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Abstract

Today, it has become more frequent and reasonably easy to digitize the surface
of 3D objects. However, the obtained results are often inaccurate and noisy.
In this paper, we present an efficient method to analyze a curvature histogram
from a digitized 3D surface using a real object. Moreover, we propose to use the
curvature histogram analysis for many steps of a reverse engineering process,
which can be used to retrieve a CAD model from a digitized one for example.
Our objective is to design a fast and fully automated method, which is seldom
seen in reverse engineering. Experimental results applied on digitized 3D meshes
show the efficiency and the robustness of our proposed method.
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1. Introduction

The availability of 3D scanners has increased the fast development of appli-
cations in Computed-Aided Design (CAD), reverse engineering, medicine and
inspection. Many 3D processes use the objects shape, like segmentation, recog-
nition or classification for example. In the production line of manufactured5

objects, steps can be distributed to many partners, and during the process,
some data can be lost. An industrial reverse engineering application aims to
reconstruct an object as a combination of geometric primitives, from a digitized
3D mesh or 3D point cloud [1, 2]. For mechanical objects, we search for planes,
spheres, cylinders and cones, but also torus and more specifically developable10

or ruled surfaces. This can lead to quality control or object modification issues
for example. To reconstruct the initial geometry, we must take into account
the shape of the objects and their relationship with each other. But an object
shape can be very complex, and the measured data can often be noisy. So, we
need robust 3D descriptors to accurately define the objects shape.15
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In previous work, geometry descriptors like the curvatures [3, 4] allow us to
deal with the 3D mesh shape. But the curvature is computed locally, while it is
often necessary to characterize the shape globally. To do this, we can construct
curvature distributions [5, 6] and analyze them.

In this paper, we propose a method based on the analysis of a digitized 3D20

mesh curvature histogram. We use the curvature approximation from Bénière
et al. [7] who incorporates two other methods [8, 9]. Then, a distribution is con-
structed continuously by a kernel estimation from all of the curvature values.
Finally, an accurate curvature distribution analysis is realized. In the distribu-
tion, we propose to search for peaks and valleys, and compute some statistics25

depending on the chosen application. Indeed, curvature distribution approxi-
mately describes the objects shape, so these distributions can be useful to many
applications. In this paper, we propose to use a curvature histogram to segment
3D meshes, detect primitive type and measure the quality of the mesh.

This paper is organized as follows. Previous work in this topic is presented30

in Section 2. In Section 3, we present in detail our distribution construction and
analysis. Section 4 is dedicated to three uses of curvature distribution, which
are mesh segmentation, primitive type detection with tolerances adaptation
and mesh quality evaluation. In Section 5, we apply our proposed analysis
on digitized 3D surfaces of real objects and we show that our analysis hugely35

improves the obtained results. Finally, we conclude and propose directions for
future research in Section 6.

2. Previous work

We present in Section 2.1 previous work on curvatures and distributions.
Then, we show three fields in 3D mesh processing: mesh segmentation in Sec-40

tion 2.1.1, geometric primitive type detection in Section 2.1.2 and mesh quality
evaluation in Section 2.1.3.

2.1. Curvature distribution

Intuitively, curvature quantifies the deviation between a curve and a straight
line, or between a surface and a plane in 3D. The curvature of a 2D curve at a45

point P equals the inverse of the osculating circle radius r at P . The osculating
circle is the circular arc which best approximates the curve around P (Fig. 1.a).

On a 3D surface, an infinity of curvature directions exists around the normal
vector of P (Fig. 1.b). So, we need to distinguish particular curvatures. Prin-
cipal curvatures are the minimum and maximum curvatures. Mean curvature50

and Gaussian curvature equal respectively the mean and the product of princi-
pal curvatures. The Euler formula gives the continuous curvature at a point P
for each tangent vector ti:

kn(ti) = kmaxcos
2(θ) + kminsin

2(θ), (1)

where kmax and kmin are the principal curvatures, and θ is the angle between
the maximum principal direction ~dmax and the direction of kn. But since a mesh55
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Figure 1: Curvature representation on: a) 2D curves and b) 3D surfaces.

is a discrete object, we need to approximate the curvature from a point cloud.
Chen and Schmitt [8] compute “discrete” curvatures at P with the Meusnier
theorem:

kn(t) = kC ∗ cos(θ), (2)

where kC is the curvature at P of the curve obtained by intersection between
the surface and a plane PC , and θ is the angle between the normal at P and60

the normal of the plane PC . Each neighbor pair of P defines a plane with P ,
and the curvature circle is the circumscribed circle of the three points. A linear
regression is then applied on all discrete curvatures to retrieve approximated
principal curvatures.

Dong and Wang [9] compute discrete curvatures with:65

kn(t) =
< Pi − P,Ni −N >

||Pi − P ||2
, (3)

where Pi is a neighbor of P with a normal Ni, and ~t the projection of ~PiP on the
tangent plane of P . A linear regression is also applied on all discrete curvatures,
but with a coefficient fixed to the maximum computed value.

