
HAL Id: hal-01575664
https://hal.science/hal-01575664

Submitted on 23 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-driven Engineering of Machine Executable Code
Michael Eichberg, Martin Monperrus, Sven Kloppenburg, Mira Mezini

To cite this version:
Michael Eichberg, Martin Monperrus, Sven Kloppenburg, Mira Mezini. Model-driven Engineering of
Machine Executable Code. Proceedings of the 6th European Conference on Modelling Foundations and
Applications, 2010, Berlin, Germany. pp.104-115, �10.1007/978-3-642-13595-8_10�. �hal-01575664�

https://hal.science/hal-01575664
https://hal.archives-ouvertes.fr

In: Proceedings of the 6th European Conference on Modelling Foundations and Applications (ECMFA'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

Model-driven Engineering of
Machine Executable Code

Michael Eichberg2, Martin Monperrus2, Sven Kloppenburg1, and Mira Mezini2

1. Kimeta GmbH, Germany
kloppenburg@kimeta.de

2.Technische Universität Darmstadt, Germany
{eichberg,monperrus,mezini}@cs.tu-darmstadt.de

Abstract. Implementing static analyses of machine-level executable code
is labor intensive and complex. We show how to leverage model-driven
engineering to facilitate the design and implementation of programs do-
ing static analyses. Further, we report on important lessons learned on
the benefits and drawbacks while using the following technologies: us-
ing the Scala programming language as target of code generation, using
XML-Schema to express a metamodel, and using XSLT to implement
(a) transformations and (b) a lint like tool. Finally, we report on the use
of Prolog for writing model transformations.

1 Introduction

Programs implementing static analyses of machine-executable code are com-
plex [1, 2]. In the terms of Brooks [3], they not only contain intrinsic complexity
but also significant accidental complexity. In such programs, several modules
are highly interdependent: reading machine-executable code at the byte level,
inferring higher-order representation such as control-flow or data-flow graphs,
and eventually checking this representation against a property to verify.

Even if these problems are more or less tractable, it is impossible to reuse
static analyses across different, yet comparable sets of machine level instructions
(e.g. between the Java and the Python sets of bytecodes). However, the ability
to write analyses that can be reused across projects is of primary importance
in commercial settings. Many industrial projects use multiple languages and
technologies and reimplementing basically the same analyses again and again
for different languages is not feasible. This state of facts motivated us to design
from scratch a static analyses tool in a model-driven manner to improve reuse
of analysis components.

So far, we have mentioned four main problems in implementations of static
analyses: 1) reading low level formats, 2) inferring higher-order representations,
3) writing the analyses and 4) handling different kinds of executable code. In this
paper, we present an architecture that separates all these concerns in different
and clearly separated blocks, such that all links from one block to another are
implemented using code generation or model transformation. Overall, our con-
tribution is twofold: first, we describe a model-driven architectural blueprint for

In: Proceedings of the 6th European Conference on Modelling Foundations and Applications (ECMFA'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

the application domain of static analysis tools; second, we report on important
benefits and drawbacks of using different technologies for the implementation.

The main lessons we have learned from the design and implementation of our
model-driven static analysis toolkit are:

– One of the code generators generates Scala code. It seems that this powerful
target programming language has much facilitated the implementation of
the generator.

– We chose XML-Schema as the implementation technology of the metamodel
of executable code. Many, but not all domain-specific constraints could have
been implemented with XML-Schema. This confirms the results of [4, 5]
showing that expressing the static semantics is never straightforward within
only a structured metamodel.

– Implementing model transformations in Prolog to express static analyses
allows us to write concise and declarative analyses.

The remainder of the paper is structured as follows: Section 2 gives the big
picture of our approach. Sections 3 presents the metamodel for specifying byte-
code instructions. Section 4 discusses the implementation of analyses. Section 5
lists the lessons we learned. Finally, Section 6 discusses related work and Sec-
tion 7 concludes the paper.

2 Overview

This section presents the architecture of a new static analysis toolkit that we
have been implementing for one year. The architure is designed in a fully model-
driven way. First, it is based on three different levels of abstraction, layered in
an ontological way as defined by Kühne [6], where the main artifact of each layer
is an instance of the upper layer (a meta-layer w.r.t. the lower one.) Second, the
architecture uses several times both code generation and model transformation.

