetic permeability of the impellers increases.

The paper is organized as follows. The setup of the 2006 VKS2 experiment together with the relevant parameters is shortly presented in section 2. The governing equations and the numerical methods that are used to solve them are also briefly described.

Section 3 presents hydrodynamical simulations performed for a large range of kinetic Reynolds numbers. Dynamo action is studied in section 4. The impact of the relative magnetic permeability of the impellers and of the boundary conditions is studied. The dynamo threshold is determined for a large range of kinetic Reynolds numbers; it decreases as the kinetic Reynolds number increases and it seems to reach an asymptotic value in the vanishing viscosity limit. The structure of the generated magnetic field shows a striking similarity with the one observed in the VKS2 experiment in all of the cases investigated. Key ingredients for dynamo action in the VKS2 setup are identified in section 5. It is shown in particular in this section that kinematic dynamo computations using the time averaged velocity field computed at high fluid Reynolds number give a non-axisymmetric magnetic field similar to the one obtained from simplified time averaged and azimuthally averaged velocity field, but this dynamo is very different from the one observed in VKS2 experiment. Concluding remarks are reported in section 6 and a tentative scenario is proposed.

Technical preliminaries

In the present paper we simulate numerically the VKS2 experiment with the flow driven by the TM73 impellers (for Turbine Métallique, meaning Metal Impeller in French) (see figure 2 and [START_REF] Monchaux | Generation of magnetic field by a turbulent flow of liquid sodium[END_REF]). We begin by describing the geometry. Then we present the governing equations and the algorithms that are used in our MHD code [START_REF] Guermond | An interior penalty Galerkin method for the MHD equations in heterogeneous domains[END_REF][START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a Fourier/finite element technique and an interior penalty method[END_REF](Guermond et al. ( , 2011a))).

Experimental setup and data

The VKS2 setup described in [START_REF] Monchaux | Generation of magnetic field by a turbulent flow of liquid sodium[END_REF] The vessel contains about 150 liters of liquid sodium heated at 120 • C. The kinematic viscosity is ν = 6.78×10 -7 m 2 s -1 , the density is ρ = 932 kgm -3 and the electrical conductivity is σ = 9.6 × 10 6 S m -1 . The corresponding magnetic Prandtl number is P m = µ 0 σν = 0.82×10 -5 . The impellers counter-rotate at a frequency f , the experimental range of frequencies necessary for observing dynamo action is 16 Hz ≤ f ≤ 22 Hz, leading to kinetic Reynolds numbers in the range 6.3×10

6 ≤ R e = 2πf R 2 cyl ν ≤ 8.7×10 6
and magnetic Reynolds numbers in the range 52

≤ R c m = µ 0 σ2πf R 2 cyl ≤ 71.
At maximum available mechanical power, dynamo has been observed with soft iron impellers (made of ferromagnetic material of relative magnetic permeability of the order of 50, Verhille et al. ( 2010)) but not with stainless steel ones [START_REF] Miralles | Dynamo threshold detection in the von Kármán sodium experiment[END_REF]).

SFEMaNS

To investigate the hydrodynamic and magnetohydrodynamic regimes of the above experimental setup, we use a MHD code called SFEMaNS. This code uses a hybrid spatial discretization combining spectral and finite elements. In a nutshell we use a Fourier decomposition in the azimuthal direction and the continuous Hood-Taylor Lagrange elements P 1 -P 2 for the pressure and velocity fields in the meridian section. Modulo the computations of nonlinear terms with FFT, the linear problems for each Fourier mode in the meridian section are uncoupled and are thereby easily parallelized by using MPI.

The solution of the linear problems in the meridian section is further parallelized by using METIS [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF]) for the domain decomposition, and PETSc (Portable, Extensible Toolkit for Scientific Computation, [START_REF] Balay | PETSc users manual[END_REF]) for the linear algebra. For the magnetic part, the algorithm solves the problem using the magnetic 2013)). The coupling between conducting and insulating media is done by using an interior penalty method. SFEMaNS has been thoroughly validated on numerous manufactured solutions and against other MHD codes (see e.g. [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a Fourier/finite element technique and an interior penalty method[END_REF]; [START_REF] Giesecke | Influence of high-permeability discs in an axisymmetric model of the Cadarache dynamo experiment[END_REF]; [START_REF] Nore | Direct numerical simulation of the axial dipolar dynamo in the von krmn sodium experiment[END_REF]). The reader who is familiar with the numerical details or is not interested in such details is now invited to jump to section 3.

Governing equations

Let us now go into some details about the equations that are actually solved in SFEMaNS.

The MHD equations are solved in non-dimensional form as follows:

∂ t u = -(∇×u) × u + 1 Re ∆u -∇p + f, (2.1a) ∂ t B = ∇×(u×B) -1 Rm ∇× 1 σr ∇× 1 µr B , (2.1b) ∇•u = 0, (2.1c) ∇•B = 0, (2.1d )
where u is the velocity field, B the magnetic induction field (with the magnetic field H = B/µ 0 µ r ), p the pressure field, and σ r , µ r are the relative conductivity and permeability of the various materials in presence. The Navier-Stokes and the Maxwell equations are coupled by the Lorentz force f = (∇×H)×B.

In the present situation the reference length L ref is set to R cyl . The computational domain for the hydrodynamic study is

Ω = {(r, θ, z) ∈ [0, 1] × [0, 2π) × [-1, 1]}. The computational domain for the MHD study is the larger cylinder Ω ∪ Ω out with Ω out = {(r, θ, z) ∈ [1, 1.6] × [0, 2π) × [-1, 1]}.
Denoting by σ 0 the electrical conductivity of the liquid sodium, ρ its density, and µ 0 the magnetic permeability of vacuum, the magnetic induction is made non-dimensional by using the Alfvén scaling B = U √ ρµ 0 , with U = ωR cyl where ω is the angular velocity of the impellers. The two governing parameters are R m = µ 0 σ 0 R 2 cyl ω, the magnetic Reynolds number, and R e = R 2 cyl ω/ν, the kinetic Reynolds number, with ν the kinematic viscosity of the fluid.

Note that the parameters σ r , µ r are not constant since the walls and the impellers are made of different materials like copper, steel and soft iron. Specifically, we take

σ r = 1, µ r = 1 in the region {(r, θ, z) ∈ [1, 1.4] × [0, 2π) × [-1
, 1]} to represent the lateral layer of stagnant liquid sodium, and σ r = 4.5,

µ r = 1 in {(r, θ, z) ∈ [1.4, 1.6] × [0, 2π) × [-1, 1]}
to model the lateral copper wall. In the induction equation (2.1b) we take u |Ωout = 0. At the exception of section 4.3 where we study the impact of the so-called vacuum boundary condition, in the entire paper we impose the perfect ferromagnetic boundary condition H×n = 0 at the boundary of the computational domain. We shall also refer to this condition as the pseudo-vacuum boundary condition. This boundary condition allows us to save memory and CPU time.