Bénière et al. [2] compute discrete curvatures with the formula 3 for each
neighbor of P , and apply the linear regression of [8]. For our proposed ap-70

proach, we prefer to use this approximation because it is more accurate. Indeed,
equation 3 uses each neighbor independently and avoids some curve distortion.
Moreover, fixing a linear regression coefficient when we do not know if we have
computed the real maximum curvature is dangerous. Curvatures are often used
to caracterize surface shape [10, 11]. So, for example, it is possible to analyze a75

shape to detect saliency [12] or apply segmentation [13, 5].
There are many different types of distributions. But overall, we can dis-

tinguish discrete and continous distributions. A discrete distribution is often
represented by a histogram, as illustrated in Fig. 2.a. On the other hand, con-
tinous distributions correspond to mathematical models. Common models are80

Gaussian or Normal distributions (Fig. 2.b).
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Figure 2: a) Discrete and b) Continuous distribution samples.

In our case, computed curvature values are real. So, it is necessary to approx-
imate a discrete distribution with a continuous model. Most of the time, models
are optimized from the measured data. Model optimization estimates the pa-
rameters of a density function by maximizing the joint likelihood of the observed85

samples to be generated by this model. A common optimization algorithm is
the Expectation-Maximisation (EM) [14]. For example, these distributions can
be used in image processing to improve compression [6], for perceptual hashing
systems [15], or even automatic image thresholding [16].

Previous methods in 3D mesh processing proposed to use distributions[17, 5].90

For example, Demarsin et al. [17] compute an absolute mean curvature his-
togram used to extract object edges. They analyze many histogram resolutions
to define a sufficient bin number. However, Chen and Feng [5] construct a signed
mean curvature histogram, then apply a Laplacian smooth modifier and analyze
the histogram to segment the object. They can separate homogeneous intervals95

by histogram analysis. But the main limitation of these two methods is that the
histogram is constructed with a discrete approach, whereas curvature values are
real. To extend their methods, we can construct a histogram by optimisation
or kernel estimation for example.

2.1.1. Segmentation100

A segmentation is a partitioning of a digital image, a 3D mesh or a 3D point
cloud in several regions, as illustrated in Fig. 3. For 3D objects, we distinguish
between cloud-based [18] and mesh-based approaches [19].

Many different 3D mesh segmentation algorithms have been published [20,
21], but each segmentation gives more or less good results depending on the cho-105

sen application. Most of the time, a segmentation brings together points with
similar criteria. For example, the segmentation can be based on a waterfall [22],
hierarchical clustering [23], iterative merging [24] or remeshing [25]. In reverse
engineering, the best results are reached when using curvatures, because prim-
itives are extracted from curvatures analysis. Some methods use curvatures110

to segment by discontinuities [1, 5], clustering [26], or to better digitize [27],
but they are often not robust enough around object edges or are sensitive to
noise [13, 2]. Indeed, curvatures are often inaccurate around object edges be-
cause adjacent points can run over many different primitives. Moreover, we
are searching for a fully automatic method, so we cannot use parameters like a115
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Figure 3: Examples of mesh segmentation from [19]: a) A section-type segmentation, b) a
surface-type segmentation.

cluster number [28].
The edge extraction of Demarsin et al. [17] is interesting, but it is not entirely

automatic. Indeed, they compute an absolute mean curvature histogram and
define a threshold leading to edge extraction. Then, they ask for user help
to validate the result or compute another threshold. To extend this threshold120

computation, we can normalize the curvature and fix the histogram range.
Chen and Feng [5] propose to construct the mean curvature histogram, and

then to apply a Laplacian smooth modifier. After, they compute valleys on
the histogram, which define segmentation thresholds. Finally, they retrieve the
isolated regions and improve their boundaries. But their method is limited since125

they do not have a single primitive per submesh. To extend this segmentation,
we can apply a recursive extraction of salient edges.

2.1.2. Primitive type detection

Primitive extraction starts from an initial set of measured data and builds
derived values, which are primitives (Fig 4).130

Figure 4: a) Original 3D mesh, b) Curvature: planar (green), spherical (yellow), convex (blue)
and concave (red), c) Point areas, d) Extracted primitives [2].

We generally search for planes, spheres and cylinders because they are the
most common primitives contained in mechanical objects, but we can also search
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for cones, torus or ruled surfaces for example. Primitive extraction can be based
on fitting profiles [1], quadratic surfaces [29] or freeform surfaces [30]. But most
of the time, primitive extraction uses curvature analysis, after a mesh segmen-135

tation [2], with a distribution [31], or even with outlier handling [32]. Since
two primitives with identical parameters are not distinguished by their curva-
ture, these methods cannot directly handle primitive positions. But curvature is
robust to noise, and can be analyzed locally to extract each primitive separately.

The limit of these methods is that they can not estimate the primitive type140

before extraction. To detect this primitive type, we propose to analyze the
principal curvature distributions.

2.1.3. Noise and mesh quality evaluation

In many 3D processes, it is important to handle noise properly to avoid
distorted representation. But noise characterization depends on the chosen145

scanner. In fact, noise characterization for depth sensors [33] and for laser
beams [34] are different. So, digitization noise estimation is difficult. Most of
the time, methods presume a Gaussian and isotropic noise, which does not re-
flect reality. To properly deduce the real noise type, it is necessary to know the
object shape before the analysis. But in case of digitized meshes, we cannot150

know this shape. Moreover, many different noises can be present at the same
time. In Fig. 5, we apply different values of gaussian noise to a sphere and
compare curvature histograms. We show that curvature distributions of noisy
spheres have a gaussian shape, which is related to the noise type.