Fig. 1 depicts this architecture in terms of the main artifacts and dependen-
cies between them. Boxes represent data (in a larger sense: software to analyze,
models, generated code, etc.), and arrows represent relationships between the
data (also in a larger sense: generation, transformation, etc.). The three ontolog-
ical layers are stacked, separated with lines and numbered (from “1” for the most
abstract to “3” for the most concrete). The boxes that have a gray background
are generated artifacts. We now describe each element at a conceptual level. The
details about the technology used and the size and complexity are described in
the following sections.

2.1 Meta Layers

Let us now describe the stacked layers of our architecture. We have defined a
metamodel for bytecode instructions of virtual machines, which lies in layer #1,
at the top of Fig. 1 (a). This metamodel expresses what a bytecode instruction

In: Proceedings of the 6th European Conference on Modelling Foundations and Applications (ECMFA'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

Bytecode
Framework

(Scala)

processes

checks

instance of

Bytecode
Instructions Spec.

Meta Model
(XML Schema)

Bytecode
Instructions
Specification

(e.g., Java Bytecode)
(XML)

Machine
Executable Code

(e.g. Java
".class" Files)

Bytecode
Instructions

Spec. Analyses
(XSLT + Scala)

generated (XSLT)

Prolog
Representation

(.pl)

XML
Representation

(.xml)

generated
(CSS)

1

2

3
instance of

Classes and
Methods to read in
and represent Byte-
code Instructions

(Scala)

transformed into

Bytecode
Instructions Meta
Information (.pl)

generated
(XSLT)

3-address
Representation

(.pl)

transformed
(Prolog)

Documentation
(XML)

cooperates

transformed into

b

a

c d

e f

g

h

i

j

k

Fig. 1. Overview of the Architecture

is: type of instruction (e.g. add or remove something to the stack), number of
arguments, number of bytes in the machine-level format. This metamodel is fur-
ther discussed in Section 3. An instance of this metamodel is a specification of
bytecodes of a particular virtual machine, for instance, the specification of the
Java bytecode instruction set [7] is an instance of the bytecode metamodel. In
Fig. 1, an instance is represented in layer #2 as a Bytecode Instructions Speci-
fication (c). Finally, the software that is analyzed is an instance of a particular
bytecode format, and is logically in the lowest layer, numbered #3 (i.e. (g)).
If one analyzes Java software, each class file is an instance of the Bytecode In-
structions Specification. Note that these three elements are shadowed and linked
with dashed arrows “instance of” to emphasize the different levels of abstrac-
tions. The other boxes are tools (code generators, model transformations) to
manipulate these elements.

In: Proceedings of the 6th European Conference on Modelling Foundations and Applications (ECMFA'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

2.2 Specification of Bytecode Instructions

The central Bytecode Instructions Specification (c) is the input of one domain-
specific analysis and three code generators. The domain specific analysis (b) takes
the specification as input, and checks whether the specification fulfills certain
constraints. For instance, that each opcode only identifies one instruction and its
directly related variants. This domain specific analysis is necessary since not all
domain-specific constraints can be expressed within the uppermost metamodel.

Also, the Bytecode Instructions Specification is used to generate a human-
readable and structured documentation of the specification (d). It is also used
by two code generators: the first one generates object-oriented classes to read
machine-executable code (f) and to represent it in memory with domain classes.
This generated code cooperates with a manually written library for static anal-
ysis (e). However, note that this piece of code only addresses the concern of
reading class files. It is independent of the concern of specifying the analyses
themselves. The second code generator generates a library that supports the
writing of static analyses called Bytecode Instruction Meta Information, (h).

2.3 Specification of Static Analyses

So far, we are able to specify a family of bytecode formats and to generate the
tool to read and represent them in a domain-specific manner (i.e. no longer byte
arrays, but instance of first-class instructions). Let us now explain how to write
static analyses.

Basically, there are two ways to write static analyses, first one can write
them directly on top of domain classes using standard programming languages
or – as in case of our toolkit – as declarative static analyses. To enable writing
declarative analyses, the analyzed software is transformed into two different ar-
tifacts that both represent the machine executable code at the same granularity.
Class files can be transformed either into XML files (k) to write static analyses
in an XML based language (e.g. XSLT or XQuery). Additionally, they can also
be transformed in a set of Prolog facts (Prolog Representation – (i) in Fig. 1).