Moving domains

To distinguish the liquid sodium from the impellers, the cylinder Ω is split into a solid domain Ω solid (t) (composed of the rotating impellers) and a fluid domain Ω fluid (t), and we introduce the characteristic function χ defined in cylindrical coordinates by:

χ(r, θ, z, t) = 1 if (r, θ, z) ∈ Ω fluid (t) 0 if (r, θ, z) ∈ Ω solid (t).
(2.2)

In our case χ = 0 in the impellers (see figure 1). Note that both Ω solid (t) and Ω fluid (t) are time-dependent. It is not possible to find a frame of reference where these domains are time-independent since the impellers move with opposite angular velocities. The ensuing main difficulty is to approximate the Navier-Stokes equations in a time and θ-dependent domain and to force the velocity in the solid domain Ω solid (t) to be that of two solid bodies in rotation. This is achieved by using a prediction-correction method of [START_REF] Guermond | On the error estimates for the rotational pressure-correction projection methods[END_REF] and a pseudo-penalty technique of [START_REF] Pasquetti | A pseudo-penalization method for high Reynolds number unsteady flows[END_REF]. Let τ be the time step and let us generically denote by f n the approximation of f (nτ ). The velocity is then updated by using the following scheme:

3u n+1 2τ - 1 R e ∆u n+1 = -∇p n + (1 -χ n+1 ) 3u n+1 obst 2τ + χ n+1 4u n -u n-1 2τ -∇( 4ψ n -ψ n-1 3 ) -(∇×u * ,n+1 ) × u * ,n+1 + f n+1 , (2.3)
where u * ,n+1 = 2u nu n-1 and, using cylindrical coordinates, u obs is the velocity of the disks and blades defined for all n ≥ 0 by:

u n obs (r, θ, z) = -re θ if z > 0, re θ if z ≤ 0.
(2.4)

The pressure increment ψ n+1 is obtained by solving the following Poisson problem:

∆ψ n+1 = 3 2τ ∇•u n+1 . (2.5)
The pressure is finally updated as follows:

p n+1 = p n + ψ n+1 - 1 R e ∇•u n+1 . (2.6)
Note that the velocity and the pressure are solutions of the Navier-Stokes equations when χ = 1, i.e., in the fluid domain Ω fluid (t). When χ = 0, i.e., in Ω solid (t), the momentum equation reduces to 3u n+1 2τ -1 Re ∆u n+1 = -∇p n + 3u n+1 obst 2τ ; to first order in τ , the solution is u = u obs +O τ Re . Note that the higher the kinetic Reynolds number, the more accurate the method. There are two situations for the initialization of the above algorithm. Either we start from rest, and in this case all the quantities required at n = 0 are set to zero, or we restart from a previous computation, and in this case all the quantities required to restart are taken from the previous computation.

The second difficulty we face is that the material properties in the computational frame depend on the azimuthal angle and time due to the presence of the rotating blades. This is not a serious issue for the conductivity σ r since the conductivity of the impellers and the liquid sodium are not very different; for the sake of simplicity we take σ r = 1 in the impellers and in the liquid sodium. But to account for the heterogenities of the magnetic permeability, we allow µ r to depend on all the space and time variables, i.e., µ r = µ r (r, θ, z, t). More precisely, letting µ imp r be the relative permeability of the impellers and recalling that µ r = 1 in the liquid sodium, we set

µ r (r, θ, z, t) = χ(r, θ, z, t) + (1 -χ(r, θ, z, t))µ imp r .
(2.7)

In order to make the linear algebra in the induction equation time-independent, and to avoid the nonlinearity in θ induced by the product 1 µr B, we split the diffusion term by setting B µr = B µr + B µr -B µr , where µ r (r, z) is defined by µ r (r, z) := min 0≤θ<2π µ r (r, θ, z, t). The first part of the decomposition, B µr , is made implicit while the second part, B µr -B µr , is made explicit by using B * ,n+1 = 2B n -B n-1 and µ r = µ n+1 r . The magnetic induction field is therefore updated as follows:

3B n+1 2τ + 1 R m ∇× 1 σ r ∇× B n+1 µ r = 4B n -B n-1 2τ + ∇×(u n+1 ×B * ,n+1 ) - 1 R m ∇× 1 σ r ∇× B * ,n+1 1 µ r - 1 µ r . (2.8)
The function µ r being independent of the azimuth, implicit FFT convolutions are completely avoided. Note also that for each Fourier mode, the linear problem in (2.8) is decoupled from the other Fourier modes. is added on the right-hand side of (2.1a) in the form ∇•(ν E ∇u). This induces a nonlinear diffusion proportional to the local energy imbalance that in turn allows the unresolved scales to be better accounted for.
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Let us now give some technical details on the computation of the entropy viscosity. We consider a mesh K h of the computational domain composed of a collection of cells K with local mesh-size h K . Assuming that n ≥ 2 (or u -2 , u -1 , and p -1 have been initialized appropriately), we define the residual of the momentum equation as follows:

Res n NS = u n -u n-2 2τ + (u n-1 • ∇)u n-1 - 1 R e ∆u n-1 + ∇p n-1 -f n-1 . (2.9)
This residual is computed at each time step and over every mesh cell. The local artificial viscosity is defined on each cell K by:

ν n R|K = h 2 K Res n NS • u n L ∞ (D K ) u n 2 L ∞ (D K )
.

(2.10)

where D K is the patch composed of the cells sharing one face with the cell K. The quantity ν n R|K is expected to be as small as the consistency error in smooth regions and to be large in the regions where the Navier-Stokes equations are not resolved well. To be able to run with CFL numbers of order O(1), we finally define the entropy viscosity as follows: (2.11) where c max = 1 8 (for P 2 approximation on the velocity) and c e is a tunable constant O(1). Thus defined, and given that we use P 2 polynomials to approximate the velocity, the entropy viscosity scales like O(h 3 K ) in smooth regions and scales like O(h K ) in regions with very large gradients.

ν n E|K = min c max h K u n L ∞ (D K ) , c e ν n R|K ,
No artificial viscosity is added in the induction equation (2.1b) because the magnetic Reynolds number R m is always far smaller than the kinetic Reynolds number, therefore the magnetic field is always correctly represented by the finite element mesh.