Figure 5: Spheres of radius r = 10 with gaussian noise and their corresponding mean curvature
histogram: a) original sphere, b) σ = 0.01, c) σ = 0.1.

We can also introduce an estimation for the roughness of the surface [35],155

which is defined by a local analysis of the curvature values. Like the noise on
coordinates, the roughness can be difficult to characterize since it depends also
on the object material and the digitization. Sometimes, roughness can quantify
locally the noise.
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3. Proposed curvature distribution analysis160

Our proposed method first computes a discrete curvature on each vertex
of the initial 3D mesh. This method constructs a continuous estimated and
normalized histogram for each curvature (Section 3.1), then analyzes it (Sec-
tion 3.2). An overview of our proposed method is illustrated Fig. 6.

Figure 6: Method overview.

We provide, for example, a peak and valley extraction used for segmentation165

(Section 4.1). In the same way, some statistics computed on each histogram are
useful to adapt geometric extraction tolerances (Section 4.2) or measure the
quality of the mesh (Section 4.3).

3.1. Probability curvature distribution

A probability distribution assigns a probability to each measurable subset of170

the possible outcomes of a random experiment, survey, or procedure of statistical
inference. We can represent a probability distribution by a histogram. But to
define the probability distributions for the simplest cases, we need to distinguish
between discrete and continuous random variables. In the discrete case, we can
easily assign a probability to each possible value. By contrast, when a random175

variable like curvature takes values from a continuum, then probabilities can be
nonzero only if they refer to intervals.

To approximate continuous curvatures on a discrete 3D mesh, we use the
method proposed by Bénière et al. [2]. In our case, meshes can be defined
with different scales and can give different curvature ranges. So, to construct180
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curvature histograms which can be compared between many objects, we must
normalize curvature values with each mesh (Section 3.1.1). Moreover, curvature
values are real, so it is more suitable to construct a histogram with kernel-
estimation for example (Section 3.1.2).

3.1.1. Normalized curvature185

Histograms must have the same range to make a comparison. Indeed, we
must take into account the mesh scale. To homogenize them, curvature values
have to be normalized. Our method normalizes curvature values by multiplying
them by the mean edge length of the mesh.

If the object is correctly meshed and edge lengths are equal, we can deduce190

the minimum and maximum possible curvature values, as illustrated in Fig. 7.
We propose then to limit the histogram range according to these values.

Figure 7: Minimum and maximum possible for absolute curvature values.

Edge lengths of a digitized mesh are not all equal, but they are similar enough
to not distort the histogram. If a mesh has varying edge lengths, some curvature
values can be truncated. Most of the time, there is only a small number of long195

edges, and the histogram is similar with or without these edges.

3.1.2. Kernel estimation

Curvature values are real, so it is more suitable to compute a histogram with
a continuous estimation. Our method computes histograms with a kernel-type
estimation. We chose a gaussian kernel because digitized meshes with only one200

primitive often give gaussian-type curvature distributions. This may be related
to scanner characteristics. We compute the histogram with:

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi), (4)
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where x is the central value of a bin, f̂h(x) is the quantity inside the bin, n is
the number of points, xi is the ith point and h is the kernel standard deviation.
The gaussian kernel is defined by:205

Kh(x− xi) =
1

h
√

2π
e−

1
2 (

x−xi
h )2 . (5)

Each bin of the histogram is computed by centering the kernel on it. Then,
kernel density estimation (KDE) is applied on each curvature value and added
to the bin. So each bin is computed with a neighborhood defined by the kernel
standard deviation. Fig. 8 shows an example of a normalized mean curvature
distribution with a kernel deviation h = 0.01.210

Figure 8: Normalized mean curvature kernel-estimated histogram example.

This continuous estimation makes histograms less sensitive to noise and bin
number. Indeed, high frequency fluctuations are naturally smoothed by the
kernel. Besides, if the noise deviation is close to or greater than the kernel
deviation, curvature values can be too mixed and histogram analysis is limited.

3.2. Analysis215

Many caracteristics of a histogram can be useful to numerous applications.
We can, for example, search for a modal number and positions (named “peaks”
here), pattern, sparsity and statistics. In our method, we essentially provide
robust peak and valley detection (Section 3.2.1), and use some statistics like
mean and standard deviation (Section 3.2.2).220

3.2.1. Peaks and valleys

To detect homogeneous curvature intervals, we need to detect peaks and
valleys in the histogram, as illustrated in Fig. 9.a and Fig. 9.b. A peak defines
a dominant curvature value and a pair of two consecutive valleys defines an
homogeneous interval of curvature.225

To detect peaks (or modes), many methods exist like the mean-shift algo-
rithm [36]. But these kind of methods can be heavy and do not detect valleys.
Therefore, we prefer to use a simple method based on derivatives.

We begin by computing a discrete approximation of the second derivative of
the histogram:230

D2(i) = H(i+ 1) +H(i− 1)− 2H(i), (6)

with D2(i) the ith second derivative value and H(i) the ith histogram value.
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Figure 9: Histogram: a) peaks and b) valleys.