This set of Prolog facts enables us to write static analyses as Prolog rules
which handle the basic facts. Further, these facts are given to a model trans-
formation to obtain a higher-order representation of bytecode, called 3-address
Representation (j). The model transformation is also written in Prolog, using
the model of analyzed software (as Prolog facts), and an additional source of
information, the Bytecode Instruction Meta Information that is obtained auto-
matically from the bytecode specification (and discussed above in Section 2.2).
Section 4 provides a more in depth view on the static analyses.

2.4 Recapitulation

The architecture of our static analysis toolkit uses three stacked abstraction lev-
els, one domain specific model validation, three code generators, and three model

In: Proceedings of the 6th European Conference on Modelling Foundations and Applications (ECMFA'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

transformations. The following Sections (3 and 4) describe technical details. Sec-
tion 5 then exposes the lessons learned in the design and implementation of this
architecture.

3 A Meta-Model to Specify Bytecode Instructions

The meta-model for specifying bytecode instructions is called the OPAL Speci-
fication Language (OPAL SPL). It enables the encoding of instructions of stack-
based intermediate languages, such as, Java Bytecode [7] or CIL Bytecode [8].
OPAL SPL is rich enough to accommodate different bytecode formats and en-
ables the development of analyses and bytecode parsers that are independent of
the concrete instance of the specification [9]. To support this goal, the language
supports (i) the specification of the type system of the virtual machine which
executes the bytecode, (ii) the format of the bytecode instructions and (iii) the
specification of the effect on the stack and registers when the instruction is ex-
ecuted. OPAL SPL is focused on specifying the bytecode instruction set and
not the complete class file format since the instruction set’s structure is more
regular and sufficient for developing certain static analyses. The metamodel also
supports the declaration of functions (signatures only) to abstract over informa-
tion that is not directly specified along with an instruction. The functions are
implemented manually in a bytecode specific framework (“e” in Fig. 1).

Listing 1.1 shows the specification of the Java bytecode instruction getfield
as an instance of the OPAL SPL metamodel: the getfield field instruction is
an instance of the metaclass “Instruction”. Note that this specification uses the
functions decl class type (Line 4 in Listing 1.1) and field type (Line 5) which are
declared as part of the specification of the Java instruction set, these functions
return the type information related to an object’s field.

1 < instruction mnemonic=”getfield”>
2 The variable fieldRef is initialized by information in the class file.
3 <stack> <form>
4 <before><operand type=”decl class type(fieldRef)”/><rest/></before>
5 <after><operand type=”field type(fieldRef)”/><rest/></after>
6 </form> </stack>
7 </instruction>

Listing 1.1. Specification of the Java Bytecode instruction getfield as an
instance of the OPAL SPL metamodel

The specification of Java’s if icmpne instruction shown in Listing 1.2 demon-
strates some of the features of OPAL SPL. In Line 2-5 the format of the instruc-
tion is defined; i.e., how the instruction is stored in a class file. In this case the
instruction’s opcode (Line 3) is an unsigned byte with the value 161. The op-
code is followed by a signed short value representing a branch offset (Line 4).
When the instruction is executed it pops two int values and then conditionally
branches. The instruction does not push a value onto the stack (Line 10).

1 < instruction mnemonic=”if icmpne” transfers control=”conditionally”>

In: Proceedings of the 6th European Conference on Modelling Foundations and Applications (ECMFA'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

2 <format> <sequence>
3 <u1 var=”opcode”>161</u1>
4 <i2 type=”branchoffset” var=”branchoffset”/> <!−− relative PC −−>
5 </sequence> </format>
6 <stack> <form>
7 <before> <operand type=”int like”/>
8 <operand type=”int like”/>
9 <rest/></before>

10 <after> <rest/></after>
11 </form> </stack>
12 </instruction>

Listing 1.2. Specification of the Java bytecode instruction if icmpne as an
instance of the OPAL SPL metamodel

4 Writing Static Analyses

Many static analyses can be expressed w.r.t. abstract representations of instruc-
tions, thus generalising the algorithm for a family of languages. This section
demonstrates, how to express an algorithm to construct a control-flow graph.
The model of a bytecode instruction set enables the generation of classes repre-
senting each instruction, as well as the reader of the binary format. This program
is then used to transform machine executable code to a model of the software. A
model transformation transforms it to a set of Prolog facts. For instance, Listing
1.4 shows the result of the transformation of a simple “Hello World” method
(Listing 1.3) to the corresponding Prolog facts.