Summary of the numerical parameters

The numerical parameters that have been used in the various simulations reported in the paper are listed in table 1. The spatial resolution of a typical DNS run in the meridian plane is h min = 2.5×10 -3 in the blade region and h max = 10 -2 close to the outer 

Hydrodynamic study

We first perform hydrodynamic computations by solving the equations {(2.1a)-(2.1c)}

with R e in the range {2×10 2 , 5×10 2 , 10 3 , 1.5×10 3 , 2.5×10 2 , 10 4 , 10 5 }. We characterize the structures of the flow through three-dimensional visualizations and by computing various time-averaged physical quantities. The visualizations, the global quantities, and the spatial spectra are in agreement with the experimental observations and the Kolmogorov scenario. All the simulations done at R e = 2500 and beyond have been done with the entropy viscosity technique presented previously.

Turbulent flow at high Reynolds numbers

We start by investigating the qualitative behavior of the flow at high Reynolds numbers. the velocity vector field on the cylindrical surface {r = 0.8} reveals two counter-rotating zonal flows at the top and bottom of the vessel which are induced by the impellers. We also observe large scale structures in the equatorial plane where the {u θ , u z }-components are significantly larger than the radial component u r (see figure 3(d-e)).

The overall structure is made more visible by inspecting the time-average of the velocity field (see figure 4(a-g)). We observe two counter-rotating recirculation tori separated by an active azimuthal shear layer localized at the equator. Kinetic energy is injected by the impellers, the flow spirals up or down along the sidewall and is driven radially inward at mid-plane. The two resulting inward flows meet at the equator and form a shear layer that dissipates energy. Note that the components of the time-averaged velocity shown in figure 4(a-c) are not fully symmetric with respect to the Oz and Oy axes due to the presence of the azimuthal Fourier mode m = 3. The spectra reported in figure 9 show that the azimuthal Fourier mode m = 3 is persistent over a wide range of Reynolds numbers. This energy peak at m = 3 corresponds to three radial co-rotating vortices seen in figure 4(d-e). These cat's-eye structures are the manifestation of the Kelvin-Helmholtz instability of the equatorial shear layer [START_REF] Nore | The 1:2 mode interaction in exactly counterrotating von Kármán swirling flow[END_REF]). These vortices are localized near the equator and form a complex 3D structure inside the bulk as evidenced in figure 4(f-g). The cat's-eye vortices have been experimentally observed by [START_REF] Cortet | Normalized kinetic energy as a hydrodynamical global quantity for inhomogeneous anisotropic turbulence[END_REF] at even higher Reynolds numbers.

As seen in figure 5a, the global kinetic helicity Hel K (t) := Ω u(r, t)•∇×u(r, t)dΩ is negative during the entire time evolution. This is not a surprise since the Ekman suction creates a strong vertical velocity field moving toward each impeller and the product of this velocity field with the angular velocity of the impellers is dominantly negative. However the spatial distribution of the instantaneous local helicity u(r, t)•∇×u(r, t) is complex and exhibits fine scales (see figure 5b-c). The instantaneous maxima are always localized near the impellers whereas the minima are dispersed over the whole fluid domain. This is well illustrated in figure 5c where we show the helicity field of the time-averaged velocity.

(d) r = 0.8, -π 2 ≤ θ ≤ π 2 (e) r = 0.8, π 2 ≤ θ ≤ 3π 2 (f) in the bulk r ≤ 1 (g) top view
As first numerically evidenced by [START_REF] Ravelet | Kinematic alpha tensors and dynamo mechanisms in a von Kármán swirling flow[END_REF]; [START_REF] Kreuzahler | Numerical study of impellerdriven von Kármán flows via a volume penalization method[END_REF] and seen in figure 2, the positive maxima are associated with the right-handed swirling vortices attached to each blade and occupying the space between the blades. These vortices are thought to be a key ingredient of the dynamo mechanism [START_REF] Laguerre | Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment[END_REF]; [START_REF] Gissinger | A numerical model of the VKS experiment[END_REF]; [START_REF] Varela | Role of boundary conditions in helicoidal flow collimation: Consequences for the von kármán sodium dynamo experiment[END_REF]).

Global quantities

We now make quantitative diagnostics to get a better understanding of the dynamics.

Given a finite time series f 1 , . . . , f q , we define the time average f as follows: The first quantities of interest are the kinetic energy E, the root mean square velocity, and an indicator of the fluctuation level δ defined by:

f := 1 q 1≤n≤q f n . (3.1)
E(t) := 1 2 Ω |u(r, t)| 2 dΩ, U RMS := 2E |Ω| , δ(u)(t) := u 2 L 2 (Ω) u 2 L 2 (Ω) . (3.2)
We also introduce the poloidal and the toroidal components of the velocity field which we denote by P (u) and T (u), respectively. Using the same notation and convention as in [START_REF] Ravelet | Bifurcations globales hydrodynamiques et magnétohydrodynamiques dans un écoulement de von Kármán turbulent[END_REF], we set:

P (u) := 1 |Ω| Ω u 2 r,0 + u 2 z,0 dΩ, T (u) := 1 |Ω| Ω |u θ,0 |dΩ, Γ(u) := P (u) T (u) , (3.3)
where u r,0 , u θ,0 , and u z,0 are the radial, azimuthal, and vertical components of the Fourier mode m = 0 of the velocity u. We finally consider the dimensionless torque K p defined by:

K p = 1 2 Ω solid |(r×f s ) • e z |dΩ, (3.4) 
where f s is the non-dimensional body force that induces the solid rotation of the impellers.

Using the notation from (2.2)-(2.4), we deduce from the expression of the discrete momentum balance (2.3) that the torque at time t n+1 is given by

K p = 1 2 Ω r(1 -χ)sign(z) 1 2τ (4u n -u n-1 -3u obs )•e θ dΩ, (3.5) 
with sign(z) equal to 1 if z > 0 and -1 otherwise.

We have reported in Table 2 the quantities E, δ(u), P (u), T (u), Γ(u), U RMS , and K p for all the runs we have done with R e ∈ {2×10 2 , 5×10 2 , 10 3 , 1.5×10 3 , 2.5×10 2 , 10 4 , 10 5 }.

With the exception of K p and δ(u), all the quantities increase with R e . In particular the ratio Γ increases with R e and reaches the value 0.57 at R e = 10 5 . Using TM73 impellers, [START_REF] Ravelet | Towards an experimental von Kármán dynamo : numerical studies for an optimized design[END_REF] measured Γ ≈ 0.8 at R e > 10 5 . The ratio Γ is expected to play a major role in the generation of a magnetic field by the flow; in particular, values around 0.7 are thought to be near-optimal (see figure 5 of [START_REF] Ravelet | Towards an experimental von Kármán dynamo : numerical studies for an optimized design[END_REF]).