Thus, we aim to detect robust peaks and valleys from the second derivative.
A peak (resp. a valley) is a bin with a higher (resp. a lower) probability than
the two adjacent bins. A robust peak (resp. a robust valley) is a bin with the
highest (resp. the lowest) probability in a window. Finally, a robust peak (resp.235

a robust valley) in the second derivative corresponds to a valley (resp. a peak)
in the histogram. Our method uses small sliding windows for both peaks and
valleys detection, just to avoid small fluctuations.

3.2.2. Gaussian Mixture Model

We can also estimate our distribution by a Gaussian Mixture Model (GMM),240

which provides mean and standard deviation of each homogeneous interval of
curvature. To do this, we can use algorithms like K-Means or Bayesian Informa-
tion Criterion (BIC) to give a number of gaussian models. Thus, we can use an
Expectation-Maximisation algorithm (EM) to optimize these models (Fig. 10.a).

Figure 10: a) Gaussian Mixture Model of a histogram, b) Starting models with peak and
valley detection.

With our peak and valley detection, it is possible to obtain a fast convergence245

of EM. Indeed, we can suppose that the optimal number of models is close to
our number of valleys. Moreover, we can compute starting mean and standard
deviation of each model by computing it between each couple of consecutive
valleys (Fig. 10.b). We can see that these models are already close to optimized
ones, so fewer iterations are needed to compute them.250
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4. Curvature distribution applications

Our method can be useful in many applications. This section presents three
applications which can be used, for example, in a reverse engineering process:
digitized 3D mesh segmentation (Section 4.1), primitive type detection with
tolerances adaptation (Section 4.2) and mesh quality measurement (Section 4.3).255

4.1. Segmentation

In our case, we work on digitized meshes, with point coordinate inaccuracies
and noise. To correctly segment these, we aim to extract salient object edges
matching with intersections between geometric primitives (Section 4.1.1). We
can retrieve isolated and homogeneous regions (Section 4.1.2). Finally, we also260

apply recursivity (Section 4.1.3) to improve results and obtain only one primitive
in each submesh. Our proposed segmentation, based on curvature histogram
analysis, is fast and completely automated. Fig. 11 shows an overview of our
proposed segmentation.

Figure 11: Segmentation overview based on the proposed curvature analysis.

4.1.1. Edge extraction265

The edges of an object are the salient mesh areas characterized by a high
curvature. We propose to extract these edges with curvature histogram analy-
sis, as described in Section 3. Indeed, high curvatures are on the extremities of
curvature histograms. To detect and extract the edges, we apply a thresholding
on curvature values. Our method defines two thresholds, matching with the270

extreme left and right valleys of the histogram (Fig. 12). Points with curva-
ture between the two thresholds are labelled “uniform”, and others are labelled
“edge”.
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Figure 12: Edge extraction.

We can also realize multiple thresholding by taking each valley pair as thresh-
olds (Fig. 13). This method directly isolates homogeneous intervals, but we need275

to be aware of potential curvature inaccuracy.

Figure 13: Homogeneous area extraction.

To improve edge detection, we may have to remove some valleys which are
due to downsampling on some curvature intervals.

4.1.2. Region growing

After curvature thresholding, we can retrieve connected points by region280

growing. Our method retrieves triangles instead of points, but it is based on
the same principle. A triangle type is defined by its dominant point type. Region
growing is a common algorithm that groups similar adjacent elements: take a
“seed” triangle and assign a unique ID (Fig. 14.a) and propagate the seed ID
to its neighbors (Fig. 14.b) until it reaches the borders (Fig. 14.c).285

Figure 14: Region growing algorithm.

The choice of the seed does not matter since triangles have only two possible
values: threshold or non-threshold. We always retrieve the same set of regions.
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4.1.3. Recursivity

A mechanical object can be composed of many parts with different scales.
In this case, it is not possible to compute a unique threshold to obtain optimal290

results. So in our method, we choose to apply recursive segmentation. In fact,
we segment the input mesh, then segment again each submesh with the same
method, until we obtain only one region by submesh. Since our method is based
on curvature histogram analysis, each submesh has a different histogram and
we can detect object edges with many scales (Fig. 15).295

Figure 15: Recursive segmentation.

4.2. Primitive type detection tolerances

Most of the time, geometric primitive extraction uses many tolerances. These
tolerances, on curvature for example, are often specific to the primitive type
(plane, sphere, cylinder, cone, torus, ...). If we can determine the dominant
surface type in a mesh, we can also adapt tolerances thanks to this information.300

In fact, we can deduce it directly from curvature histogram analysis. So, it is
possible to improve geometric surface fitting. This section presents tolerance
adaptation for planes and spheres in Section 4.2.1, cylinders in Section 4.2.2
and more complex primitives in Section 4.2.3.

4.2.1. Planes and spheres305

On a plane, the two principal curvatures equal zero. So we can define a
planar mesh as a mesh with minimum and maximum curvature histogram values
around zero (Fig. 16.a).

The tolerance of zero curvature can be computed from the principal curva-
ture histograms:310

CurvatureZeroPlane =
SigmaMin + SigmaMax

2
, (7)

with SigmaMin and SigmaMax the standard deviations of minimum and max-
imum curvature histograms.
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Figure 16: Principal curvature histograms: a) for a plane and b) for a sphere.