1 public static void hello (String [] args) {
2 if (args . length == 1) print(”Hello ” + args [0]) else print (”Hello World”);
3 }

Listing 1.3. Hello World in Java

1 method(cf 1,m 3,’hello’,sig([array(class(’java/lang’,’String’))],void),
2 public,abstract(no),final(no),static(yes),...).
3 /∗Method Implementation: ∗/
4 /∗PC=1−3 ∗/ Put the value 1 and the length of the array on the stack.
5 /∗PC=3 ∗/ instr(m 3,3,if icmpne(13)). // conditionally jumps to PC=16
6 /∗PC=5−14 ∗/ print(“Hello ”+args[0]);
7 /∗PC=15 ∗/ instr(m 3,15,goto w(4)).
8 /∗PC=16−18∗/ print(“Hello World”);
9 /∗PC=19 ∗/ instr(m 3,19,return(void)).

Listing 1.4. Result of a Model Transformation from a Java Class File to a
Prolog Representation

Let us now assume that we want to calculate the control-flow graph of a
method. In this case, it is necessary to identify all instructions that start with
basic blocks and to determine the order in which the basic blocks are executed.

In: Proceedings of the 6th European Conference on Modelling Foundations and Applications (ECMFA'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

This requires that all control transfer instructions can be identified and also all
instructions that – at runtime – are potentially directly executed after these
instructions. As shown in Listing 1.2, Line 1 the information that the if icmpne

instruction is a control transfer instruction is directly encoded in the bytecode
model. Since the instruction is a conditional control transfer instruction, the next
instruction is a potential successor instruction and also the instruction where the
program counter (PC) is the PC of the if instruction plus the branchoffset

This meta-information is extracted from the Bytecode Instructions Specifi-
cation (c) and also transformed to Prolog facts (h), as shown in Listing 1.5. A
generic model transformation to identify a method’s basic blocks is shown in
Listing 1.6. The algorithm only assumes that instructions are encoded using a
specific syntax (instr(METHOD ID, PROGRAM COUNTER, INSTRUCTION)) and, if
the instruction is a conditional transfer instruction, that the INSTRUCTION is en-
coded as follows: MNEMONIC(BRANCHOFFSET, ...). Furthermore, the algorithm
uses the meta-information about instructions (Line 4) to identify all control
transfer instructions and all potential successor instructions. Hence, the algo-
rithm does not make any assumptions about specific instructions and can provide
a foundation for a complete control-flow graph algorithm.

1 control transfer(if icmpne,conditionally). % ‘‘conditionally’’ is defined by OPAL SPL
2 control transfer(goto w,always). % ‘‘always’’ is defined by OPAL SPL
3 control transfer(return,caller). % ‘‘caller’’ is defined by OPAL SPL

Listing 1.5. Meta-information Related to Control Transfer (They are generated
as Prolog facts from the Bytecode Instructions Specification).

1 bb start instr(MID,0) :− instr(MID,0,). % the first instr. starts a basic block
2 bb start instr(MID,PC) :−
3 instr(MID,CurrentPC,Instr),
4 Instr =.. [Mnemonic|],control transfer(Mnemonic,T), T \= ’no’,
5 ((PC is CurrentPC + 1, instr(MID,PC,)); % ... if ”PC” is valid
6 (T = ’conditionally’,
7 Instr =.. [,Branchoffset|], PC is CurrentPC + BranchOffset
8))

Listing 1.6. Model transformation in Prolog to identify the method’s basic
blocks

5 Lessons Learned

In this section, we report on important lessons that we have learned when real-
izing the discussed architecture.