Upon inspection of figure 6, where we have reported the time-averaged torque as a function of the Reynolds number, we observe that K p has a non-monotonic behavior with respect to R e that is similar to the drag crisis of a sphere or a cylinder. We also note that K p seems to be converging to a nonzero asymptotic limit in the vanishing viscosity limit. Note that δ(u) has the same behavior. In conclusion, even though our computations are performed at smaller R e than in the experiment, the trend followed by the global quantities compares well with the experimental results of [START_REF] Ravelet | Supercritical transition to turbulence in an inertially driven von Kármán closed flow[END_REF].

Kinetic energy vs. Reynolds number

We investigate in this section the behavior of the kinetic energy as the kinetic Reynolds number increases.

We show in figure 7(a) the time evolution of the kinetic energy E(t) for the Reynolds numbers in the range {2×10 2 , 5×10 2 , 10 3 , 1.5×10 3 , 2.5×10 2 , 10 4 , 10 5 }. There is a unique time series since we have used the final state from the previous run as the initial condition for the next run with a higher Reynolds number. We observe that the flow is steady at As R e increases further, the axisymmetric mode m = 0 and the Fourier mode m = 8 together with its harmonics are still energetic, but the dynamics becomes richer as the mode m = 3 starts to be active and eventually becomes the second largest after the axisymmetric mode (see figure 4). This m = 3 structure has been visualized in the experiment at very high Reynolds numbers as reported in [START_REF] Cortet | Normalized kinetic energy as a hydrodynamical global quantity for inhomogeneous anisotropic turbulence[END_REF]. The structure consists of three radial co-rotating vortices located nearby the equatorial shear layer. The Fourier modes m ∈ {0, 3, 8} eventually populate the entire spectrum by nonlinearity, and the spectrum has a more continuous appearance as R e grows (see figure 9). The quantity E m decreases like a negative power of m when m is large. For instance E m ∼ m -5 for R e = 1.5×10 3 and E m ∼ m -1.7 for R e = 10 5 . The scaling E m ∼ m -1.7 at R e = 10 5 is close to m -5/3 and thereby reminiscent of the Kolmogorov 1941 turbulent scaling for a one-dimensional kinetic energy spectrum [START_REF] Frisch | Turbulence: the legacy of AN Kolmogorov[END_REF]).

R e = 2×10
Let us finish this section by noting that a bifurcation similar to the one discussed above, from even modes to odd modes, has been observed and reported in [START_REF] Herbert | Eckhaus-like instability of large scale coherent structures in a fully turbulent von Kármán flow[END_REF] for TM60 impellers at R e = 700. The TM60 configuration is slightly different from the TM73 though; the blades in the TM60 setup are more curved and the impellers are equipped with 16 blades instead of 8. The bifurcation was attributed to a (m = 1) bifurcation. However the use of planar S-PIV data made uneasy the discrimination between odd modes like m = 1 and m = 3. Also the shape and the number of the blades can play a role in selecting the successive azimuthal dominating modes. In this reference the authors have shown that increasing R e from 10 2 to 10 6 leads to non-axisymmetric modulations of the axisymmetric (laminar or time-averaged) flow with successive azimuthal changes in parity (even-odd-even-odd).

MHD results

In this section we solve the full MHD system (2.1a)-(2.1d) using as initial velocity field the velocity computed during the Navier-Stokes runs at the different R e . The magnetic field H = B/µ 0 µ r is initialized to a very small value which we call seed. Unless specified otherwise, the seed is H 0 = 10 -3 (e z + e x ). We also add a random noise of amplitude 5×10 -5 on all the Fourier modes m ≥ 1 of H 0 . We first explain how we determine the threshold for dynamo action on an illustrative case. Next we study the influence of the relative magnetic permeability of the impellers and the boundary conditions imposed on the outer boundaries of the domain Ω ∪ Ω out . We then fix the relative magnetic permeability of the impellers and use the pseudo-vacuum boundary conditions to investigate the variation of the critical magnetic Reynolds number with R e .

Summary of our previous results

We have shown in [START_REF] Nore | Direct numerical simulation of the axial dipolar dynamo in the von krmn sodium experiment[END_REF] that two distinct dynamo families compete at small Reynolds numbers (typically for R e < 700) and that these two families merge at larger kinetic Reynolds numbers. In the first family, the magnetic field is essentially supported on the even Fourier modes, whereas in the second family the magnetic field is essentially supported on the odd modes; these are called the 0-family and the 1-family in [START_REF] Nore | Direct numerical simulation of the axial dipolar dynamo in the von krmn sodium experiment[END_REF], respectively. In the entire section we focus on R e ≥ 1.5×10 3 ; hence all the Fourier modes of the magnetic field are coupled and vary in time with the same (growth or decay) rate in the linear dynamo regime.

Dynamo threshold and saturation

In this section we fix R e = 10 4 and explain how we estimate the dynamo threshold with µ imp r = 50 and the pseudo-vacuum boundary condition. We are going to use the same methodology for all the other cases. The onset of dynamo action is monitored by recording the time evolution of the magnetic energy in the conducting domain, the dynamo saturated flow requires less mechanical power than driving the hydrodynamic base flow (see figure 12(c)).

M (t) = 1 2 Ω∪Ωout H(r, t)•B(r, t) dr = 1 2 Ω∪Ωout µ 0 µ r |H(
While the retroaction of the Lorentz force on the velocity field in turbulent flows has been studied in various experiments involving applied magnetic fields (see e.g. [START_REF] Sisan | Experimental demonstration of a homogeneous two-scale dynamo[END_REF]; [START_REF] Miralles | Lorentz force effects in the Bullard-von Kármán dynamo: saturation, energy balance and subcriticality[END_REF]), very little is known in this respect when dynamo action occurs. In the Riga experiment, an increase of about 10% of the power consumption has been measured at saturation, and a modification of the swirling profile together with a deceleration of the axial motion has been observed [START_REF] Gailitis | The riga dynamo experiment[END_REF]). In the Karlsruhe experiment, a slow down of the axial flow has been recorded in the nonlinear regime [START_REF] Müller | A two-scale hydromagnetic dynamo experiment[END_REF]). In the VKS2 experiment, the modification of the flow in the saturation regime has been too weak to be measured. Note that the range of magnetic Reynolds numbers that can be explored experimentally is limited by the mechanical power that is available; in the above three experiments dynamo action has been investigated only in a small neighborhood beyond the threshold.