On a sphere, the two principal curvature histogram values are equals and
far from zero. So we can define a spherical mesh as a mesh with minimum and
maximum curvature histogram values which are similar and far from zero, as315

illustrated in Fig. 16.b.
The curvature similarity tolerance can be computed with:

LowerBound = min(MuMin − SigmaMin;MuMax − SigmaMax),

UpperBound = max(MuMin + SigmaMin;MuMax + SigmaMax),

SimilarCurvaturesSphere = [LowerBound, UpperBound],

(8)

with (MuMin, SigmaMin) and (MuMax, SigmaMax) the mean and standard
deviation of minimum and maximum curvature histograms respectively.

4.2.2. Cylinders320

On a cylinder, one of the principal curvatures equals zero and the other is
far from zero. So we can define a cylindrical mesh as a mesh with a principal
curvature histogram around zero and the other far from zero (Fig. 17).

Figure 17: Principal curvature histograms for a cylinder.

We can compute a zero curvature tolerance from the histogram with curva-
ture values around zero:325

CurvatureZeroCylinder = SigmaZero, (9)

with SigmaZero the standard deviation of the histogram which is around zero.
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4.2.3. Other primitives

We can also find other primitive signatures in curvature histograms.
On a cone, one of the principal curvatures equals zero and the other is

variable (Fig. 18.a). So we can only analyze the zero curvature histogram.330

On a developable surface, one of the curvature equals zero, and the other
is variable. The difficulty is that we may have an inversion of minimum and
maximum curvatures values (Fig. 18.b). A possible solution can be to use the
principal directions to test the consistency of the two sets of curvatures.

Figure 18: Principal curvature histograms: a) for a cone and b) for a developable surface. We
can see in hatched orange a constant curvature which can be analyzed.

We can extend this to other surfaces. For example, on a torus or a uniform335

generalized cylinder, one of the curvatures is constant, even if we can have the
same curvature inversion as a developable surface. In all cases, if we can find
a constant curvature, we can use it to adapt tolerances and also measure mesh
quality, as described in Section 4.3.

4.3. Quality measurement340

In many 3D processes, noise leads to distortion and has an impact on result
accuracy. So to handle this noisy data, we can quantify it on curvature values.

From our curvature distribution approximated by a GMM, as defined in
Section 3.2.2, we can retrieve standard deviation of each homogeneous interval,
as illustrated in Fig. 19.a, and so estimate a global value representing the noise345

quantity. For example, we can basically use the mean of standard deviations,
before or after removing outliers.

In Fig. 19.a, models number 6 and 7 could be outliers because a primitive
leads to a sharp mode, whereas smooth ones are often due to noise. We can
also weight each standard deviation by the number of corresponding points to350

compute the mean.
Furthermore, we can also analyse each standard deviation according to the

surface type (primitive), size, position, and so characterize noise more accu-
rately. Indeed, the noise depends on the scanner sensor type (depth, laser...),
but also on object material, texture, or even scene luminosity and object radi-355

ance. In fact, we can approximate curvature distortion between the digitized
mesh (Fig. 19.a) and the corresponding CAD mesh (Fig. 19.b).

We can also construct many distributions, like minimum, maximum, mean
and gaussian curvature histograms, and gather all the informations of those
to obtain a better characterization. But it is very difficult to have a good,360
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Figure 19: a) Example of GMM standard deviations. b) Corresponding CAD curvature
distribution.

accurate and mostly exhaustive method allowing proper noise characterization.
In previous work they try to quantify impact of noise on point coordinates, for
depth sensor [33] or laser beam [34] scanners, and propose adapted algorithms.

In our case, we can even characterize the noise on each submesh from a seg-
mentation (Section 4.1), and avoid object edge curvature errors in our analysis.365

So, it is possible to measure the noise depending on the mesh area, compare
values and compute some statistics. This possibly leads to other applications
like scanner noise characterization [37], for example.

5. Experimental results

Section 5.1 presents three meshes from different scanners. Then, we show370

our results on these meshes, for segmentation in Section 5.2, primitive type
detection in Section 5.3 and quality measurement in Section 5.4.

5.1. Presentation of the three used meshes

For experimental results, we used three digitized meshes from two different
structured light scanners. The first two come from a first scanner and are375

illustrated in Fig. 20 and Fig. 21 respectively. The third comes from a second
scanner and is illustrated in Fig. 22.

Figure 20: Initial mesh from Scanner 1: Aerospace.
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Figure 21: Initial mesh from Scanner 1: Moldy.

Figure 22: Initial mesh from Scanner 2: Outlet.

To have an accuracy with an order of magnitude of −3 and center values
around zero in the same bin, our method constructs histograms with 1001 bins.
These histograms are constructed using a kernel with a standard deviation h =380

0.01. Moreover, we limit our histogram range in the interval [−2; 2] since we
normalize curvature by edge length.

5.2. Segmentation

This section presents results of our segmentation using curvature histogram
analysis. Each figure shows edge extraction and the final submesh set. In385

reverse engineering, our results are very good, since most of the primitives are
correctly isolated. Indeed, edge extraction is accurate since curvature thresholds
are computed from distribution, and so are adaptative.

The sharp edges of Aerospace are properly detected (Fig. 23.a) and the
primitives are correctly isolated, except for a few tangent ones. We obtain 70390

submeshes and 94.3% of them contain a single primitive (Fig. 23.b).
The sharp edges of Moldy are properly detected (Fig. 24.a) and the primitives

are also correctly isolated. We note that freeforms are not over-segmented. We
obtain 48 submeshes and all of them contain a single primitive (Fig. 24.b).