Overall Approach: Having an explicit meta-model [9] for specifying bytecode
instructions did prove useful. First, given the XML-Schema numerous tools were
available that facilitate writing documents according to the XML-Schema. These
tools provide code completion and immediately report violations of the defined

In: Proceedings of the 6th European Conference on Modelling Foundations and Applications (ECMFA'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

structure. Additionally, having a schema helped us to get a consistent specifi-
cation of the Java Bytecode instructions. Several times during the development
of the framework we did have to extend and adapt the meta-model to accom-
modate for the specifics of further instructions. Given the meta-model we were
able to rethink and adapt parts of it while being sure to understand the im-
pact on the instructions that have been specified so far, i.e., having an explicit
meta-model made it easier to change and extend it since it is possible to assess
the impact of changes. Given the meta-model also facilitated the development
of generic analyses since it is well-defined which information is generally avail-
able. If the specification is only implicitly available one is tempted to look at the
concrete instance of it; e.g., the specification of Java bytecode instructions, and
to make wrong assumptions about the information that will be common to all
instantiations.

Checking Specifications: XML-Schema enables us to express syntactic and, to
some extent, semantic constraints which are useful to validate concrete bytecode
specifications. However, using XML-schema it is not possible to prevent or detect
more complex errors. For example, to make sure that a sequence of instructions
is parseable, every instruction has to have a prefix path that uniquely identifies
the instruction.1 In case of the if instruction shown in Listing 1.2 the opcode
uniquely identifies the instruction. But, in case of some other instructions it is
necessary to read multiple values before it is possible to identify the (variant of)
the instruction. Using XSLT we were able to efficiently implement an analysis
(basically using XPath expressions) that checks that every instruction has a
unique prefix path. But, implementing a type checker in XSLT worked out to be
too troublesome due to XPATH / XSLT’s lack of support of other data structures
than lists of nodes. We decided to use Scala for this task. The combination
of XML-Schema, XSLT and Scala to fully express the static semantics of our
bytecode metamodel is heavyweight. However, to our knowledge and at the time
of implementing our architecture, there was no metamodeling paradigm that
was powerful enough to express all kinds of constraints in a concise and elegant
manner.

Overall, writing a lint like tool for OPAL SPL provided two significant ben-
efits. First, we were able to find numerous errors early on. Second, it helped us
designing the language, because writing the analyses requires to take the per-
spective of the user of the language. This helps to identify issues that are relevant
when the specification language is used later on. The effect of writing analyses
on the design of the language seems to be roughly comparable to the effect of
writing test cases early on.

Scala as the Target Language for Code Generation: From our experience us-
ing Scala (compared to, e.g., Java) as the target language for code generation
is beneficial. Scala offers the following features that are of particular interest:

1 In Java Bytecode the instructions do not have the same length, further some in-
structions even have a flexible length.

In: Proceedings of the 6th European Conference on Modelling Foundations and Applications (ECMFA'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

flexible syntax, case classes, type inference, implicit type conversions, semicolon
inference, an expressive type system, built-in support for XML and tuple types.
In the following, we discuss some of these features to highlight the effect on the
code generator.

The flexible and concise syntax of Scala is exemplified by class and construc-
tor definitions. Some code that defines a class that inherits from another class
and which defines a field that cannot be changed and is publicly available is
shown in Listing 1.7.

1 class ANEWARRAY (val cmpType : ReferenceType) extends Instruction {... }

Listing 1.7. Definition of the class ANEWARRAY in Scala

If we compare this class definition with a corresponding class definition in Java
(cf. Listing 1.8) the number of parts that are dynamically generated is much
smaller. In Scala, the name of the class (ANEWARRAY), the name of the variable
(cmpType) and the variable’s type (ReferenceType) occur exactly once. In case of
Java, the name of the generated class, and the type of the field both appear
twice. The field’s name even appears four times. Hence, in case of Scala three
parts are generated while in case of Java eight would need to be generated. This
advantage of Scala is directly reflected in the code generator, it is correspondingly
less complex.

1 public class ANEWARRAY extends Instruction {
2 public final ReferenceType cmpType;
3 public ANEWARRAY(ReferenceType cmpType) { this.cmpType = cmpType; }
4 ...
5 }

Listing 1.8. Class definition in Scala

A similar advantage is offered by Scala’s case classes. Case classes are Scala’s
way to allow pattern matching on objects. Basically, for case classes the scala
compiler generates default implementations of the equals and hashCode methods
that operate on the object’s state and not on its reference. Furthermore, factory
methods are provided to create objects of the particular type and functionality
is provided to take the objects apart to enable pattern matching. To get this
functionality it is just required to add the keyword case in front of a class dec-
laration (cf. Listing 1.9). If we would need to generate the corresponding code,
the generator would be orders of magnitude more complex.