Although very interesting, the study of the nonlinear regime over a large range of parameters is numerically expensive and therefore postponed for future work.

Impact of the magnetic permeability and boundary conditions on the threshold

We focus in this section on the influence of various parameters on the threshold and we investigate the structure of the growing magnetic field.

Influence of the magnetic permeability

In this section we work with the pseudo-vacuum boundary condition enforced at the outer boundary of the domain Ω ∪ Ω out ; this boundary condition corresponds to setting H×n = 0, and it is also called perfect ferromagnetic boundary condition in the literature. We also fix the Reynolds number to R e = 1.5×10 3 . Figures 13(a-e et al. (2016). The likely origin of the discrepancy is that for the present simulations the initial seed for the magnetic field is H 0 = 10 -6 (e z +e x ) plus a random noise of amplitude 5×10 -7 on all the Fourier modes m ≥ 1 of H 0 and the integration time is longer. Hence the present estimation is probably more accurate. It seems that for small values of µ imp r , typically µ imp r ≤ 5, the dynamics is more complicated and involves interactions between modes that depend on the level of the nonlinearities implicated. The key observation here is that the axisymmetric mode is reinforced when µ r is large. This in turn gives a clearer decay or growth rate and consequently makes it easier to estimate the threshold.

The largest value of the relative permeability used in the present paper is µ imp r = 50.

Influence of the boundary conditions

To test the influence of boundary conditions, we now enlarge the computational domain by adding an insulator around the VKS2 container (air or vacuum). The outer boundary of the computational domain is now a sphere centered at the origin and of radius 10. The magnetic field in the insulator is represented as the gradient of a scalar potential like in [START_REF] Guermond | Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a Fourier/finite element technique and an interior penalty method[END_REF] and this potential is enforced to be zero on the outer sphere.

This configuration is a better representation of the actual experiment than that with the pseudo-vacuum boundary condition, but it is computationally more expensive.

We show in figure 14 for the magnetic field is H 0 = 10 -6 e x plus a random noise of amplitude 5×10 -7 . We removed the axial component of the seed to convince ourselves unequivocally that the axial component of the axisymmetric mode grows above the dynamo threshold. Table 3. Magnetic thresholds R c m for Re = 1.5×10 3 . "H×n = 0" means pseudo-vacuum boundary condition and "vacuum" means that a larger integration domain with a non-conducting domain around the outer cylinder is used.

field is mainly supported on the Fourier modes m = 1 and m = 2 with a complex threedimensional structure as shown on figure 15(a-c).

For µ imp r = 50 the threshold is estimated to be at R c m = 130 ± 10 (figure 14(c-d)).

Inspection of figure 14(d) reveals that at R m = 150 the Fourier mode m = 1 decreases in time, while the modes m = 0 and m = 3 increase and pull in their wake the other modes for t ≥ 850. This scenario is reminiscent of the crossing of the modes m = 1 and m = 0 discussed in [START_REF] Boisson | Three-dimensional magnetic field reconstruction in the vks experiment through galerkin transforms[END_REF]. The present simulations show that the magnetic field is not purely axisymmetric since a significant portion of the magnetic energy is carried by the Fourier mode m = 3. We will examine the relative importance of the non-axisymmetric modes in section 4.5. As shown in figure 15(d-f) the growing magnetic field is mainly an axial dipole with an azimuthal component approximately even in z. The structure of the instantaneous and average magnetic field (fig. 15(d-e)) is similar to the one obtained with the pseudo-vacuum boundary condition (see fig. 17(ab)). This structure is also compatible with the measurements of the magnetic field made at saturation during the dynamo regime obtained in the VKS2 configuration with soft iron impellers and a copper container (see figure 6b in [START_REF] Boisson | Symmetry and couplings in stationary von Kármán sodium dynamos[END_REF]).

When one compares the estimations of the threshold using µ imp The data collected in table 3 lead to the conclusion that using the ferromagnetic boundary condition on the external boundary of the container and using ferromagnetic material for the impeller with a large value of the magnetic permeability decreases the dynamo threshold and enhances the axisymmetric component of the magnetic field produced by the dynamo effect. We have reported in Figure 16(a) the estimated value of R c m for R e ∈ {5×10 2 , 1.5×10 3 , 2.5×10 3 , 10 4 , 10 5 }. The critical magnetic Reynolds number seems to tend to an asymp- Assuming, as suggested by the results reported in table 3, that going from µ imp 

Simplified models

Upon observing that the spectrum of the growing magnetic field is dominated by the azimuthal Fourier modes m = 0 and m = 3 (see figure 11 shear layer or if the ferromagnetic impeller is the key ingredient as discussed in [START_REF] Pétrélis | On the magnetic fields generated by experimental dynamos[END_REF]; [START_REF] Laguerre | Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment[END_REF]; [START_REF] Gissinger | Effect of magnetic boundary conditions on the dynamo threshold of von Kármán swirling flows[END_REF]. To try to answer this question, we first perform kinematic dynamo computations using the time average of the velocity field obtained at R e = 10 5 and shown in figure 4. Then, we take a closer look at the structure of the electrical current that is generated by dynamo action in the full MHD simulations.

5.1. Kinematic dynamo using the time averaged velocity field at R e = 10 5 A kinematic dynamo simulation is done by solving only the induction equation (2.1b) and by using the time averaged velocity field obtained at R e = 10 5 ; this field is shown in figure 4. The time averaged velocity field is not axisymmetric and therefore may sustain an axisymmetric magnetic field since Cowling's theorem does not apply. We also use flat ferromagnetic disks with µ imp r = 50 and we impose the boundary condition H×n = 0 on the outer wall of the container.

We perform simulations with R m ∈ [50, 200] and find that the Fourier modes m ∈ {1, 2, 4} can grow while the modes m ∈ {0, 3} always decrease. The dynamo threshold is R c m ≈ 120 ± 5 and the growing magnetic field has a strong Fourier component supported on the mode m = 1. This unstable eigenmode has the shape of an equatorial dipole with two opposite axial structures (see figure 19). This magnetic field is similar to the The main point of the present discussion is that the kinematic dynamo computation realized with the time-averaged velocity field obtained at R e = 10 5 gives a dynamo that is totally different from the one obtained with the full velocity field since it is mainly supported on the Fourier mode m = 1. Therefore the mainly axisymmetric magnetic field shown in figure 18 cannot be attributed to the time averaged velocity field only.