The sharp edges of Outlet are properly detected (Fig. 25.a), except for the395

serrated cylinders, and the primitives are almost all correctly isolated. We
obtain 72 submeshes and all of them contain a single primitive (Fig. 25.b).

As illustrated in Fig. 26, curvatures and thresholds are computed from each
submesh at each recursion step. Then, we can continue to segment a submesh
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Figure 23: a) Edge extraction and b) Segmentation of Aerospace.

Figure 24: a) Edge extraction and b) Segmentation of Moldy.

Figure 25: a) Edge extraction and b) Segmentation of Outlet.
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until we obtain only one region. We can observe that sharp edges are removed400

from the sharpest to the smoothest. Indeed, each recursion step refines the
curvature thresholds to extract smoother edges.

This recursion has a major impact on the robustness of our method, which is
fully automated and adapts to each step. For example, it is possible to correctly
segment an object with heterogeneous noise.405

Figure 26: Example of automatic recursion: a) Edge extraction and b) Segmentation of
Manique, c) Edge extraction and d) Segmentation of the first submesh from b), e) Edge ex-
traction and f) Segmentation of the first submesh from d). The computed curvature thresholds
are shown in the middle, computed from the corresponding grey part.

We have segmented 30 meshes, with a processor Intel R© Core
TM

i7-4710 CPU
@ 2.50GHz. These meshes are extremely varied: they are generated from differ-
ent softwares, with or without preprocessing, small or large, more or less noisy.
Results are presented in Table 1, where bold names correspond to the three
presented meshes (see section 5.1).410

We can see that our segmentation is fast: less than one minute, except for
very large amounts of triangles. Morover, these times also include curvatures
and mesh topology computation, which represents a large part of the calculation.

To validate our approach, we count the number of submeshes that contain
only one primitive. We can see in Table 2 that about 96% of submeshes match415

with only one primitive (remaining 4% can contain similar tangent primitives).
Since primitives are correctly isolated, obtained results are suitable for a

reverse engineering application. Indeed, it is more accurate and easy to extract
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Mesh Triangle T. R.
Vase 20 000 <1s 6
Fandisk 23 964 <1s 21
Lego 24 748 <1s 35
Lego small 26 371 <1s 10
Cup 55 552 1s 32
Yoke 62 276 1s 8
Manique 65 090 1s 40
Nespresso 71 012 1s 5
MediumBolt 89 000 2s 11
StripedShoe 100 000 1s 16
Connector 195 424 4s 36
Outlet 195 853 5s 72
Etui 210 963 5s 3
Shoe 258 994 3s 4
Czslowakei 400 026 8s 162

Mesh Triangle T. R.
Part2 414 823 12s 20
Chair 500 000 7s 85
Gear 500 000 6s 283
Aerospace 799 296 16s 70
Master 820 793 29s 53
Moldy 851 194 13s 48
Watertight 921 216 16s 40
OilPump 1 064 031 22s 175
Carter 1 067 079 34s 108
Pump 1 105 570 21s 518
Block 1 125 832 33s 113
Te 1 297 428 40s 39
Splint 2 095 079 1m09s 21
Metrologic 2 159 724 1m27s 14
ProductPart 3 427 245 2m16s 191

Table 1: Segmentation performances: time (T.) and region number (R.).

Mesh O.P. Total in %
Vase 6 6 100
Fandisk 20 21 95.2
Lego 35 35 100
Lego small 10 10 100
Cup 32 32 100
Yoke 7 8 87.5
Manique 33 40 82.5
Nespresso 5 5 100
MediumBolt 10 11 90.9
StripedShoe 16 16 100
Connector 33 36 91.7
Outlet 72 72 100
Etui 3 3 100
Shoe 4 4 100
Czslowakei 162 162 100

Mesh O.P. Total in %
Part2 20 20 100
Chair 79 85 92.9
Gear 279 283 98.6
Aerospace 66 70 94.3
Master 49 53 92.5
Moldy 48 48 100
Watertight 35 40 87.5
OilPump 169 175 96.6
Carter 106 108 98.1
Pump 502 518 96.9
Block 111 113 98.2
Te 36 39 92.3
Splint 19 21 90.5
Metrologic 13 14 92.9
ProductPart 182 191 95.3

Table 2: Submeshes with only one primitive (O.P.).
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only one primitive than many on the same mesh, since we do not encounter
curvature neighborhood problems or primitive intersections.420

5.3. Primitive type detection

This section presents results of our geometric extraction using curvature
histogram analysis to detect the primitive type and then adapt the tolerances.
Each figure shows extracted primitives with tolerances computed by mesh anal-
ysis [7] and curvature analysis. The best mesh analysis results are obtained with425

parameter computations using edge lengths, numbers of points or elements and
object size. We show that our results are better with curvature analysis because
the tolerances are more accurate and suitable for the purpose. Indeed, we can
determine the main primitive on a mesh (Section 4.2), and particularly on each
submesh after segmentation. Since our segmentation gives submeshes with only430

one primitive (Table 2), we can more accurately compute the tolerances for each
primitive independently.