1 case class ANEWARRAY ...

Listing 1.9. Case Class

To sum up, from our experience a language, such as Scala, that provides ad-
vanced language features (e.g., higher-order functions, advanced type systems)
does make developing a generator easier. Writing the generator will require less
code and more errors in the generated code will be detected early on. Overall, the
generator will be more comprehensible and maintainable. Many features of Scala

In: Proceedings of the 6th European Conference on Modelling Foundations and Applications (ECMFA'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

that sometimes are considered “syntactic sugar” were, however, at least as im-
portant when developing the generators. As outlined above, semicolon inference,
case classes, and implicits support also made the generators less verbose. We are
confident that the features proposed for the upcoming versions of Scala (e.g.,
named arguments and default arguments) will further strengthen the position
of Scala as a target language for code generation.

Handling XML-based code generators with Scala: In our architecture, Scala is
not only used as target language, but also as an implementation language of
certain generators. As shown in Fig. 1 (Artifact (k)), our framework supports an
XML representation of bytecode. The functionality to transform the bytecode
into XML is provided by Scala classes. Thanks to Scala’s built in support for
XML, writing a Scala program that generates XML is facilitated.

For instance, the Scala code that generates the XML representation of the
if icmpne instruction is shown in Listing 1.10. The method body toXML con-
tains an XML pattern which contains values to be replaced (e.g. pc.toString).
Thanks to Scala, there is no need to explicitly creates nodes of the generated
XML document or to enclose the generated text in print-like statements.

1 def toXML(pc : Int) =
2 <if icmpne pc={ pc.toString }>
3 <branchoffset value={ branchoffset . toString }/>
4 </if icmpne>

Listing 1.10. Excerpt of Scala Code that Transforms Java Bytecode into XML

To conclude this section, Table 1 sums up the lessons that we learned while de-
signing and implementing a model-driven static analysis toolkit. These findings
are rarely explicitly stated in the literature and supported by empirical facts.
Especially, to our knowledge, there is little work explaining the pros of using a
powerful and high level language (such as Scala) as a target language of a code
generator (see [10]).

6 Related Work

This paper presents a successful application of the model-driven principles to the
domain of static-analysis. Although model-driven architecture has been applied
to the development of a wide range of domains, e.g. simulation [11] or multi-
agent systems [12], we are the very first to report on its use for static-analyses
of programs.

However, both our motivations (extensibility and reuse) and the idea of using
modeling to facilitate the implementation of static analyses were alread raised
in survey papers. For instance, Jackson and Rinard [1] coined the term “model-
driven code analysis”. They emphasize on the need for explicit models in analysis.
We are going further: in our approach, we handle: (i) explicit models of types of

In: Proceedings of the 6th European Conference on Modelling Foundations and Applications (ECMFA'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

Short description

1 Having explicit layers of abstraction helps to identify generic and specific parts.

2 The mature tool support for XML and XML-Schema is really useful for modeling and
metamodeling (e.g. code completion).

3 XML-Schema can only be used to only express a small part of the static semantics of
a real-world metamodel.

4 XSLT is a pragmatic and good choice to express most of the static semantics of a
metamodel implemented with XML-Schema.

5 The need for expliciting the static semantics has a positive impact on the metamodel
structure.

6 Using Scala as target language of a code generator ends up in a more readable,
maintainable and concise generator.

7 The syntactic support of Scala for writing/reading XML files simplifies the imple-
mentation of XML based code generators.

Table 1. Main lessons learnt while implementing a model-driven static analysis toolkit

machine code (Section 3), (ii) explicit models of programs (Section 3) and (iii)
explicit models of analyses (written declaratively in Prolog, see Section 4). Also,
note that Binkley [2] also states that writing static analyses is difficult as well
as designing them as flexible.

Evans and Larochelle [13] presented a lightweight and extensible static anal-
ysis. The design of their tool anticipated the support for new checks and anno-
tations. On the contrary, in our approach, all new analyses are supported in a
standard way, with no special ad hoc tool. For instance, one can write a new
analysis for the bytecode specification (Section 3) as an XSLT program, or a
bytecode analysis using Prolog.