Shape of the electric current vs. R e

We now focus our attention on the electric current produced by the full MHD dynamo. of the current evokes the disk-dynamo of [START_REF] Bullard | The stability of a homopolar dynamo[END_REF] with two disks (instead of one only). The radial current in the bottom disk is collected in the copper walls, injected in the top disk, and flows from the top disk to the bottom disk in a left-handed helix. The left-hand twist of the current lines in the bulk near the cylinder axis is induced by the flow of liquid sodium. Figure 21 

Summary and discussion

The main outcomes of the present paper are the following points:

(a) The hydrodynamic computations using the entropy-viscosity-based LES technique give results in agreement with the experimental data at high Reynolds numbers. The global experimental and numerical kinetic quantities behave similarly when R e increases.

The modal spectrum of the kinetic energy is dominated by the azimuthal Fourier modes m ∈ {0, 2} for R e < 700 and m ∈ {0, 3} for larger R e . At R e = 10 5 , the modal spectrum behaves like m -5/3 when m is large. In the physical space, the leading Fourier mode m = 2 found at R e = 5×10 2 corresponds to the wavy bifurcation reported in [START_REF] Ravelet | Supercritical transition to turbulence in an inertially driven von Kármán closed flow[END_REF]. At larger R e , the Fourier mode m = 3 is related to the three radial corotating vortices localized near the equatorial shear layer as observed by [START_REF] Cortet | Normalized kinetic energy as a hydrodynamical global quantity for inhomogeneous anisotropic turbulence[END_REF] in a von Kármán experiment using water.

(b) The full MHD computations show that, at fixed R e , increasing the relative magnetic permeability of the impellers and/or using ferromagnetic material at the outer boundaries of Ω ∪ Ω out decreases the threshold (using the pseudo-vacuum B.C. is equivalent to adding a material with infinite permeability at the boundary). The ferromagnetic impellers enhance the axisymmetric magnetic field [START_REF] Giesecke | Influence of high-permeability discs in an axisymmetric model of the Cadarache dynamo experiment[END_REF]) and ferromagnetic outer walls confine the magnetic field inside the vessel. At fixed µ r , increasing the kinetic Reynolds number also reduces the threshold. Moreover, the overall shape of the critical magnetic field averaged in time barely changes between R e = 1.5×10 3 and R e = 10 5 as shown in figures 17 and 18. This robustness with respect to the kinetic Reynolds number may explain why the magnetic field that we computed is in very good agreement with the mainly axisymmetric magnetic field that has been experimentally ob- I in [START_REF] Miralles | Dynamo threshold detection in the von Kármán sodium experiment[END_REF]). This scaling suggests that the small scales of turbulence do not seem to intervene in the dynamo mechanism at high R e numbers. The behavior of R c m with respect to R e that we observed is somewhat at odd with other computations using simplistic forcings like [START_REF] Iskakov | Numerical demonstration of fluctuation dynamo at low magnetic Prandtl numbers[END_REF]; [START_REF] Ponty | Dynamo action at low magnetic Prandtl numbers: mean flow vs. fully turbulent motion[END_REF]; [START_REF] Reuter | Turbulent magnetohydrodynamic dynamo action in a spherically bounded von kármán flow at small magnetic prandtl numbers[END_REF]; [START_REF] Ponty | Transition from large-scale to small-scale dynamo[END_REF]. In all these simulations the critical magnetic Reynolds number has a non monotonic behavior with respect to R e . It first increases with R e , then either reaches a plateau or decreases after some intermediate value of R e in the range [200,1500]. Finally, it is suggested in [START_REF] Ponty | Transition from large-scale to small-scale dynamo[END_REF] that "it is the mean flow which plays the most important role in the field generation even though it is 40% less intense than the fluctuations". As shown in figure 9, the azimuthal Fourier modes m ∈ {0, 3} of the velocity contain most of the total kinetic energy at all the kinetic Reynolds numbers we have explored (the smallest being R e = 500). For instance these two modes contain about 75% of the total kinetic energy at R e = 10 5 . However the kinematic computations of section 5.1 have proved that the mean flow (averaged in time but not in space, therefore with non-axisymmetric features) gives a dynamo with a magnetic field mainly supported by the Fourier mode m = 1 as already reported in the literature by us and others using an experimental time and azimuthally averaged velocity field. Therefore the VKS2 dynamo cannot be attributed to the mean flow. This argument shows that the disks play a major role.

To conclude, our simulations at high R e numbers confirm that the ferromagnetic im- twisted by the flow in a way that regenerates the initial vertical field. This is the Bullard dynamo loop [START_REF] Bullard | The stability of a homopolar dynamo[END_REF]) with the Ω-effect due to the disks and the twisting-effect due to the flow.

  uses two concentric cylindrical containers: the first one has a very small thickness and is of radius R cyl = 206 mm; the second one is thick and made of copper, its inner radius is R in = 289 mm and its outer radius is R out = 330 mm. Both containers have a total height H = 412 mm. The impellers are located at the two extremities of the inner container. There is some fluid behind the impellers in the experiment, but in the present simulations we neglect this fluid layer. The impellers are composed of two disks each supporting 8 blades. The disks have radius R b = 155 mm and are 20 mm thick. The blades have height 41 mm, thickness 5 mm, and the angle of curvature is equal to 24 • . The distance between the inner faces of the disks is set to 370 mm so that the aspect ratio of the cylindrical fluid domain is 370/206 = 1.8. The fluid contained in the inner vessel is pushed by the convex side of the blades (called the unscooping sense of rotation or (+) sense). A schematic representation of the experimental setup is shown in figure 1 using R cyl as reference lengthscale.

Figure 1 .

 1 Figure 1. Schematic of the VKS2 experimental device of Monchaux et al. (2007) in non-dimensional units. The impellers counter-rotate as indicated in (a) and are fitted with 8 curved blades (see b).

Figure 2 .

 2 Figure 2. Navier-Stokes simulations in the TM73 VKS2 configuration in the cylinder of radius r = 1: (a) at Re = 10 4 , partial scale for the vorticity field ∇×u (between 10 and 25 for a total scale between 0 and 56) and (b) at Re = 10 5 partial scale for the vorticity field ∇×u (between 10 and 25 for a total scale between 0 and 99). Impellers are represented in light grey.

Figure 2 Figure 3 .

 23 Figure 2 shows instantaneous vorticity fields at R e = 10 4 and R e = 10 5 characterized by small-scale structures with a clustering near the symmetry axis. The numerous vorticity tubes are characteristic of fully developed turbulence. Elongated vortical structures are attached to the concave side of the impeller blades. We show in figure 3 one snapshot of the velocity field computed at R e = 10 5 . The flow is clearly turbulent as small scales have invaded the entire fluid domain. In the yOz plane the instantaneous velocity components {u x , u y } show ejection motions near the tip of the impellers. Close to the symmetry axis, the u z -component shows strong axial motions that are oriented toward the center of the cylinder and which are characteristics of the Ekman suction induced by the impellers (see figure 3 a-c). The representation of

  (a) Time-averaged ux (b) Time-averaged uy (c) Time-averaged uz

Figure 4 .