Aerospace contains 71 primitives with mesh analysis (Fig. 27.a). Some cylin-
ders and cones are not extracted because they are often more noisy and so less
stable than planes. We extracted them with curvature analysis and obtained435

105 primitives (Fig. 27.b).

Figure 27: Geometric primitives extraction with a) mesh analysis and b) curvature analysis
of Aerospace.

Moldy contains 37 primitives with mesh analysis (Fig. 28.a). The small
cylinders are not extracted because the tolerances must be more accurate than
those of larger ones. Curvature analysis resolves this problem and leads to
extraction of 55 primitives (Fig. 28.b).440

Outlet contains 31 primitives with mesh analysis (Fig. 29.a). All cylinders
are missing, because they are too noisy or are serrated on this mesh. With
curvature analysis, our tolerance adaptation balances the noise and we obtain
52 primitives (Fig. 29.b). The serrated cylinders are still not very well rendered,
but it is a relatively specific case where the curvature is not constant.445

We have extracted primitives from 30 meshes after segmentation, and com-
pared results between the mesh analysis proposed by Bénière et al. [2] and our
proposed curvature analysis in Table 3. These results are related to regions
containing only one primitive, presented in Table 2.
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Figure 28: Geometric primitives extraction with a) mesh analysis and b) curvature analysis
of Moldy.

Figure 29: Geometric primitives extraction with a) mesh analysis and b) curvature analysis
of Outlet.

Mesh F.M.A.[2] F.C.A.

Vase 1 4

Fandisk 14 20

Lego 15 30

Lego small 5 9

Cup 1 4

Yoke 1 3

Manique 28 32

Nespresso 1 4

MediumBolt 4 6

StripedShoe 2 2

Connector 22 28

Outlet 31 52

Etui 2 3

Shoe 2 2

Czslowakei 102 107

Mesh F.M.A.[2] F.C.A.

Part2 11 16

Chair 19 44

Gear 277 279

Aerospace 71 105

Master 0 7

Moldy 37 55

Watertight 8 28

OilPump 17 56

Carter 3 9

Pump 241 263

Block 85 89

Te 20 28

Splint 8 14

Metrologic 0 16

ProductPart 0 62

Table 3: Primitive extraction with Mesh Analysis (F.M.A.) proposed by Bénière et al. [2] and
Curvature Analysis (F.C.A.) tolerance adaptation.
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We can see that curvature analysis leads to a better primitive extraction,450

which is suitable for reverse engineering applications. Indeed, tolerances are
more accurate and adaptative for each submesh, and take the primitive type into
account. Moreover, curvature analysis tolerances can balance a larger amount
of noise than mesh analysis.

5.4. Quality measurement455

This section presents results of our proposed method using curvature analysis
to quantify the noise of a digitized mesh.

Figure 30: Noise in submesh minimum (blue, left), maximum (orange, middle) and mean
(grey, right) curvature distributions. Each position on horizontal axis represents a different
submesh, and vertical axis shows the corresponding standard deviation values.

We have analyzed the noise of four meshes after segmentation, i.e. the noise
in each submesh (Fig. 30). We can see that the noise is often different between
submeshes. Moreover, mean curvature is almost always less sensitive to noise.460

These results can lead to a better primitive extraction tolerance adaptation (Sec-
tion 4.2), or use in other fields like scanner recognition and authentication [37].

To quantify mesh quality, we can compute statistics on this noise, and then
give a global measurement. For example, we can compute a mean or a point
number weighted mean of standard deviations. In the same way, we can compute465

the noise directly from the entire mesh, i.e. without segmentation, from the
curvature distribution GMM (Section 4.3). Since we use a gaussian kernel with
a standard deviation h to construct our distribution (Section 3.1.2), we measure
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a mesh quality by:

σMean < 2h→ Good quality,

2h ≤ σMean < 3h→Middle quality,

σMean ≥ 3h→ Bad quality.

(10)

Mean curvature analysis results on the three used meshes (Section 5.1) are470

compared in Table 4. First of all, we used the entire mesh and a GMM (Sec-
tion 3.2.2). Then, we used the segmented mesh with its corresponding sub-
meshes (Section 5.2).

a) Without segmentation:
Mesh GMM Models Deviation Mean Weighted mean
Aerospace 3 0.015 0.014 0.015

0.015
0.013

Moldy 2 0.023 0.019 0.022
0.015

Outlet 3 0.027 0.030 0.028
0.028
0.034

b) With segmentation:
Mesh Submeshes Deviation Mean Weighted mean
Aerospace 70 min = 0.003 0.013 0.009

max = 0.122
Moldy 48 min = 0.001 0.008 0.006

max = 0.086
Outlet 72 min = 0.001 0.013 0.010

max = 0.065

Table 4: Measuring the quality: a) without segmentation and b) with segmentation.

Aerospace curvature distribution contains 3 gaussian models which are sim-
ilar with a low standard deviation. After segmentation, we obtained a similar475

basic average, but with a better weighted average, suggesting that there are
large areas that are of a high quality. Globally, this mesh has good qualities.

Moldy curvature distribution contains 2 gaussian models which are different
with a low to middle standard deviations. After segmentation, the averages are
significantly better, suggesting that distribution analysis on the entire submesh480

is not adapted. This mesh has an average quality whereas most of its submeshes
have a very good quality.