The research on reverse engineering has investigated for a long time the need
for parsing and understanding software. Rugaber proposes a generic solution
called “model-driven reverse engineering” [14]. While our main goal is not re-
verse engineering, we also manipulate program models. Hence, it seems to be
straightforward to use our toolchain for reverse-engineering which would be an-
other proof of the flexibility of the approach.

Finally, it is important to differentiate between metamodels of source code
and metamodels of machine executable code. They are not at the same level of
abstraction. For instance, Strein et al. [15] presented a metamodel for program
analysis. While we share similar motivations (extensibility and performance of
analyses), their metamodel is much closer to the program structure of the source
code with goals such as vizualisation. On the contrary, we reason at the level of
the execution machine, with other kinds of verification such as pointer analysis.
The same argument applies for [16] in which Störrle uses Prolog not to represent
machine code but high-level models.

In: Proceedings of the 6th European Conference on Modelling Foundations and Applications (ECMFA'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

7 Conclusion

Engineering machine-executable code to write static analyses is a complex task.
To tame this complexity, we experimented with the design and implementation
of a new static analysis toolkit following a model-driven architecture. We are the
first to report on a concrete design and implementation of a model-driven tool
chain for implementing static analyses of machine executable code. We managed
to obtain a system that is loosely coupled and that allows us to reuse code
and semantics across different types of machine-level code (different bytecode
instruction sets).

Furthermore, this experiment showed that XML based technologies (XML-
Schema, XSLT, XSLT, Scala support for XML) nicely fit together in a model-
driven architecture and that using an advanced, high-level language as target of
a code generator leads to a more clean and concise code generator.

References

1. Jackson, D., Rinard, M.: Software analysis: A roadmap. In: Proceedings of the
Conference on The Future of Software Engineering. (2000) 133–145

2. Binkley, D.: Source code analysis: A road map. In: Future of Software Engineering
(FOSE’07), Washington, DC, USA, IEEE Computer Society (2007) 104–119

3. Brooks, F.: No silver bullet: Essence and accidents of software engineering. IEEE
computer 20(4) (1987) 10–19

4. Garcia, M.: Formalizing the well-formedness rules of EJB3QL in UML+ OCL.
Volume 4364., Springer (2007) 66

5. Strembeck, M., Zdun, U.: An approach for the systematic development of domain-
specific languages. Software: Practice and Experience 39(15) (2009)

6. Kuehne, T.: Matters of (meta-) modeling. Software and System Modeling 5(4)
(2006) 369–385

7. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Second edn.
Addison-Wesley (1999)

8. ISO/IEC Geneva, Switzerland: Information technology – Common Language In-
frastructure (CLI) Partitions I to VI. ISO/IEC 23271:2006(E) edn. (2006)

9. Eichberg, M., Sewe, A.: Encoding the java virtual machine’s instruction set. In:
Proceedings of the Fifth Bytecode Workshop. Electronic Notes in Theoretical Com-
puter Science, Elsevier (to appear)

10. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. John Wiley & Sons (2008)

11. Monperrus, M., Jaozafy, F., Marchalot, G., Champeau, J., Hoeltzener, B., Jézéquel,
J.M.: Model-driven simulation of a maritime surveillance system. In: Proceedings
of the 4th European Conference on Model Driven Architecture Foundations and
Applications (ECMDA’2008). Volume 13., Springer (2008)

12. Pavon, J., Gomez-Sanz, J., Fuentes, R.: Model driven development of multi-agent
systems. In: Proceedings of the European Conference on Model Driven Architecture
- Foundations and Applications (ECMDA’2006). (2006)

13. Evans, D., Larochelle, D.: Improving security using extensible lightweight static
analysis. IEEE SOFTWARE (2002)

In: Proceedings of the 6th European Conference on Modelling Foundations and Applications (ECMFA'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

14. Rugaber, S., Stirewalt, K.: Model-driven reverse engineering. IEEE Software 21(4)
(2004) 45–53

15. Strein, D., Lincke, R., Lundberg, J., Löwe, W.: An extensible meta-model for
program analysis. IEEE Transactions on Software Engineering 33 (2007) 592–607

16. Störrle, H.: A prolog-based approach to representing and querying software engi-
neering models. In: Proceedings of the Workshop on Visual Languages and Logic
(VLL’2007). (2007) 71–83