 4 Figure 4. Same as figure 3 for the time-averaged velocity field. Velocity field in the plane yOz (-1 ≤ y ≤ 1, -1 ≤ z ≤ 1): (a) ux (scale between -0.75 (blue) and 0.75 (red)); (b) uy (scale between -0.34 (blue) and 0.39 (red)); (c) uz (scale between -0.37 (blue) and 0.33 (red)). Velocity vector field on the cylindrical surface {r = 0.8}: (d) for -π 2 ≤ θ ≤ π 2 ; (e) for π 2 ≤ θ ≤ 3π 2 . Isosurface of 10% of the velocity magnitude (purple) with streamlines (colored by velocity magnitude): (f) from a perspective; (g) top view; the cylinder {r = 1} is in light grey.

  Figure 5. Navier-Stokes simulations in the TM73 VKS2 configuration at Re = 10 5 : (a) time evolution of the total helicity HelK (t); (b) instantaneous local helicity in the yOz plane at time t = 125; (c) local helicity of the time-averaged velocity in the yOz plane.

Figure 6 .

 6 Figure 6. Time-averaged Kp vs Re in log-lin showing a crisis around Re = 2.5×10 3 .

Figure 7 Figure 7 .

 77 Figure 7(b-c) shows E m as a function of m for m ∈ {0, . . . , 63}. The maximum at m = 0 corresponds to the large scale forcing induced by the rotating disk. The maximum at m = 8 and the maxima at the corresponding harmonics are induced by the 8 rotating blades. As expected, only the Fourier mode m = 0 and the mode m = 8 together with

Figure 9 .

 9 Figure9. Spectra of the kinetic energy Em as a function of the azimuthal mode at final time for Re = 1.5×10 3 , 2.5×10 3 , 10 4 , 10 5 : (a) in lin-log scale, (b) in log-log scale with a fit in m -5 and in m -1.7 for guiding the eye.
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 101112 Figure 10. Time evolution of the modal magnetic energies Mm(t) at Re = 10 4 with µ imp r = 50 for m ∈ {0 . . . 4}: (a) Rm = 50; (b) Rm = 150.

  ) show the time evolution of M m (t) for the azimuthal modes m ∈ {0 . . . 4} for µ imp r near criticality, the behavior of the magnetic field shows a competition between the modes m = 0 and m = 1 (R m = 100, 200 in figures 13(a-b)). Well above the threshold, say at R m = 300 and beyond, we recover the same dynamics as that obtained when µ imp r is larger; that is, the axisymmetric magnetic field is dominant and it is preferentially coupled to the mode m = 3 through the velocity field. The threshold for µ imp r = 1 is estimated to be R c m = 190 ± 10. The threshold for µ imp r = 5 is estimated to be R c m = 170 ± 5. This value is slightly higher than the value R c m ≈ 130 reported in Nore, C.

Figure 13 .Figure 14 .

 1314 Figure 13. Time evolution of Mm(t) at Re = 1.5×10 3 with pseudo-vacuum BC for m ∈ {0 . . . 4}: (a-c) Rm ∈ {100, 200, 300} and µ imp r = 1; (d-e) Rm ∈ {150, 200} and µ imp r = 5.

  For µ imp r = 1, the two Fourier modes m = 1 and m = 2 compete below and above the threshold. The threshold in this case is larger than when the pseudo-vacuum boundary condition is imposed. We obtain here R c m = 310 ± 30 whereas we had R c m = 190 ± 10 with the pseudo-vacuum boundary condition. The increase is roughly 60%. The magnetic

r=

  50 and the pseudovacuum boundary condition, R c m = 90 ± 5, with that obtained with µ imp r = 50 and the vacuum boundary condition, R c m = 130±10, we observe a 40% increase. This dependence of the dynamo threshold on the boundary condition is compatible with the observation made in Guermond et al. (2011a); Gissinger et al. (2008) using kinematic dynamo simulations. It is shown in these references that the perfect ferromagnetic boundary condition decreases the dynamo threshold, the minimum being achieved when this boundary condition is enforced over the entire boundary of the container. This is explained by a screening mechanism of the walls. The present full MHD simulations show the same trend.

4. 4 .

 4 Threshold at µ imp r = 50 vs. R e We put ourselves in this section in the most favorable configuration for dynamo action to occur: we enforce the ferromagnetic boundary condition on the external boundary of the container and we use µ imp r = 50. We now investigate the evolution of the critical magnetic Reynolds number as a function of the kinetic Reynolds number.

Figure 15 .

 15 Figure 15. Magnetic field from full MHD simulations in the TM73 VKS2 configuration at Re = 1.5×10 3 with vacuum BC: (a-b) Rm = 300, µ imp r = 1, instantaneous and time averaged magnetic field in Ωc; (c) Rm = 300, µ imp r = 1, magnetic field lines in the whole domain; (d-e) Rm = 150, µ imp r = 50, instantaneous and time averaged magnetic field in Ωc; (f) Rm = 150, µ imp r = 50, magnetic field lines in the whole domain. In (a,b,d,e) arrows represent in-plane {Hy, Hz} vectors and color represents the out-of-plane component Hx.

Figure 16 .