Outlet curvature distribution contains 3 gaussian models which are different
with two middle and a high standard deviations. After segmentation, the aver-
ages are better, suggesting that distribution analysis on the entire mesh is not485

the best approach. This mesh has a high quality when evaluated on submeshes.
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Globally, we can see through our results that curvature distribution analysis
on a segmented mesh is better than on the entire mesh. Indeed, the submeshes
have homogeneous curvature values and so are consistent for noise evaluation.
Although, the entire mesh contains many primitives that are mixed in a unique490

distribution. So, a model can approximate many primitives at the same time.
This leads to a degraded approximation and therefore a degraded mesh quality
evaluation.

The noise evaluation, associated with primitive type detection after segmen-
tation (Fig. 31), can give a quality coefficient depending on the type.495

Figure 31: Primitive type detection and noise evaluation on Metrologic.

For example, we can compute the quality coefficient with:

if P lane : Qf = SigmaMean,

if Sphere : Qf = SigmaMean,

if Cylinder : Qf = max(SigmaMin, SigmaMax).

(11)

Note that in this object, a submesh contains a torus with two sheres. Our
method detects the submesh as spherical, because the minor radius of the torus
equals one of the spheres. So, the associated curvature values are similar. How-
ever, the major radius leads to a small peak on the maximum curvature his-500

togram, but not significant enough to disturb the method (Fig. 32).
In the same way, we can detect submeshes with higher noise than the others

and have a better adaptation of our algorithms. To illustrate this, the upper
right plane in Fig. 33 has a slightly higher noise than others for the minimum
curvature distribution.505

We can also use this to improve some processes. For example, we can apply
a recursion on segmentation with noise handling, depending on the primitive
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Figure 32: Principal curvature histograms of the submesh containing the torus and the two
spheres (Fig.31).

Figure 33: Primitive type detection and noise evaluation on Lego small.
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type. Indeed, the interpretation of the noise from a plane is slightly different
than that from a cylinder or a sphere. So, we can construct histograms with a
different bin number and kernel standard deviation, according to this noise.510

5.5. Case study: quality control

The proposed approaches developed in this paper can be used in many ap-
plications. In case of a process using reverse engineering, we can, for example,
control the quality of some parts during a manufacturing process, as illustrated
Fig. 34.515

Figure 34: Example: quality control in a production line.

In fact, we can digitize separately each part of an object, then analyze their
curvature distributions, as presented in Section 3. This allows us to segment
the digitized meshes (Section 4.1) and then extract the geometric primitives
(Section 4.2). Finally, we can measure distances between the primitives and
the initial points (Section 4.3), but also angles and distances between the dif-520

ferent primitives. We can thus quantify the quality of the manufactured object,
and eventually stop the manufacturing process if an anomaly is detected, as
illustrated Fig. 34.

Since our proposed methods are fast and automatic, this process can be used
in real time for control on a production line.525

6. Conclusion

In this paper, we proposed a new digitized 3D mesh shape analysis based
on curvature analysis. Our proposed method is fast and fully automated, which
is an advantage for industrial applications like reverse engineering for example.
Our proposed analysis first constructs a continuous normalized curvature dis-530

tribution, then searches for peak and valley positions and values, and finally
provides some statistics computed from the curvature distribution.

Our histogram analysis leads to an automatic computation of some parame-
ters. So, it can be useful for a large number of processes using many parameters,
which often need to be fixed by an expert.535

We chose a reverse engineering process because it is a growing research area,
which becomes a hot topic for industrials. Indeed, it is used in many applica-
tions since it allows to retrieve directly a parametric model (and thus a CAD
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model if discretized) from a digitized object. We can also measure object devi-
ation for quality control, reconstruct lost models, copy and understand how a540

mechanical object works for example. Moreover, our proposed applications can
be a reliable base for primitive adjustments (like beautification), assembly or
symmetry analysis.

We applied our method on three fields: 3D mesh segmentation, geomet-
ric primitive type detection and measurement of quality. We showed that our545

proposed method is accurate and adapted to many fields, through results on
digitized 3D meshes from different scanners.

For 3D mesh segmentation, curvature thresholds are computed from the
distribution to extract the object salient edges. Then, it is possible to retrieve
isolated regions corresponding to the object primitives. The final submeshes550

are homogeneous, and each submesh matches with only one primitive. It also
provides important information, like the primitive neighborhood through edge
connectivity. Our segmentation is fast and automatic.

For primitive extraction, the type of the primitive is deduced from the distri-
bution and then curvature tolerances are computed to fully adapt them to each555

3D mesh. Then, more primitives are extracted and they are more accurate.
For quality measurement, statistics are computed in the first instance on the

entire mesh, and then on each submesh after segmentation. These statistics, like
standard deviation, quantify the noise of a mesh or its submeshes, and so the
mesh quality. This quality measurement must be interpretated according to the560

distribution construction parameters.
We show that our three applications can be associated to improve results.

These three fields show the extensibility and the robustness of our method,
which can be used with any distribution to quickly and automatically adapt a
method according to the input data.565

In future work, we will analyze more precisely our curvature distribution
construction parameters, like bin number or kernel standard derivation, to im-
prove computing accuracy. In the same way, we will try to compute multiple
primitive extraction tolerances in the case of 3D meshes with more than one type
of primitive. We can also search for multi-resolution curvature distributions.570
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