 16 Figure 16. (a) R c m vs. Re in log-lin; (b) R c m -R c m∞ vs. Re in log-log using the fit 4100/R 0.7 e .

  the threshold for dynamo action (uniformly in R e ), we conjecture that the asymptotic limit R c m∞ for µ imp r = 1 is roughly 68.8×2 ≈ 138. The estimate of the threshold obtained experimentally by measurements of the decay time in this configuration (run O in figure 6 of Miralles et al. (2013), Table I, and definition of R m at line -12, page 8) gives R c m 110, which is in good agreement with our conjecture considering that the ferromagnetic walls in run O are closer to the impellers than in our computations. 4.5. Shape of the magnetic field vs R e We continue with the pseudo-vacuum boundary conditions and µ imp r = 50. Figures 17 and 18 show the instantaneous and the time averaged magnetic fields obtained at saturation in the dynamo regime at R e = 1.5×10 3 and R e = 10 5 , respectively. Note that the instantaneous magnetic field at R e = 10 5 shows bursts near the impellers, although the time averaged magnetic field for R e = 1.5×10 3 and R e = 10 5 are similar. Note also that the time averaged magnetic vector field in the yOz plane is not strictly symmetric with respect to the Oz axis. The ratio of the non-axisymmetric magnetic energy to the total magnetic energy is about 11% for R e = 1.5×10 3 , R m = 150, and it is about 18% for R e = 10 5 , R m = 100. This little departure from axisymmetry gives a wavy shape to the magnetic field streamlines as shown in figure 17(c) and figure 18(c). The dominant non-axisymmetric Fourier mode of the magnetic field is m = 3 as shown in figures 17(d-e) and 18(d-e). Although the flows at R e = 1.5×10 3 and R e = 10 5 are quite different, the time averaged magnetic fields produced by dynamo action are very similar: compare figure 17(b) and figure 18(b). This observation leads us to conjecture that the time averaged magnetic field should have the same shape for the actual Reynolds number R e ≈ 5×10 6 . At least the axisymmetric shape in figure 17(b) and figure 18(b) is similar to the one reconstructed in fig. 6(b) in Boisson et al. (2012). Of course, the scarcity of experimental data (gaussmeters on a few lines) gives little information on the non-axisymmetric components.

  (a)), one may wonder if the dynamo effect is associated with the 3 co-rotating vortices localized in the equatorial

  Figure 17. Magnetic field from full MHD simulations in the TM73 VKS2 configuration in the saturated regime at Re = 1.5×10 3 , Rm = 150 and µ imp r = 50, pseudo-vacuum BC: (a)-(b) Arrows represent in-plane {Hy, Hz} vectors, color represents the out-of-plane component Hx, the cylinder axis is in the middle. (From Nore, C. et al. (2016)); (c) Magnetic field lines of H colored by Hz; (d) Isosurface of 50% of the maximum amplitude of H and cut at z = 0 for {r ≤ 1.6}; (e) Cut at z = 0 from top view colored by Hz (the inner cylinder of radius r = 1 is indicated in light grey, the outer radius is 1.6).

  Figure 18. Same as figure 17 with Re = 10 5 , Rm = 100 and µ imp r = 50.

Figures

  Figures 20(a-b) show the electric current associated to the time averaged magnetic field computed at R e = 1.5×10 3 with R m = 150; figures 20(c-d) show the electric current associated to the time averaged magnetic field computed at R e = 10 5 with R m = 100. In both cases we use µ imp r = 50. The current distribution shows large scale meridian loops.The current lines close to the axis have the shape of a left-handed helix going downwards; the current is mainly radial in the disks (flowing outwards in the bottom disk and inwards in the top disk); it is mainly vertical and flows upwards in the copper wall (j z is positive in fig.20(b-d) in the ring {1.4 ≤ r ≤ 1.6; z = 0}). It also forms smaller meridian loops near the blades. The poloidal component of the current ({j r , j z } in the copper wall and near the blades) generates the toroidal H θ field, while the toroidal j θ component of the twisted helical current lines near the axis creates the axial H z magnetic field. This organization

  (a) shows the current lines colored by j . The current amplitude is strong near the axis. A schematic representation of the double-disk Bullard dynamo is shown in Figure 21(b).

Figure 20 .

 20 Figure 20. Electric current field from time averaged magnetic field, µ imp r = 50: (a-b) Re = 1.5×10 3 , Rm = 150; (c-d) Re = 10 5 , Rm = 100; (a-c) Streamlines of the current j = ∇×H colored by the magnitude of H ; (b-d) Current streamlines colored by the magnitude of H and slice at {z = 0} colored by jz.

Figure 21 .

 21 Figure 21. Current streamlines colored by the magnitude of j and schematic of the dominant current field lines giving rise to the predominant axisymmetric time-averaged magnetic field of figure 18.

  pellers are crucial to reduce the dynamo threshold and to obtain the predominantly axisymmetric dynamo mode observed in the VKS2 experimental setup. Looking at Figure 21, where a schematic representation of the path followed by the electrical current is shown, let us imagine a vertical magnetic seed pointing upwards near one rotating impeller. By Ω-effect, the differential rotation of the impeller generates a toroidal magnetic field nearby the disk. This toroidal field is associated with a radial current (j r ≈ -∂ z H θ ) flowing outward in the bottom impeller and inward in the top one. The current circulates from the bottom impeller to the top one through a large scale loop inside the copper wall. Near the axis of the vessel the current flows downwards and the current lines are

Table 1 .

 1 Numerical parameters for the MHD computations: kinetic Reynolds number Re, magnetic Reynolds number Rm, numerical model DNS or LES, maximum relative magnetic permeability for impellers µ imp r , timestep, mesh size in the blade region hmin, mesh size at the outer boundary hmax (the meridian mesh is non-uniform), number of real Fourier modes, number of processors.

	modes	128	128	128	144	168 or 256 168 or 256
	nprocs	64	64	192	360	336 or 512 336 or 512

Table 2 .

 2 Global quantities as defined in the text for hydrodynamic computations in the TM73 setup.

	Re	E	δ(u) P (u) T (u) Γ(u) URMS	Kp
	2×10 2 0.2287 1.0122 0.0753 0.1936 0.3892 0.2698 0.06311
	5×10 2 0.2983 1.0201 0.0933 0.2005 0.4653 0.3082 0.05313
	10 3	0.3893 1.1172 0.1145 0.2460 0.4651 0.3520 0.05047
	1.5×10 3 0.4078 1.2123 0.1157 0.2263 0.5113 0.3603 0.05078
	2.5×10 3 0.4427 1.3461 0.1244 0.2193 0.5671 0.3754 0.05198
	10 4	0.4908 1.5429 0.1313 0.2321 0.5655 0.3952 0.0479
	10 5	0.5190 1.4884 0.1343 0.2352 0.5710 0.4064 0.0470

The behavior of K p and δ(u) is

  2 . It is marginally unsteady at R e = 5×10 2 , and increasing further R e leads to a turbulent regime. The time averaged kinetic energy E increases with R e as reported in table 2.

  r, t)| 2 dr, and the modal energiesM m (t) = Ω 2D ∪Ω 2D out π| Ĥ(r, m, z, t)| 2r dr dz. Linear dynamo action occurs when M

m (t) increases exponentially in time (non oscillating dynamo here) and nonlinear dynamo action takes place when M (t) saturates. Various MHD runs are performed with different values of the magnetic Reynolds number R m . The threshold for dynamo action is obtained by interpolation on the growth rate between the largest magnetic Reynolds number with a negative growth rate and the smallest magnetic Reynolds number with a positive growth rate. The interpolation is done once the bracketing interval of the threshold is small enough to yield a reasonable estimate.
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